Summary

Automatic language identification in written text documents is an issue
which deserves significant attention in the context of the ever-growing
volume of web documents. This paper deals with language identification in
the domain of web documents. The proposed system is built on Hidden
Markov Models (HMMs) that enable the modeling of character sequences.
To our knowledge the use of HMMs has not been widely examined in such a
task. The aforementioned observation combined with the flexible stochastic
properties of HMMs motivated us to conduct further research on this topic.
A parallel structure of discrete HMMs is used in the training phase. During
testing, a previously unseen document is divided into its sentences and each
of them is independently characterized with respect to the language it is
written in. For this purpose, proper HMM features are used. Several HMM
parameters are examined and adjusted for better results. Experiments
conducted on sentence-long documents, written in five European languages,
have demonstrated high identification rates. Furthermore, HMMs allow for
language tracking; that is language identification across the segments of a
multilingual document. This is a promising application for the proposed

method.
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Abstract

This paper deals with language identification in the domain of web documents. The
proposed system is built on Hidden Markov Models (HMMs) that enable the mod-
eling of character sequences. Furthermore, the use of HMMs provides the means for
language tracking, that is, language identification across the segments of a multilin-

gual document.

Key words: Statistical language identification, Web documents, Tourism domain,

Language tracking, Discrete Hidden Markov Models (DHMMs)

1 Introduction

One of the first steps taken in order to understand a written text is to identify the
language it is written in. Related areas of interest are authorship attribution, subject
identification, and text summarization. Apart from language, other natural processes are
also described by a string of characters, like genetic DNA sequences.
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It is being argued that text-based language identification (TLI) is straightforward [1]. In
this paper we revisit this task applied to web documents and we argue that improvements
are still possible. Several difficulties arise when dealing with web documents. Firstly, the
web documents contain additional information for the visual appearance of a web page,
which may interfere with the text, especially in the case of a faulty page composition.
Secondly, web documents may have textual information in a form that is useful when
displaying the page, but is disorganized when the documents are considered consoli-
dated texts (e.g., data formatted as lists). Moreover, spelling and syntax errors are more
frequent in document collections from the web than in corpora constructed from texts
extracted from books or newspapers. Another issue is that web documents do not use
the same character encoding, that is, characters are not always represented as the same
byte values, even when they are in the same language, due to the existence of quite a
few different textual character encodings. Although Unicode encoding would help toward
this direction, the web documents that do not follow this standard are still markedly nu-
merous. Finally, the plethora of international terms and proper names occurring in web

documents introduces an additional difficulty to the identification process.

To cope with some of the above difficulties, hidden Markov models (HMMs) are used
for TLI, counting on the fact that there is a possibility to model the linguistic structure
statistically. HMMs have been successfully applied in spoken language identification |2,3].
Our target is to test their application to text documents, and in particular, to documents
that have been extracted from HTML pages, by establishing a correspondence between
language characters and integer values. The latter implies the treatment of the language
as a signal. The rationale behind opting for HMMs is that they capture the stochastic

nature of language.

Our effort focuses on the achievement of high identification rates using a small corpus
of web documents for training and testing. During training, HMMs for several languages

are created from the training corpus. Accordingly, the computational requirements for



the training are small. During testing, each of the selected test documents is split into
its sentences and identification rates are measured based on the results of the identifi-
cation procedure on each sentence. The splitting into sentences is performed so that the
extraction of statistics is facilitated. The size of test documents used is generally small
due to the fact that the test documents are only sentence-long documents. It is worth
mentioning that, by the term “sentence”, we do not refer to a syntactically and grammati-
cally correct sequence of vocabulary words but to a contiguous collection of words ending
with a period that is possibly processed by some “cleaning” rules. More details about the

experimental setup are given in Subsection 4.1.

Five languages that are members of the Indo-European family have been selected. Two
of them, that is English and German, are members of the West Germanic group of
the Germanic subfamily, while the rest three languages, that is French, Spanish and
Italian, are members of the the Romance group of the Italic subfamily. When a full
HTML document is provided for identification, a slightly different procedure than the
aforementioned is followed. The document is not characterized at the sentence level. A
parallel structure of HMMs keeps track of the language used in the document. In this
way, a multilingual document can be characterized and further processed in more detail,
taking into account language changes even within a sentence. The latter fact compensates
for a possible lack of the period between the text segments in different languages, which

is something not so unusual in the domain of web documents.

The outline of the paper is as follows. An overview of TLI is provided in Section 2. The
application of discrete HMMSs to TLI is presented in Section 3. Experimental results are

reported in Section 4 and conclusions are drawn in Section 5.

2 Text-based language identification

TLI is treated as a categorization task. That is, given a collection of texts written in a

number of known languages, the objective is to determine the language an input docu-



ment is written in. The decision is made upon document characteristics, usually at the
word or character level [1]. Working at the character level generally seems to be a more
robust approach than working at the word level. Another treatment is to consider TLI a
clustering task. The difference between a text clustering and a text categorization task
is that the former attempts to construct clusters of texts written in the same language,
possibly without knowing the identity of each language a priori. In that sense it can be
said that text categorization implies a supervised pattern recognition task, while text

clustering an unsupervised one. An overview of TLI issues can be found in [1].

Several methods have been proposed for TLI. One of them is to use the vocabulary of
each language and decide upon the number or percentage of words found in each vo-
cabulary. However, this approach has difficulties in coping with inflected words, that is
grammatical variations, or spelling errors. Variations of this method employ the most
frequent words in each language or grammatical or function words like prepositions, de-
terminers, pronouns and conjunctions [4]. Another extensively applied approach is the
so-called character n-grams. The most frequent sequences of n characters, where n can
take more than one values, are found from a training corpus. The number of occurrences
of these sequences in the test document is used in the decision criterion either directly
or through the formation of probability estimates [4,5]. In [6] the ranking of the most
frequent character n-grams is used instead of their absolute frequencies. There is also
the possibility of using word n-grams, where probabilities of word sequences of length
n are estimated instead of character sequences. In the latter case, more training data
and computational resources are required. Among the aforementioned techniques, that
based on character n-grams appears to be the most flexible. Several other identification
approaches are found in the literature. In [7], both character n-grams and words are
considered features of a vector-space based categorizer. The relative entropy, also called
Kullback-Leibler distance, is considered in [1,8]. The use of Markov models for TLI is

considered in [9], while the application of decision trees is studied in [10]. Potential ap-



plications of TLI to web documents are closely related to cross-language information

retrieval, construction of digital libraries, and machine translation of online texts.

A challenge in TLI is the characterization of a multilingual document. In this case, the
points of language change have to be identified as well as the language used between
them. Such a task becomes arduous, especially in web documents, where the period is

not always present to signify the end of a sentence.
3 Discrete HMMs for text-based language identification
3.1 Hidden Markov Models

Hidden Markov Models (HMMs) [11] are statistical models of sequential data thoroughly
investigated and used not only for speech recognition, but also for various applications
including biometrics, biosciences, climatology, automatic control, communications, econo-
metrics, handwritting and text recognition, signal processing, image processing, and com-
puter vision. There are two general kinds of HMMs, the continuous (density) models and
the discrete models depending on whether the observations modeled are continuous or dis-
crete random variables, respectively. In our case discrete models are of interest, since we
represent characters as non-negative integer-valued random variables. What is achieved by
means of HMMs is that the model parameters are adjusted to specific inputs. Accordingly,
a suitable representation of these inputs is obtained. The type of input we are interested
in, is written text in one of the languages under investigation. The representation attained
by the HMMs can be thought as the probability distribution of the language characters
induced by text realizations from a given language. In all experiments, one discrete HMM

(DHMM) is constructed per language.

The training of the just mentioned DHMM is done using portions of the corpus as observa-
tion sequences O; containing integers. These sequences, which are more closely examined
in Subsection 3.2, are iteratively presented to the DHMM an adequate number of times

until a termination criterion is met. Having done this for as many DHMMs as the number



of languages under examination, the language identified in the test document is the one
associated to the DHMM that best represents this document. Further details about the

training and identification stages can be found in Subsection 3.3.

A DHMM contains a set of N interconnected states S = {s1, S9,..., sy} and M (observa-
tion) symbols V' = {vy, va,...,vp}. At a given time instant ¢ it can enter one of the states
q: € S by providing an observation (feature) vector o; (with components v;) as output
of the entered state ¢;. o, is generated using an output (observation) discrete probability
distribution b;(k) = by, (0;) = P(0; = vi|q: = s1), 2 <1 < N —1 for the entered state. The
probability of transition between the states is a;; = P(q11 = sjlg = si), 1 < 4,5 < N,
for a first order HMM. Higher order HMMs can take into account more than one his-
tory instances. Unconnected states have a;; = 0. The entire model can be written as
A= (A, B, 1), where A is the transition probability matrix, B is the output probability
distribution matrix, and 7 denotes the initial state distribution m; = P(q; = s;), 1 <i <

N.

In the case under study, two special states are used, an entry state s; and an exit state sy,
in addition to the other “standard” states. These special states are non-emitting, i.e. they
do not have output probability distributions associated with them but only transition
probabilities. The entry state is always the first state of the model: ¢; = sy, 1 =1, m; =
0,2 < ¢ < N, and the exit state is the last state. The summation of the transition
probabilities initiating from a given state equals one (Z;-Vzl aij = 1,1 < i < N), except
for the exit state, since there is no possible transition after the exit state (ay; =0, 1 <
Jj < N). The value j = 1 in the summation can be disregarded, since there is no possible
transition to the entry state (a; = 0,1 < i < N). We also used a;; = 1, meaning
that the only transition from the entry state is toward the first standard state. In our
experiments, three topologies were tested: left-right (LR) models without skips, where
a;j =0, j # 1,1+ 1, LR models with skips, where a;; =0, j # 7,...,7 4+ Aé, and ergodic

models, where a;; # 0, Vi, j standard states. An LR model without skips including the



two non-emitting states is depicted in Figure 1.

A possible abstract explanation of the meaning of states is that of considering them groups
of characters with common characteristics. For example, vowels and consonants could
form two different groups. This association of the model states with group of characters
can lead to the consideration of the transition probability matrix A as a bigram language
model, while the output probability distribution matrix B can be considered a unigram
language model. The formation of these groups is not a priori known and is left to be
decided at the learning phase. The latter fact agrees with the theoretical assumption of
DHMDMs that the states are not directly observable but hidden, as opposed to Markov
chains, i.e. the discrete-time discrete-space Markov processes. When using DHMMs, each
observation is a probabilistic function of the state from which it is derived, while in

Markov chains the observation is deterministically determined by the state.

3.2 Formation of observation vectors

The observation characters, that is those considered for the formation of observation
(feature) vectors, are the 26 English alphabet letters ('a’-'z" or ENGset), the 32 ISO
Latin-1 characters used in western European languages (ISOlset), the period (’.”) and
a symbol assigned for the blank space between words (’ '), yielding an alphabet of size
M = 60 observation symbols. The names of the ISOlset letters as they appear in HTML
entities are: ’agrave’, ’aacute’, ’acirc’, ’atilde’, auml’, ’aring’, ’aelig’, ’ccedil’, ’egrave’,
‘eacute’, 'ecirc’, ’euml’, ’igrave’, 'iacute’, ’icirc’, 'iuml’; ’eth’, 'ntilde’, ’ograve’, 'oacute’,
‘ocirc’, ’otilde’, ’ouml’, 'oslash’, 'ugrave’, uacute’, 'ucirc’, 'uuml’, 'yacute’, 'thorn’, ’szlig’,
'yuml’. No distinction between uppercase and lowercase types is made for the 26 English
alphabet letters as well as for 30 ISO Latin-1 characters (the 32 previously mentioned ones

except 'szlig” and 'yuml!’). Furthermore, multiple blank space occurrences are considered

a single blank space.

An observation vector can be regarded as the numerical representation of an observation



symbol at a specific time point. Several representations were considered based on the
observation characters. The first is the character mapping according to their ISO Latin-1
code value. The resulting (representation) codes are hereafter called symbol features, fs. In
our case, the alphabet size for the symbol features is Mg = 60. An observation symbol may
include more than one observation characters, for example if differences of code values
are considered. The resulting representation uses the value of the difference between the
ISO Latin-1 code values of two characters. This value can be negative, zero-valued or
positive, depending on whether the code value of the currently considered character is
less than, equal to, or greater than the code value of the previous character, respectively.

The observation vectors constructed as described are one-dimensional.

Depending on the proximity of the two characters taken into account a series of obser-
vation vectors results. Thus, when the value of the difference is regarded between two
consecutive characters, the current character and the one on its left, the resulting codes
are called delta-zero features fag. When the difference is regarded between two charac-
ters separated by another character, that is between the current character and the one
two places leftward, the resulting codes are called delta-one features fai, and so forth,
resulting in fa; for ¢ a non-negative integer. As for the indices, A denotes the difference.
The index ¢ on its right denotes the number of observation characters which are present
in the corpus between the observation characters consisting an observation symbol. The
alphabet size for these delta features is Ma; = 2Mg — 1 observation symbols, where 7 > 0.
In the cases, where there are not enough previous characters for the computation of a

difference, a value considering only the first character is computed.



The mapping function of the symbol features mg(-) is defined by:

(

up(c) — 64, ¢ € ENGset
mg("Z") + 1 (= 27) c=""
mg('Z') + 2 (= 28) c=""

ms(€) = | up(c) — 191 + my("’) = up(c) — 163 ¢ € ISOLsetA

up(c) — 192 + my(".") = up(c) — 164 ¢ € ISO1setB

314+ m(") =59 =M;—1 ¢ =" szlig’
32 +my("") =60 = M; ¢ =' yuml’
where
ISO1(uppercase c), cislowercase
up(c) = :

ISO1(e), cisuppercase

ISO1(c) is the ISO Latin-1 code value for the character ¢, ISOlsetA denotes the ranges
’Agrave-Ouml’ and ’agrave’-’ouml’, and ISOlsetB the ranges ’Oslash’-"THORN’ and

‘oslash’-’thorn’.

The formula used for ma;(-), that is the mapping function of the delta-i features, referring
to two characters separated by ¢ characters is

i characters

ma; (b ™ ¢) = mg(c) — mg(b) + My = mg(c) — mg(b) + 60,

while the formula referring to a single character, at the beginning of a character sequence

where the difference cannot be applied, is ma;(c) = mg(c) + My = my(c) + 60.

The argument to the mapping function m (-) is an observation symbol, while the result

10



of this function is an observation vector. Through these functions the code values are
uniquely mapped on a continuous integer range. In more detail, my(-) maps first the
ENGset on the range [1,26], then the period on 27 and the blank space on 28 and then
the ISOlset on [29,60]. ma,(-) regards the differences of the values as considered in the
ranges of mg, which are just shifted by M so as to move the range [—M; + 1, M — 1] to

[1,2M, —1].

For the calculation of the feature values, the following formulas are used, where |[...]

denotes concatenation:

fs(abe) = [mg(a) mg(b) my(c)]
fao(abe) = [mao(a) map(ab) mag(be)]
fai(abe) = [may(a) may (b) may (ac)]

The resulting set from the mappings for a whole sequence of observation characters is
called an observation sequence and the set of the mapping functions on a whole character

sequence is referred to as features or codes.

Thus for a character sequence “ach”,

fs('a""¢ b)) = [my('a’) ms("c’) my('b")] = [132]
fao(['a"'¢"'b']) = [map('a’) mag("ac”) mag("cb”)] = [61 62 59]
far([a”'¢""b']) =[mai("a’) mai('c’) m (”ab")] = [616361].

In addition, multi-dimensional observation vectors were tested comprising of combinations
of the aforementioned features, for example symbol-delta-zero fseao and symbol-delta-zero-
delta-one fsgnoen1- These features make concurrent use of the individual mappings of
their constituent codes (fs, fao, fa1,---). The latter are arranged in the so-called streams,
which are regarded as independent information sources. Multiple data streams enable
separate modeling of multiple sources. Each combined observation vector o; of dimension

S, uses S features and can be thought of as a merging of the code values of its constituent

11



streams at time t. If an examined document consists of T° observation characters an
observation sequence can be regarded as an S x T vector which includes all the streams
over the whole document. As an example the word “achb” is encoded as follows for the 60

observation characters used when having fi,aoea1 as the feature:

fseenowar([a''c D)) =[fi('a") fao('d") far('a’); fo('c') fao("ac”) fai('c);
F.C) Fo (") fs("ab")]
=[16161; 36263; 25961]
(ranges: 1-60 fs, 1-119 fag, 1-119 fa1). In this case, “abc” is a 9-dimensional observation

sequence consisting of S = 3 streams or codes, where each of them is a 3-dimensional

(T = 3) observation vector.
3.3  Learning and identification processes

As for the learning process, there are two main optimization criteria: Maximum Likeli-
hood (ML) and Maximum Mutual Information (MMI). In ML, the probability of a given
observation sequence O;, belonging to a given category (language), is maximized, given
the model parameters A of the category. The ML criterion can be expressed mathemati-

cally as the maximization of P(O;|\), where:

T

P(OZP‘) - Z ™ Ha5t—15tb3t(ot)

8150038 N t=2

There is no known way to analytically determine the model parameters A which maxi-
mize P(O;|\). Nevertheless, model parameters such that P(O;|A) is locally maximized
can be chosen, using an iterative procedure, like the Baum-Welch method or a gradient
based method [11]. In contrast to ML, where an HMM of only one category at a time
is maximized, keeping HMMs for other categories intact at that time, in MMI, the con-
cept of discriminative training is applied. That is, the HMMs of all the categories are
trained simultaneously, so that the parameters of the correct model are updated to en-
hance its contribution to the observations, while the parameters of the alternative models

are updated to reduce their contributions.
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In our experimentation, the ML criterion is used. The general learning proceeds as follows:
Initially, all symbols in each standard state are set to be equally likely. That is, b;(k) =
%, 1<j<M,2<k<N-1.Let D denote the dimension of the vector o;, constant over
time. At the initialization phase, the observation vectors o, = (041, 042, . . -, otD)T, for the
different values of ¢, are presented to the corresponding DHMM and they are segmented
uniformly, in a timely fashion, among its (standard) states s;. The vectors assigned to a
state are considered to be generated by this state. Having done this for every observation
sequence O;, maximum likelihood probability estimates are found for the model parame-
ters A = (A, B, 7), so that P(O;|\) is maximized. The Viterbi alignment [12] is used next
for the resegmentation of the observation vectors and the recomputation of the estimates
of the transition probability matrix A and the output probability distribution matrix B,
until convergence is achieved, for example when having reached a maximum P(O;|\), or
when an upper iteration limit is reached. The transition probabilities at each iteration
are estimated by counting the number of times each transition is made in the Viterbi
alignments and normalization. Lateron, there is the possibility of using a re-estimation
phase for assigning each observation vector to every state in proportion to the probabil-
ity of the model being in that state when the vector was observed. The probability of
state occupation is calculated efficiently by means of the forward-backward algorithm.
The whole process is called Baum-Welch re-estimation or otherwise EM (Expectation-
Maximization) algorithm [11]. Experimental evidence showed that the application of the
Baum-Welch re-estimation leaves the results almost unmodified and was subsequently

omitted. This is probably due to the effective usage of the Viterbi alignment.

At the identification stage, the Viterbi decoding is used. The purpose of this algorithm
is to find the best path of state transitions q = (¢1,¢2,...,qr), given the observation
vectors 0o; and the model parameters \. The log probability of a path is computed by
taking the summation of the log output probabilities and the log transition probabilities.

For LR models without skips, the Viterbi decoding does not determine the order of the

13



succesion of states, which is known due to the sequential nature of the model, but the
number of times each state is used as a generator. Internally the token passing algorithm

is used [12].

For the implementation of TLI, a parallel structure of the trained DHMMs is constructed.
For each DHMM, there is a probability outcome computed for the best path that was
found by the Viterbi algorithm. The identification result is found by choosing, among the
DHMMs, the one that is more likely to have produced the test observation sequence Oyg;.
This approach is also used in isolated word recognition using HMMs [11]. The HMM that
maximizes the probability of O when the parameters of the HMM () are given is chosen
and, since each HMM represents one language, this is declared as the identified language.
For the implementation of the learning and the identification phases HTK toolkit version

3 [12] is used. The identification process is depicted in Figure 2.

3.4 Model refinement

In order to achieve the best results, several model parameters were investigated leading to
a refined model. By keeping the remaining parameters unmodified, the experiments gave
some indications about the investigated parameters. Experimental evidence showed that
the average performance deteriorates when including characters than those mentioned in
Subsection 3.2 as observation characters, or when distinguishing between lowercase and

uppercase letters.

As for the features used, there are two parameters: their identity and their number.
We considered all 15 possible combinations of fg, fao, fa1, and fas in which each of
these features is regarded as a different stream. The experimental results show that the
inclusion of more delta features than those considered (fag, fa1, faz) would not justify
the additional complexity. figao also appears to be a particularly good choice when
viewed in terms of both identification rate and simplicity of implementation. Identification

rates with respect to training size of about 22500 characters, test sentences of length 20-
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100 characters and equal stream weighting (the notion of stream weighting is explained
subsequently) are given in Table 1. Moreover, the order of the constituent features did
not change the results, as expected, while the combined features include a small time
overhead. The rates presented in the tables of this paper are rounded to the closest

integer.

Another parameter examined was the selection of stream exponents [13], which can be
used to weight the influence of each stream on the calculation of the probability of an
observation sequence, when multiple streams are used. When considering separate inde-
pendent streams, the overall probability of an observation sequence becomes:

T

P(Oz|q) )\) - H Ot|Qta H H Ps’Ys 8)|qt) )\)7

t=1 t=1s=1

where independence of the observation vectors o; is assumed. An observation vector at
the discrete time ¢ consists of its stream components o, = [ogl) o§2’ - ogs)]T, S denotes
the number of streams, as they are defined in Subsection 3.2, and -5 denote the stream
exponents. By taking logarithms, the above probability becomes:

log P(O;lq, M) ZZ%logP g, \).

t=1 s=1

Two usually applied constraints are 0 < v, < 1 and ¥5_, v, = 1. Finding an opti-
mization criterion to evaluate the values of 7, which maximize the above log probability
has been researched quite much. Even state dependency was assumed. We have not taken
into account the state dependency, but restricted ourselves to tied exponents at the global
level [13]. In [14] the use of gradient descent is proposed for this purpose. Direct use of ML
estimation leads to one exponent being 1 and the rest 0, which is unwanted. Alternative
constraints for ML are presented in [15], such as ¥5_, (7,)™ = K, leading to reestimation
formulas for the exponents. Another approach is offered by discriminative training tech-
niques, like MMI [16] and the minimum classification error (MCE) method [13]. Several

combinations of exponents were tested yielding the one employing equal weights, whose
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sum amounts to 1, as the choice with the highest identification rate. The latter was used

in the subsequent experiments.

Furthermore, multiple observation sequences were constructed by segmenting the training
part of each language into more parts of virtually equal length, not necessarily ending
with a period. In this fashion, the different parts of text written in a language were
considered to represent this language. This can be likened to the way that the several
spoken utterances of a word are considered, when this word is to be learned in training.
The significance of multiple observation sequences in training is also mentioned in [11].
The segmentation into observation sequences yielded slightly higher rates when more
training data were available, whereas in the case of few training data, the rates were
lower than those attained without segmentation. The latter fact is clarified in Table 4,

where 1 and 4 observation sequences are used.

As for the topology, three kinds of DHMMs were tested, namely LR models without
skips, LR models with skips, and ergodic models. The former yielded better results and
were therefore selected for the subsequent experiments. A possible explanation of this
fact is that fewer parameters are needed for the LR models without skips, compared
to the other two models in terms of transition probabilities [3]. Although models with
skips have given higher identification rates than models without skips when few training
data were used, the use of skips or ergodic models appears to produce overfitting. As an
example, we mention the rates (rounded) from these three different models for a range of
small sentences in Table 2. Having setup the experiments in a certain way, experimental
evidence showed that the best case overall is to use three standard states, thus having

N =5 total states per DHMM.

3.5 Language tracking in multilingual documents

An application area which is successfully confronted by the proposed technique, as op-

posed to other standard techniques used for TLI, is language tracking. That is, in the
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presence of multilingual documents, the identifier manages to pinpoint the location in the
document, where a transition from one language to another occurs, apart from determin-
ing the identity of the language, thus presenting a flexibility with respect to transition
from one language to another. This is achieved in a manner similar to the one used in
speech recognition, where the detection of the end of one word and the beginning of the
next one is performed. That is, instead of selecting a simple DHMM for the description
of the entire document, a sequence of DHMMs is selected. The latter can be considered a
network of DHMMSs at a higher level than the network formed inside each DHMM with
respect to its states. A decision for the language is made every as many characters as
the number of standard states of each DHMM. This is explained by the fact that each
observation vector, which is produced for each observation character, is generated by a
DHMM state. Since a sequence of DHMMs is adjusted to the document being examined
and there is a decision by every DHMM, it transpires that a decision is made every so

many characters as the emitting states in a DHMM, that is N — 2 in our case.

4 Experimental Results

4.1  Ezperimental Setup

In order to test the performance of the suggested TLI technique, 151 HTML pages p;
were manually collected over the Internet, so that a small tourist corpus is created. Pages
with “running” text were preferred, avoiding those full of short lists, price tables or abbre-
viations. We also tried to find monolingual documents with little text in other languages,
but without requiring all the text to be strictly in one language. Most documents were
collected from hotel promotion sites (e.g. www.rosciolihotels.com, www.venere.com,
www.hotels.fr). Moreover, we exploited the fact that some web sites provide their con-
text in more than one language. At its current state, the corpus consists of web pages
related to hotels and accommodation written in five languages: English, German, French,
Spanish, and Italian, with ISO 639-1 or alpha-2 codes “en”, “de”, “fr”, “es”, and “it”, respec-

tively. The corpus is used for both training purposes, that is the construction of statistical
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language models, and test purposes, that is the evaluation of the language identification
technique. Approximately thirty documents were collected for each language. The total
size in characters of the texts per language is given in Table 3. Although the size of the
corpus may seem to be small, experimental evidence showed that convergence to high
identification rates is attained after a certain training size. Small sizes, on the order of

tenths or hundreds of kilobytes, are also used in other similar efforts, such as [6].

The documents selected were annotated so that ground truth is incorporated. There are
five categories L; used for the annotation, one for each of the five languages considered.
The annotation was not performed in detail. That is, each sentence s, of an entire
document p was considered to be in the same language, s,; € L; Vi, as the one that was
assigned to the document (p € L;). Nevertheless, there were actually few sentences s,y
written in a different language than the language of the document they were part of. This

fact introduces slight errors in the training and the evaluation processes.

After having annotated the collection of the entire multilingual corpus C, the documents
formed five groups C; according to their language [. For each group, the procedure depicted
in Figure 3 is followed to segment it into the training part Cj(m) and the test part Cis).
A hold-out estimation approach was followed. More specifically, firstly, an initial cleaning
process is executed for the removal of HI'ML structures and other useless data in p;, while
all ISO Latin-1 representations are converted to one. Plain documents p;(,im) result as an
outcome of this procedure. After this step, the separation of p;pm) into documents used
for training pj(pi)(tm) and others used for testing pj(pin)tst) is made. A sufficient number of
documents Ny = 20 is selected to be included in the training corpus of each language
and the remaining Nys) ~ 10 documents are selected for inclusion in the test corpus.
The plain train and test documents are, in turn, split into their “sentences”; thus forming
a training s;;(;m) sentence pool and a test sy;(1sr) sentence pool per language. By this split,
the evaluation of identification rates for different ranges of sizes of test documents is

facilitated. Sentences with less than 20 characters are omitted.
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As for the “sentence” notion, it should be noted that the sentence splitting in this context
is performed in a wide sense and not in a strict grammatical sense. Generally, sentences
are phrases delimited by a period except for certain cases, which include emails, URLs
and acronyms, where the period does not signify the end of a sentence. When a period
is followed by a letter, which in turn is followed by a period and so on, the whole string
is considered an acronym inside a sentence. To ensure that a sentence does not expand
over more than one HTML document, an extra period is added at the end of each HTML

page when merging takes place.

In our work “clean text” characters are used. By this term we mean the characters that are
used in feature construction, i.e., the symbols referred in Subsection 3.2, except the ones
that are included in emails, URLs, acronyms and a small stoplist (containing currency
acronyms). The stoplist contains some frequently used tourism and currency related words
that are found in the corpus documents irrespective of the language. An algorithm for
the detection of URLs, emails and acronyms is used so that these do not interfere with
the linguistic content of the documents. Finally, if 75% or more of the words in a sentence
are “only-first-capital” ones, that is, begin with a capital letter and do not contain other
capital letters, the latter words are not taken into account for feature extraction. This
fact compensates for the inclusion of sentences in a list form, where many proper names

are enumerated.

The training corpus C{ym) was built by five texts Cym), one for each language [. Each
text is created as follows. First, from the textually ordered sentences of the training
sentence pool for the corresponding language [, sj(im), those that lie in a specific range
of lengths of “clean text” characters are selected. The range of sentence lengths consid-
ered is 20 — 100000. Thus, practically all sentences over 20 “clean text” characters are
included. Afterward, these sentences are sampled taking one out of 74, sentences. We
experimented with rem,, = 1 (all samples) and 7samp = 10, so that a comparison for the

training corpus size effect on the identification rates is enabled. The resulting sentences
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are merged into Cy(m). Finally, the sizes of the five Cjm) are shortened to the length
of the smallest text by omitting the last extra characters, in order to provide the same
amount of training material for each language. The fact that the training corpus may
include some text that is not characteristic of the language structure, or the fact that a
very small part of it may even be in a different language, since the pages were not manu-
ally modified, may be the source of wrong identifications. One reason for not performing
or requesting a manual intervention is that the latter is usually onerous and it may also

be subjective.

On the other hand, the test corpus Cl) consists of five groups Cjgsy) of separately
considered sentences s;;, one per language [. From the textually ordered sentences of the
test sentence pool for language [, sj(st), only those that lie in a specific range of lengths
in “clean text” characters are selected. Sentences with the same “clean text” content are
detected and taken into account only once. An identification result is extracted for each

sentence-long “document” s;(st) of Clygy) -

Using Cym) the training observation vectors and sequences are created and 5 DHMMSs
are trained, one per language as described in Section 3. Subsequently, Cl) is used to
implement the evaluation procedure. For each sentence of the 5 languages, the observation
vectors are extracted and they are presented to the structure of DHMMs in parallel to

make the decision for the text language.

4.2  Performance FEvaluation

Our experiments were focused on the evaluation of the effect of various parameters on the
identification rates and also the comparison of our technique with a standard technique
using variable character n-grams, as described in [6]. The same preprocessing steps were
followed for both techniques, as described in Subsection 4.1. Table 4 was created using
fs&noeniens as features for DHMMs. DHMMs/1 refers to DHMMs where one observation

sequence is used for training, while DHMMs/4 denotes DHMMSs which use four obser-
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vation sequences for training. By comparing the entries of these tables we conclude the

following:

e As for the size of the training corpus, it appears that the bigger the size is, the higher
identification rates are achieved. Nevertheless, this dependency does not seem to be very
strong. A tenfold training size results in an average increase of two or three percent in
the identification rates.

e On the other hand, the average length of the test sentences appears to play a significant
role, since its increase leads to a significant increase in the identification rates. A shift
of the average length range from 20-100 to 50-150 causes at least 3% increase in the
identification rate.

e Although the variable character n-grams attain better results, there is a very small
difference in the identification rates, of about one percent overall.

e What is more, in some cases regarding French and Italian texts, the DHMMs yielded

higher rates. This enables the consideration of a hybrid technique for better results [17,18].

Experiments using only non-tourism related plain text documents for the training, and
tourism related test documents gave worse average results for both techniques (DHMMs,
n-grams). Finally, it should be noted that the reported identification rates include a
slight error percentage, since the ground truth may contain small errors, mainly due to

rare small English phrases regarding the navigation of the web page.

Confusion matrices were also computed, which provide with a better insight into the
wrong identifications made per language. These confusion matrices are defined as follows:
entry (i,7) is equal to the number of sentences assigned to output (language) category
i, that were generated as part of input (language) category j. The last row gives the
total number of sentences generated as part of input (language) category j. For the
smallest range of test sentences examined, that is 20-100 characters long, the confusion

matrices for DHMMs and variable character n-grams are given in Table 5. As can be
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seen, there are cases for which DHMMs behave better. For example, there are more
Italian texts categorized as Italian, fewer Italian texts categorized as English, as well as
fewer German, Spanish, and Italian texts categorized as French. Additionally, the wrong
classifications appear to be located in similar areas of the two matrices. This, in a sense,
reveals relationships across languages, such as Spanish with Italian, English with German,
and French with Spanish. The latter relationships are in agreement with the classification

into language subfamilies, as noted in Section 1.

For further evaluation, our method was tested with full HTML documents and language
tracking was performed. First, the HIML document is cleaned in the way that was
described in the corpus preparation procedure. For every N — 2 characters long segment
of the cleaned document, a language identification result was found, taking its context into
account. The latter is achieved using a network of DHMMs as described in Subsection 3.5.
The way that each sentence segment is handled, in conjunction with its context, is what
makes the use of DHMMs most suited than other techniques for language tracking. In the
final stage, these results are merged into a language annotated document using an XML
1.0 conformant attribute zml:lang. In the latter document, whenever a group of more
than one contiguous segments is categorized into the same language, the annotation is
given for the entire group. The results of a few examples tested, including some plain text
documents, were satisfactory, showing signs of generalization. One such example is given

in Figure 4.

5 Conclusions and Future Work

We demonstrated by experiments that the use of DHMMs for TLI on web documents
attains high recognition rates, taking into account the inherent domain difficulties. There-
fore it can be regarded as a viable alternative of the other techniques used for TLI. The
method does not require any linguistic or a priori knowledge of the corpus under in-
vestigation. Judging from some non-overlapping wrong results, especially for the smaller

ranges of lengths of test sentences, there seems to be room for a hybrid technique be-
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tween DHMMs and variable character n-grams, which would yield better results than
either of them. The proposed method also works satisfactorily in a language tracking
framework, when applied in multilingual documents. Further evaluation of the method
can be achieved by using multifold cross-validation or bootstrapping [17]. The method

should also be tested on other corpora.
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1 An LR DHMM without skips, having two non-emitting states.

2 Block diagram of the identification stage of a language identifier using
DHMMs.
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test part.

4 The output of the algorithm (DHMMSs/1) having as input the
multilingual web page http://www.expoitalia.com/hotelgabriella/
presentazione.htm. The language change was detected with great
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Figure 1. An LR DHMM without skips, having two non-emitting states.
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<p xml:lang="it" >Hotel Gabriella Presentazione L. Hotel Gabriella accogliente albergo
a conduzione familiare é situato nel centro storico della citta. Le camere tutte recente-
mente ristrutturate sono provviste di servizi privati tv color cassette di sicurezza aria
condizionata su richiesta asciugacapelli e telefono. Inoltre 1 albergo dispone di bar con
servizio di prima colazione a buffet. Prenotazioni per gite turistiche per la citta e din-
torni. Si accettano carte di credito e traveller s cheque< /p><p xml:lang="en">. The
Hotel Gabriella is a comfortable family run establishment located in the town s old
centre. the rooms which have all recently been restructured have a private bathroom
colour television strong box air conditioning on request hair dryer and telephone. What
is more the hotel has a bar with breakfast and buffet service. Tours of the town and
surrounding area can be booked here. Credit cards and travellers cheques welcome.

</p>

Figure 4. The output of the algorithm (DHMMs/1) having as input the multilingual web page
http://www.expoitalia.com/hotelgabriella/presentazione.htm. The language change was
detected with great precision.
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Table 1

Encoding methods and obtained identification rates for a case study.

Feature | fs | fao | far | faz || fseeno | fsear | fsenz | faoear | faokaz | faieaz
Rate 88% | 88% | 79% | 63% || 94% 92% 87% 93% 90% 81%
Feature | fseaokal | fseaoeaz | fsearenz | faokaireas | fseaoeaiens
Rate 94% 93% 93% 92% 95%
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Table 2

Average identification rate in five languages. The training sentences have at least 20 characters
and their total size is 22446 characters for each language. The test sequences have 20-100
characters. The number after the first slash denotes the number of observation sequences used
for training, while the expression after the second slash denotes the topology used.

Method Identification rate
DHMMs/4/LR without skips 95%
DHMMs/4/LR with skips 86%
DHMMs/4/ergodic 82%
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Table 3
Size (in characters) for each language in the small multilingual tourist corpus collected over the

Internet. The corpus is used for both training and testing. The size refers to characters observed
in texts after the initial cleaning process.

Language code | Size (characters)
en 50680
de 57083
fr 46774
es 58401
it 42766
Total 255704
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Table 4

Average identification rate in five languages without and with (1 out of 10 training sentences)
sampling. The training sentences have at least 20 characters and their total size is 22446 (without
sampling) and 2098 (with sampling) characters for each language. For the DHMMSs the number
after the first slash denotes the number of observation sequences used for training.

No sampling

Range of test sequence length in characters
20-100 100-200 | 50-150 | 20-200

Method (avg) 68 140 100 101

(total) 19507 | 30941 33729 50145

Identification rate

DHMMs/1 95% 99% 98% 96%
DHMMs/4 95% 99% 98% 97%
Var. n-grams 95% 100% 99% 97%

Sampling (1/10)

Range of test sequence length in characters
20-100 100-200 | 50-150 | 20-200
Method (avg) 68 140 100 101

(total) 19507 | 30941 33729 00145

Identification rate

DHMMs/1 92% 99% 96% 94%
DHMMs/4 87% 97% 94% 92%
Var. n-grams 93% 99% 98% 96%
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Table 5
The confusion matrices for test sentences in the range of 20-100 characters using DHMMs/1
and variable character n-grams, respectively.

DHMMs/1

Identified Ground truth language
language en | de | fr | es | it

en 34 |8 01310

de O (1130 [0 | O

fr 010 200210

es 010 0162 2

it 012 04|55

Ground truth

total # of sent. || 34 | 123 | 20 | 71 | 57

Variable character n-grams

Identified Ground truth language
language en | de | fr | es | it

en 34| 2 021

de 0O 116 | O | O | O

fr 0 |4 20 3 | 2

es 010 0 (62| 0

it 0|1 04|54

Ground truth

total # of sent. || 34 | 123 | 20 | 71 | 57
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