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Greece.

Abstract

This paper addresses subset feature selection performed by the sequential floating
forward selection (SFFS). The criterion employed in SFFS is the correct classifica-
tion rate of the Bayes classifier assuming that the features obey the multivariate
Gaussian distribution. A theoretical analysis that models the number of correctly
classified utterances as a hypergeometric random variable enables the derivation of
an accurate estimate of the variance of the correct classification rate during cross-
validation. By employing such variance estimate, we propose a fast SFFS variant.
Experimental findings on Danish emotional speech (DES) and Speech Under Simu-
lated and Actual Stress (SUSAS) databases demonstrate that SFFS computational
time is reduced by 50% and the correct classification rate for classifying speech into
emotional states for the selected subset of features varies less than the correct clas-
sification rate found by the standard SFFS. Although the proposed SFFS variant
is tested in the framework of speech emotion recognition, the theoretical results are
valid for any classifier in the context of any wrapper algorithm.

Key words: Bayes classifier, cross-validation, variance of the correct classification
rate of the Bayes classifier, feature selection, wrappers

1 Introduction

Vocal emotions constitute an important constituent of multi-modal human
computer interaction [1,2]. Several recent surveys are devoted to the analysis
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Utterances

Extraction of pitch, energy,
and formant contours

Estimation of global
statistics

Feature selection steps

Cross-validation repetitions

Correct classification rate by the
Bayes classifier

Pdf modeling for each class

Highest correct classification rate within a
confidence interval for an optimum feature subset

Input

Feature extraction

Classification and
feature selection

(wrapper)

Output

Fig. 1. Flowchart of the approach used for speech emotion recognition.

and synthesis of speech emotions from the point of view of pattern recognition
and machine learning as well as psychology [3–6]. The main problem in speech
emotion recognition is how reliable is the correct classification rate achieved
by a classifier. This paper derives a number of propositions that govern the
estimation of accurate correct classification rates, a topic that has not been
addressed adequately, yet.

The classification of utterances into emotional states is usually accomplished
by a classifier that exploits the acoustic features that are extracted from the
utterances. Such a scenario is depicted in Figure 1. Feature extraction consists
of two steps, namely the extraction of acoustic feature contours and the esti-
mation of global statistics of feature contours. The global statistics are useful
in speech emotion recognition, because they are less sensitive to linguistic in-
formation. These global statistics will be called simply as features throughout
the paper. One might extract tens to thousands of such features from an ut-
terance. However, the performance of any classifier is not optimized, when all
features are used.

Indeed, in such a case, the correct classification rate (CCR), usually deterio-
rates. This problem is often called as ‘curse of dimensionality’, which is due to
the fact that a limited set of utterances does not offer sufficient information to

2
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train a classifier with many parameters weighing the features. Therefore, the
use of an algorithm that selects a subset of features is necessary. An algorithm
that selects a subset of features, which optimizes the CCR, is called a wrapper
[7].

Different feature selection strategies for wrappers have been proposed, namely
exhaustive, sequential, and random search [8,9]. In exhaustive search, all possi-
ble combinations of features are evaluated. However, this method is practically
useless even for small feature sets, as the algorithm complexity is O(2D), where
D is the cardinality of the complete feature set. Sequential search algorithms
add or remove features one at a time. For example, either starting from an
empty set they add incrementally features (forward) or starting from the whole
set they delete one feature at a time (backward), or starting from a randomly
chosen subset they add or delete features one at a time. Sequential algorithms
are simple to implement and provide results fast, since their complexity is
O

(
D + (D − 1) + (D − 2) + . . . + (D − D1 + 1)

)
, where D1 is the cardinal-

ity of the selected feature set. However, sequential algorithms are frequently
trapped at local optima of the criterion function. Random search algorithms
start from a randomly selected subset and randomly insert or delete feature
sets. The use of randomness helps to escape from local optima. Nevertheless,
their performance deteriorates for large feature sets [10]. Since all selection
strategies, except the exhaustive search, yield local optima, they are often
called as sub-optimum selection algorithms for wrappers. In the following, the
term optimum will be used to maintain simplicity. One of the most promis-
ing feature selection methods for wrappers is the sequential floating forward
selection algorithm (SFFS) [11]. The SFFS consists of a forward (insertion)
step and a conditional backward (deletion) step that partially avoids the local
optima of CCR. In this paper, the execution time will be reduced and the ac-
curacy of SFFS will be improved by theoretically driven modifications of the
original algorithm. The execution time is reduced by a preliminary statisti-
cal test that helps skipping features, which potentially have no discrimination
information. The accuracy is improved by another statistical test, called as
tentative test, that selects features that yield a statistically significant im-
provement of CCR.

A popular method for estimating the CCR of a classifier is the s-fold cross-
validation. In this method, the available data-set is divided into a set used for
classifier design (i.e., the training set) and a set used for testing the classifier
(i.e., the test set). To focus the discussion on the application examined in this
paper, the emotional states of the utterances that belong to the design set
are considered known, whereas we pretend that the emotional states of the
utterances of the test set are unknown. The classifier estimates the emotional
state of the utterances that belong to the test set. From the comparison of
the estimated with the actual (ground truth) emotional state of the test ut-
terances, an estimate of CCR is obtained. By repeating this procedure several

3
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times, the mean CCR over repetitions is estimated and returned as the CCR
estimate, that is referred to as MCCR. The parameter s in s-fold refers to
the division of the available data-set into design and test sets. That is, the
available data-set is divided into s roughly equal subsets, the samples of the
s− 1 subsets are used to train the classifier, and the samples of the remaining
subset are used to estimate CCR during testing. The procedure is repeated
for each one of the s subsets in a cyclic fashion and the average CCR over the
s repetitions constitutes the MCCR [12]. Burman proposed the repeated s-fold
cross-validation for model selection, which is simply the s-fold cross-validation
repeated many times [13]. The variance of the MCCR estimated by the re-
peated s-fold cross-validation varies less than that measured by the s-fold
cross-validation. Throughout the paper, the repeated s-fold cross-validation is
simply denoted as cross-validation, since it is the only cross-validation variant
studied. It will be assumed that the number of correctly classified utterances
during cross-validation repetitions is a random variable that follows the hy-
pergeometric distribution. Therefore, according to the central limit theorem
(CLT), the more realizations of the random variable are obtained, the less
varies the MCCR. The large number of repetitions required to obtain an
MCCR with a narrow confidence interval prolongs the execution time of a
wrapper. We will prove a lemma that uses the variance of the hypergeometric
r.v. to find an accurate estimate of the variance of CCR without many needless
cross-validation repetitions. By estimating the variance of CCR, the width of
the confidence interval of CCR for a certain number of cross-validation repe-
titions can be predicted. By reversing the problem, if the user selects a fixed
confidence interval, the number of cross-validation repetitions is obtained.

The core of the theoretical analysis is not limited to the Bayes classifier within
SFFS, but it can be applied to any classifier used in the context of any wrapper.
To validate the theoretical results, experiments were conducted for speech
emotion recognition. However, the scope of this paper is not limited to this
particular application.

The outline of this paper is as follows. In Section 2, we make a theoretical
analysis that concludes with Lemma 2, which estimates the variance of the
number of correctly classified utterances. Section 3 describes the Bayes clas-
sifier. In Section 4, statistical tests employing Lemma 2 are used to improve
the speed and the accuracy of SFFS, when the criterion for feature selection
is the CCR of the Bayes classifier. In Section 5.1, experiments are conducted
in order to demonstrate the benefits of the proposed estimate vs. the stan-
dard estimate of the variance of the number of correctly classified utterances.
In Section 5.2, the proposed SFFS variant is compared against the standard
SFFS for selecting prosody features in order to classify speech into emotional
states. In Section 5.3, the number of cross-validation repetitions required for
an accurate CCR is plotted as a function of various parameters, such as the
number of cross-validation folds and the cardinality of the utterance set. Fi-
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nally, Section 6, concludes the paper by indicating future research directions.

2 Hypergeometric modeling of the number of correctly classified
utterances

The major contribution of this section is Lemma 2, where an accurate estimate
of the variance of the number of correctly classified utterances is proposed. It
will be demonstrated by experiments in Section 5.1, that the proposed estimate
of Lemma 2 is many times more accurate than the standard estimate, i.e. the
sample variance. First, the notation that is used hereafter is summarized in
Table 1.

Table 1
Notation

Notation Definition

x random variable (r.v.)

x a realization of r.v. x

x Random Vector (R.V.)

x a realization of R.V. x

X a set of realizations of an r.v.

The path to arrive at Lemma 2 is Axiom 1→ Axiom 2→ Axiom 3→ Lemma 1
→ Lemma 2. The following axiom is the basic premise upon the paper is built.

Axiom 1 Let κ be a zero-one r.v. that models the correct classification of an
utterance u, when an infinite design set UD of utterances, denoted by U∞, is
employed to design the classifier during training, i.e. UD , U∞, with cardinal-
ity ND =∞. Such a case is depicted in Figure 2(a). That is, κ = 1 denotes a
correct classification of u, whereas κ = 0 denotes a wrong classification of u.
If P{κ = 1} = p is the probability of correct classification when the classifier
is trained on U∞, then κ is a Bernoulli r.v. with parameter p ∈ (0, 1). 2

A pattern recognition problem with an arbitrary number of classes C and fea-
ture vectors of any dimensionality D can be treated as a two-class problem.
Class one refers to correctly classified instances, whereas class two refers to
erroneously classified instances (e.g. utterances). Axiom 1 implies that p in-
cludes information about C and D. Therefore, there is no need to focus the
analysis on specific cases of C and D. Axiom 1 implies the following axiom.

Axiom 2 Let x be an r.v. that models the number of correctly classified ut-
terances, when the classifier is trained with an infinite set of utterances, UD ,

5
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UD , U∞

·u

(a)

UD , U∞

UT

(b)

U∞

UD , UA − UT

UT

UA
(c)

Fig. 2. Visualization of design and test sets of a classifier with: a) Infinite design set
and a single test utterance, b) Infinite design set and finite test set, c) Finite design
set and finite test set sampled from an available set of utterances UA.

U∞, and tested on a finite set UT of NT utterances. This assumption is vi-
sualized in Figure 2(b). Then, x models the number of correctly classified ut-
terances in NT independent Bernoulli trials, where the probability of correct
classification in each trial is p. Accordingly, x is a binomial r.v.,

P{x = x} =



NT

x


 px(1− p)1−x, x = 0, 1, . . . , NT . 2 (1)

A classifier is rarely trained with infinite many utterances. Usually, a finite set
of N utterances is only available. Let UA denote such a finite set of N available
utterances. When the cross-validation framework is used, UA is divided into
a design set UD and a test set UT , that are disjoint, i.e. UD ∩ UT = ∅ and
UD ∪ UT = UA, where ND + NT = N . The procedure is repeated B times,
resulting to a set X = {xb}

B
b=1 of B realizations of the r.v. x. These conditions

imply that x follows the hypergeometric distribution, as is explained in the
next axiom.

Axiom 3 Let UA ⊂ U∞ be the set of N available utterances, that is divided
into disjoint design and test sets, UD and UT , respectively. Such a case is
depicted in Figure 2(c). Let X be the number of correctly classified utterances,
when UA is used for both training and testing. Then the number of correctly
classified utterances x is an r.v. that follows the hypergeometric distribution
with parameters N , NT , and X, i.e.

P{x = x} =



X

x







N −X

NT − x







N

NT




, max(0, X+NT−N) ≤ x ≤ min(X, NT ). 2

(2)

6
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Axiom 2 refers to sampling an infinite set, whereas Axiom 3 does sampling a
finite set. So, Axiom 3 fits conceptually better to cross-validation, that also
performs sampling from a finite set of utterances.

The usual estimate of the variance of the number of correctly classified utter-
ances is the sample dispersion

V̂ar(x) =
1

B − 1

B∑

b=1

(xb − xB)2. (3)

An unbiased estimate of the first moment of x in cross-validation is the average
of xb during B cross-validation repetitions,

xB =
1

B

B∑

b=1

xb. (4)

A more accurate estimate of Var(x) than (3) will be derived by Lemma 2 that
exploits the hypergeometric modeling of Axiom 3. First, the following lemma
directly deduced from Axiom 3 is described.

Lemma 1 The variance of the number of correctly classified utterances during
cross-validation is

Var(x) =
N2

s2

s− 1

N − 1

X

N

(
1−

X

N

)
. (5)

Proof Since x is a hypergeometric r.v. with parameters N, NT , and X (Axiom
3), then the variance of x is given by [14]

Var(x) =
NT (N −NT )

(N − 1)

X

N

(
1−

X

N

)
. (6)

Given that NT = N
s
, (5) results. 2

Lemma 2 An unbiased estimate of the variance of the number of correctly
classified utterances during cross-validation is

̂̂
Var(x) =

N2

s2

s− 1

N − 1

xB

NT

(
1−

xB

NT

)
. (7)

Proof The first moment of the hypergeometric r.v. is [14]

E(x) = NT
X

N
. (8)

An unbiased estimate of X, denoted as X̂, can be found by equating (4) with

7
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(8),

xB = NT
X̂

N
⇒

X̂

N
=

xB

NT

. (9)

By replacing (9) into (5), the unbiased estimate of the variance of x (7) is
derived. In Section 5.1, it is demonstrated that the gain by using (7) is much
higher than using the standard sample dispersion (3) to estimate the variance
of the number of correctly classified utterances. 2

In the following section, we describe the design of the Bayes classifier, when
the probability density function (pdf) of features for each emotional state is
modeled by a Gaussian. The result (7) is employed in order to find an estimate
of the variance of CCR of the Bayes classifier.

3 Classifier design

LetW = {wd}
D
d=1 be a feature set comprising D features wd that are extracted

from the set of available utterances UA. For example,W can be the set {average
energy contour, variance of first formant, length in sec,. . . } [15].

The notation UA is extended with superscript W in order to indicate that
UW

A = {uW
i }

N
i=1 is the set of N available utterances, out of which the feature

set W is extracted. Each utterance uW
i = (yW

i
, ci) is treated as a pattern

consisting of a feature vector yW
i

and a label ci ∈ {1, 2, . . . , C}, where C is the
total number of classes. Let Ωc, c = 1, 2, . . . , C be C classes, which in our
case refer to emotional states.

A classifier estimates the label of an utterance by processing the feature vector.
The CCR is estimated by the cross-validation method, that calculates the
mean over b = {1, 2, . . . , B} CCRs as follows. Let s be the number of folds
the data should be divided into. To find the bth CCR estimate, ND = s−1

s
N

utterances are randomly selected without re-substitution from UW
A to build

the design set UW
Db, while the remaining N

s
utterances form the test set UW

T b.
This procedure is depicted in Figure 3. Usually, s=5, 10, or 20 in order to split
UW

A into design/test sets. In the experiments conducted in Section 5, s = 5.

Let us estimate the correct classification rate committed by the Bayes classifier
in cross-validation repetition b. For utterance uW

i = (yW
i

, ci) ∈ U
W
T b, the class

label ĉi returned by the Bayes classifier is

ĉi =
C

argmax
c=1

{pb(y
W
i
|Ωc)P (Ωc)}, (10)

8
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1. Consider the set of
available utterances

UW
A

2. Utterance set split:
UW

A = UW
Db ∪ U

W
T b

UW
Db

UW
T b

3. Classifier design us-
ing UW

Db:

UW
Db1

UW
Db2

UW
DbC

. . .

4. Test the classifier
using UW

T b

UW
T b

5. If b = B,
STOP;

else
b← b + 1;
go to 1.;

end

xWb

b = 1

Fig. 3. Cross-validation method to obtain estimates of the correct classification rate
xW

b

NT
for b = 1, 2, . . . , B repetitions. UW

Dbc is found by {UW
Db ∩Ωc}.

where P (Ωc) is the a priori class probability which is set to 1/C, because all
emotional states are equiprobable in the data-sets to be used in Section 5,
and pb(y

W
i
|Ωc) is the class conditional pdf of the feature vector of utterance

uW
i given Ωc. The class conditional pdf is modeled as a multivariate Gaussian,

where the mean vector and the covariance matrix are estimated by the sample
mean vector and the sample dispersion matrix, respectively.

Let L[ci, ĉi] denote the zero-one loss function between the label ci and the
predicted class label ĉi returned by the Bayes classifier for uW

i , i.e.

L[ci, ĉi] =





1 if ci = ĉi,

0 if ci 6= ĉi.
(11)

Let also xW
b be the number of utterances in the test set UW

T b ⊂ U
W
A that are

correctly classified in repetition b, when using feature set W. Then from (11),
we have

xW
b =

∑

uW
i

∈UW

T b

L[ci, ĉi] (12)

9
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and the estimate of correct classification rate (CCR) in repetition b using set
UW

A is

CCRb(U
W
A ) =

xW
b

NT
. (13)

The correct classification rate over B cross-validation repetitions is given by

MCCRB(UW
A ) =

1

B

B∑

b=1

CCRb(U
W
A ), (14)

which according to (4) and (13), it is rewritten as,

MCCRB(UW
A ) =

xW
B

NT
. (15)

The variance of the correct classification rate (VCCR) estimated from B cross-
validation repetitions is given by

V̂CCRB(UW
A ) =

1

B − 1

B∑

b=1

[
CCRb(U

W
A )−MCCRB(UW

A )
]2

. (16)

Thus, by substitution of (13) and (15) into (16), and given that NT = N
s
, we

obtain

V̂CCRB(UW
A ) =

1

N2
T

1

B − 1

B∑

b=1

(xb − xB)2

︸ ︷︷ ︸
V̂ar(x)

=
s2

N2
V̂ar(x). (17)

According to Lemma 2, another estimate of Var(x) is (7). So we propose the
following estimate of VCCR

̂̂
VCCRB(UW

A ) =
s2

N2

̂̂
Var(x) =

s− 1

N − 1

xB

NT
(1−

xB

NT
) =

s− 1

N − 1
MCCRB(UW

A )
(
1−MCCRB(UW

A )
)
. (18)

The comparison of
̂̂
VCCRB(UW

A ) given by (18) against V̂CCRB(UW
A ) given by

(16) for the same number of cross-validation repetitions B = 10 is treated
in Section 5.1. Next, it is shown that the computational burden of a feature

selection method is reduced by using
̂̂
VCCRB(UW

A ).

10
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Delete feature w−

Insert feature w+

In:
m = 0;
Z0 = ∅;
J(0) = 0;
UW
A ;

1. Find w+:
w+ = argmax

w∈W−Zm

MCCRB(U
Zm∪{w}
A );

2. Add w+ to Zm :
Zm+1 = Zm ∪ {w

+};

J(m + 1) := MCCRB(U
Zm∪{w+}
A );

3. m>M?

7. m∗ =
M

argmax
m=1

J(m)

Out: Zopt := Zm∗

Jopt := J(m∗)

4. Find w−:
w− = argmax

w∈Zm

MCCRB(U
Zm−{w}
A );

5. Condition for feature deletion:
MCCRB(U

Zm−{w−}
A ) > J(m) ?

6. Remove w−:
Zm+1 = Zm − {w

−};

J(m + 1) := MCCRB(U
Z−{w−}
A ); m := m + 1

Yes

No

Yes

No

Fig. 4. The sequential floating forward algorithm (SFFS).

4 Feature selection

The sequential floating forward selection algorithm (SFFS) finds an optimum
subset of features by insertions (i.e. by appending a new feature to the subset
of previously selected features) and deletions (i.e. by discarding a feature from
the subset of already selected features) as follows. Let m be the counter of
insertions and exclusions. Initially (m = 0), the subset of selected features Zm

is the empty set and the maximum CCR achieved is J(m) = 0. A total number
of M insertions and exclusions are executed in order to find the subset of
features that achieves the highest CCR. A typical value for M is 25. However,
M is set to 100 for a more detailed study of SFFS in the experiments of
Section 5. The SFFS is depicted in Figure 4.

Feature insertion (steps 1.-2.): At an insertion step, we seek the feature
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J(m)

m∗
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�

Fig. 5. Plot of J(m) versus the number of feature insertions and deletions m.

w+ ∈ W −Zm to include in Zm such that

w+ = argmax
w∈W−Zm

MCCRB(U
Zm∪{w}
A ), (19)

where B is the constant number of cross-validation repetitions set by the
user. If B is too large, SFFS becomes computational demanding, whereas for
small B, MCCRB(U

Zm∪{w}
A ) is an inaccurate estimator of the CCR due to the

variance of CCRb(U
Zm∪{w}
A ). A typical value for B is 50. In Section 4.1, we

assume that B is 50. However, a method to estimate B is proposed in Section
4.2. Once w+ is found, it is included in the subset of selected features Zm+1 =

Zm∪{w
+
m}, the highest CCR is updated J(m+1) = MCCRB(U

Zm∪{w+}
A ), and

the counter increases by one m := m + 1.

Feature deletion (steps 4., 5., 6.): To avoid the local optima, after the
insertion of a feature, a conditional deletion step is examined. At a deletion
step, we seek the feature w− ∈ Zm such that

w− = argmax
w∈Zm

MCCRB(U
Zm−{w}
A ). (20)

If

MCCRB(U
Zm−{w−}
A ) > J(m) (21)

in Step 5, the deletion of feature w− from the subset of selected features im-
proves the highest CCR and w− should be discarded from Zm (Step 6). Oth-
erwise, a forward step follows (Step 1). After deleting one particular feature
(Step 6), another feature is searched for a deletion (Step 4).

Output procedure (step 7 and Out): After M insertions and deletions
having occured, the algorithm stops. The plot of J versus m, J(m), is exam-
ined in order to find out, the specific value of m for which J(m) admits the
maximum value, i.e.

m∗ =
M

argmax
m=1

J(m). (22)
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An example for M = 25 is depicted in Figure 5. It is seen, that the highest
J(m) is achieved at m∗ = 12. Then, the optimum feature subset is selected as
Zopt := Zm∗ that achieves CCR equal to Jopt = J(m∗).

4.1 Method A: How unnecessary comparisons can be avoided during the de-
termination of w+ in Step 1 and w− in Step 4.

In this section, we will develop a mechanism that does not allow more than 10
repetitions for feature sets that potentially do not possess any discriminative
information. The proposed mechanism is based on the fact that comparisons
are done according to confidence limits of CCR instead of the average values
of CCR, i.e. the notion of variance of CCR is adopted. In this context, we will
employ Lemma 2 to find an accurate estimate of the variance of CCR.

The standard method to determine w+ in Step 1 is pictorially explained in
Figure 6(a). D′ candidate features that have not been selected, i.e. w1, w2,
. . . , wD′ ∈ W − Zm are sequentially compared in order to find which feature
when appended to the subset of previously selected features yields the greatest
MCCR50(U

Zm∪{wd}
A ). The comparison is done as follows: if candidate feature

wd yields a MCCR50(U
Zm∪{wd}
A ) greater than the currently stored value Jcur =

MCCR50(U
Zm∪{wcur}
A ), where wcur is the best feature to be inserted so far, then

Jcur is updated with Jcur := MCCR50(U
Zm∪{wd}
A ) and wcur := wd. Otherwise

the algorithm proceeds to the next candidate feature wd. When all the D′

candidate features have been examined, the feature to be inserted, w+, is
stored in wcur. In the same manner, w− can be determined in Step 4.

Frequently, B = 50 cross-validation repetitions are not necessary to validate
whether

MCCRB(U
Zm∪{wd}
A ) < Jcur (23)

holds, where Jcur = MCCR50(U
Zm∪{wcur}
A ) with wcur being the best candi-

date for w+ found so far. Such a case is depicted in Figure 7. It is seen that
MCCR∞(U

Zm∪{wd}
A )≪ Jcur. Equation (23) can be validated with a small num-

ber of cross-validation repetitions, e.g. 10, thanks to a statistical test. We pro-
pose to formulate a statistical test in order to test the hypothesis H1, whether
(23) holds at 95% significance level for a small number of cross-validation
repetitions (e.g. 10). H1 is accepted if

ku
10;a;wd

NT
< Jcur, (24)

where ku
10;a;wd

is the upper confidence limit of xZm∪{wd} (which is a hypergeo-
metric r.v. according to Axiom 3) for B = 10 cross-validation repetitions and

13
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Target: Determine w+ in Step 1

1. w+ = argmax
w∈W−Zm

MCCR50(U
Zm∪{w}
A );

1. Let w1, w2, . . . , wD′ ∈ W −Zm;
Jcur := 0;
for d = 1 : D′,

If Jcur < MCCR50(U
Zm∪{wd}
A ),

Jcur := MCCR50(U
Zm∪{wd}
A );

wcur := wd;
end;

end;
w+ := wcur;

(a)

1. Let w1, w2, . . . , wD′ ∈ W −Zm;
Jcur := 0;
for d = 1 : D′,

Estimate ku
10;0.95;wd

from (31);

If
ku

10;0.95;wd

NT
< Jcur holds in H1,

continue to the next d;
end;

If Jcur < MCCR50(U
Zm∪{wd}
A ),

Jcur := MCCR50(U
Zm∪{wd}
A );

wcur := wd;
end;

end;
w+ := wcur;

(b)

Proposed method AStandard method

Fig. 6. Comparison between the standard method vs. the proposed method A for
implementing Step 1. The lines in the gray box constitute the proposed preliminary
test in order to exclude a feature with only 10 cross-validation repetitions. If it is not
excluded, then B = 50 cross-validation repetitions are executed in order to make a
more thorough evaluation.

0 1

0 1

0 1

Standard

Proposed A

Jcur

Jcur

o

o

o

MCCR∞(U
Zm∪{wd}
A )
×

MCCR50(U
Zm∪{wd}
A )

×

MCCR10(U
Zm∪{wd}
A )

× )
Jcur

ku

10;0.95;wd

NT

Fig. 7. Visualization of proposed method A on CCR axis for case H1: wd should be
preliminarily excluded.

a=0.95 implies the 100a% level of significance. If (24) is valid, then

MCCR∞(U
Zm∪{wd}
A ) <

ku
10;a;wd

NT
< Jcur (25)
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will be also valid, because
ku
10;a;wd

NT
is the upper confidence limit of MCCR∞

(U
Zm∪{wd}
A ). So (23) is validated with B = 10 repetitions instead of B = 50

repetitions.

If (24) is not valid, two cases are possible, namely,

H2 : MCCR∞(U
Zm∪{wd}
A ) < Jcur <

ku
10;a;wd

NT

. (26)

In this case, 50 repetitions (instead of∞) are conducted in order to tentatively
exclude wd. The last case is

H3 : Jcur < MCCR∞(U
Zm∪{wd}
A ) <

ku
10;a;wd

NT

, (27)

and 50 repetitions (instead of ∞) should be conducted to tentatively accept
wd as wcur.

In (24), ku
10;a;wd

can be estimated by two methods. That is, either by an ap-
proximation with the upper confidence limit of a Gaussian r.v. or by the sum-
mation of a discrete hypergeometric pdf. To choose between the two methods,
the prerequisite Var(xZm∪{wd}) > 9 is used as a switch [16], where the estimate
of Var(xZm∪{wd}) can be obtained by (7):

N2

s2

s− 1

N − 1

x
Zm∪{wd}
B

NT

(
1−

x
Zm∪{wd}
B

NT

)
> 9 (28)

where N is the total number of utterances, NT = N
s
, and xZm

B is the average
over B realizations of xZm. By invoking (15), (28) becomes

N2

s2

s− 1

N − 1
MCCRB(U

Zm∪{wd}
A )

(
1−MCCRB(U

Zm∪{wd}
A )

)
> 9. (29)

First, if (29) holds, the hypergeometric r.v. x
Zm∪{wd}
b is approximated by a

Gaussian one, and ku
10;a;wd

can be found by

ku
10;a;wd

= x
Zm∪{wd}
10 + za

√
Var(xZm∪{wd})

10
(30)

where za equals 1.96 for a = 0.95. If (7) is used, then

ku
10;a;wd

= x
Zm∪{wd}
10 + za

√√√√N2

s2

s− 1

N − 1

x
Zm∪{wd}
10

NT

(
1−

x
Zm∪{wd}
10

NT

)
1

10
. (31)

Second, when (29) is violated, then the confidence limit ku
10;a;wd

is estimated
by
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ku
10;a;wd

= argmin
k1=0,1,...,NT

∣∣∣∣
k1∑

k=0



X̂

k







N − X̂

NT − k







N

NT




− a
∣∣∣∣, (32)

where X̂ according to (9) can be estimated as X̂ = x
Zm∪{wd}
10

N
NT

. The proposed
method A is depicted in Figure 6(b). The same mechanism can be applied to
speed up Step 4 that finds w−. B = 50 repetitions may or may not be enough
for estimating accurately the MCCR in cases H2 and H3. These cases are
treated next.

4.2 Method B: Increasing the accuracy of accepting a feature wd as wcur.

The proposed method A was focused on case H1. In this section, the proposed
method B is focused on cases H2 and H3. Method B is invoked when H1 is
rejected. Then either H2 or H3 should be valid. If H3 is not valid then, by
reductio ad absurdum, case H2 is valid. So, method B should check if H3 is
valid or not by validating if

H3 : Jcur < MCCR50(U
Zm∪{wd}
A ), (33)

where Jcur is the greatest CCR achieved so far by the current best candidate
for insertion wcur, i.e.

Jcur = MCCR50(U
Zm∪{wcur}
A ). (34)

From now on, we shall replace 50 with an arbitrary number of cross-validation
repetitions B. So, cases H2 and H3 are defined as follows:

H2 : MCCR∞(U
Zm∪{wcur}
A ) ≥ MCCR∞(U

Zm∪{wd}
A ) (35)

H3 : MCCR∞(UZm∪{wcur}
A ) < MCCR∞(UZm∪{wd}

A ). (36)

wcur should be updated by wd only in the case H3. Otherwise the candidate
wd deteriorates or does not improve MCCR more than wcur does (H2).

Let

[
kl

B;a;wcur

NT

,
ku

B;a;wcur

NT

] (37)

be the confidence interval of MCCRB(U
Zm∪{wcur}
A ) at a = 95% confidence level,
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and accordingly let

[
kl

B;a;wd

NT
,
ku

B;a;wd

NT
] (38)

be the confidence interval of MCCRB(U
Zm∪{wd}
A ). In order to validate whether

(36) holds at 100a% confidence level, the lower confidence limit of the right
part of (36) should be greater than the upper limit of the left part, i.e.

kl
B;a;wd

NT
>

ku
B;a;wcur

NT
. (39)

In the feature selection experiments, upper and lower confidence intervals are
symmetrical around the mean, because the normality assumption (29) is ful-
filled for values N > 360, NT = N/5, and 0.2 < MCCRB(UZm

A ) < 0.6. Thus
according to (30)

[
kl

B;a;wd

NT

,
ku

B;a;wd

NT

] = [
x
Zm∪{wd}
B

NT

−
za

NT

√
Var(xZm∪{wd})

B
,

x
Zm∪{wd}
B

NT
+

za

NT

√
Var(xZm∪{wd})

B
]. (40)

The confidence interval for (37) can be derived similarly.

It is a common practice in statistics the confidence interval of the expected
value of an r.v. to have a fixed width [17, exercise 8.13]. Such a fixed width
confidence interval is derived by employing the central limit theorem. That is,
the more the repetitions B of the experiment are, the smaller is the confidence
interval width of the average of the r.v. In our case, we wish to find an estimate
of B denoted as B̂ so that the width of the confidence interval (40) for any
wd is fixed

ku
B̂;a;wd

NT
−

kl
B̂;a;wd

NT
= γ (41)

(e.g. γ = 1.25%), which according to (40) is equivalent to

x
Zm∪{wd}

B̂

NT

+
za

NT

√
Var(xZm∪{wd})

B̂︸ ︷︷ ︸
γ/2

−
(x

Zm∪{wd}

B̂

NT

−
za

NT

√
Var(xZm∪{wd})

B̂︸ ︷︷ ︸
γ/2

)
= γ,

(42)

that yields

B̂ =
4z2

aVar(xZm∪{wd})

N2
T γ2

. (43)
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Var(xZm∪{wd}) can be estimated by (7) for 10 repetitions. By using also the
fact that NT = N/s, (43) becomes

B̂1 =
4z2

a

γ2

s− 1

N − 1
MCCR10(U

Zm∪{wd}
A )

(
1−MCCR10(U

Zm∪{wd}
A )

)
(44)

and for the current feature set Zm ∪ {wcur} we obtain similarly

B̂2 =
4z2

a

γ2

s− 1

N − 1
MCCR10(U

Zm∪{wcur}
A )

(
1−MCCR10(U

Zm∪{wcur}
A )

)
. (45)

The user selects γ with respect to the computation load one may afford, as it
can be inferred from (44) and (45). Consequently (39) holds if

x
Zm∪{wd}

B̂1

NT
−

γ

2
>

x
Zm∪{wcur}

B̂2

NT
+

γ

2
(46)

or equivalently

MCCRB̂2
(U

Zm∪{wd}
A )−MCCRB̂1

(U
Zm∪{wcur}
A ) > γ. (47)

In the experiments described in Section 5, γ is set to 0.0125. That is, the
feature set Zm∪{wd} performs better than the current set Zm∪{wcur}, if the
difference between cross-validated correct classification rate is at least 0.0125.
The combination of the proposed method B and the proposed method A is
referred to as method AB and depicted in Figure 8. Since the algorithm is
recursive (wcur := wd), there is no need to use B̂1 and B̂2, as it was done for
explanation reasons, but just a single variable B̂ is sufficient. In Section 5.3,
B̂ is plotted versus the parameters it depends on according to (44).

An example for cases H2 and H3 is visualized in Figure 9. 2 trials per case are
allowed. It is seen that the decision taken by the proposed method B, coincides
with the ground truth decision for both trials in H2 as well as H3, whereas the
decision taken by the standard method coincides with the ground truth only
for 1 out of the 2 trials.

5 Experimental results

The experiments are divided into three parts:

• In Section 5.1, it is demonstrated that the variance estimate proposed by
Lemma 2 is more accurate than the sample dispersion;
• In Section 5.2, it is shown that the proposed methods A and B, employing

the result of Lemma 2, improve the speed and the accuracy of SFFS for
speech emotion recognition.
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Target: Determine w+ in Step 1

1. w+ = argmax
w∈W−Zm

MCCR50(U
Zm∪{w}
A );

1. Let w1, w2, . . . , wD′ ∈ W −Zm;
Jcur := 0;
for d = 1 : D′,

Estimate ku
10;0.95;wd

from (31);

If
ku

10;0.95;wd

NT
< Jcur valid,

continue to the next d;
end;

Estimate B̂ from (44);

If MCCRB̂(U
Zm∪{wd}
A )− Jcur < 0.0125,

continue to the next d;

elseif MCCRB̂(U
Zm∪{wd}
A )− Jcur > 0.0125,

Jcur := MCCRB̂(U
Zm∪{wd}
A );

wcur := wd;
end;

end;
w+ := wcur;

H1

H2

H3

Proposed method AB

Fig. 8. Combination of the proposed methods A and B to handle preliminarily rejec-
tion from the beginning (H1); tentatively rejection (H2); and tentative acceptance
(H3) of a candidate feature {wd}.

• In Section 5.3, the number of cross-validation repetitions B̂ found by (44)
is plotted as a function of the parameters it depends on.

5.1 Comparison of estimates of the variance of CCR

In this section, we shall demonstrate that the proposed estimate of variance
of CCR given by (18), i.e

̂̂
VCCR10(U

Z
A ) =

1

N2
T

Var(xZ)︸ ︷︷ ︸
Lemma 2

=
s− 1

N − 1
MCCR10(U

Z
A )

(
1−MCCR10(U

Z
A )

)
(48)
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0 1

0 1

0 1

0 1

0 1

Standard,
B = 50
repetitions

Proposed
method B, B̂
repetitions

o

o

o

o

o

B =∞

Decision
Trial 1

Trial 2

Trial 1

Trial 2

× : MCCRB(U
Zm∪{wd}
A ),

( ) : confidence interval by (38),

o : MCCRB(UZm∪{wcur}
A ),

[ ]: confidence interval by (37).

Ground truth
decision: exclude

×

Exclude×

Accept×

Exclude[ ]×( )

Exclude[ ]×( )

(a) H2 : MCCR∞(U
Zm∪{wcur}
A ) ≥ MCCR∞(U

Zm∪{wd}
A )

0 1

0 1

0 1

0 1

0 1

Standard,
B = 50
repetitions

Proposed
method B, B̂
repetitions

o

o

o

o

o

B =∞

Decision
Trial 1

Trial 2

Trial 1

Trial 2

Ground truth
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Fig. 9. Comparison between the standard method and the proposed method B in
cases H2 and H3 on the axis of CCR, when 2 trials are allowed for simplicity. The
legend in Figure 9(b) is the same as in Figure 9(a).

is more accurate than the sample dispersion (16) for the same number of
repetitions B = 10,

V̂CCR10(U
Z
A ) =

1

10− 1

10∑

b=1

[
CCRb(U

Z
A )−MCCR10(U

Z
A )

]2

, (49)

where

MCCR10(U
Z
A ) =

1

10

10∑

b=1

CCRb(U
Z
A ). (50)
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Among (48) and (49), the most accurate estimate is that being closer to the
sample dispersion for an infinite number of repetitions, which it is estimated
by 1000 repetitions, i.e.

VCCR1000(U
Z
A ) =

1

1000− 1

1000∑

b=1

[
CCRb(U

Z
A )−MCCR1000(U

Z
A )

]2

. (51)

We have used a few number of repetitions, i.e. B = 10, in order to demonstrate
that the gain of the proposed estimate (48) against the standard one (49) is
great even for a few number of realizations of the r.v. xZ . It should be reminded
that the r.v. xZ models the number of correctly classified utterances during
cross-validation repetitions.

The experiments are conducted for artificial and real data-sets, and for differ-
ent selections of parameters N , s, and MCCR. The results are shown in Fig-
ure 10 that consists of 6 sub-figures. The first row corresponds to experiments
with artificially generated data-sets, whereas the second row corresponds to
experiments with real data-sets. In each column, two of the three parameters
N, s, MCCR are kept constant, whereas the last one varies. In experiments
with artificially generated data-sets with C classes, the samples in each class
are generated with a multi-variate Gaussian random number generator [18].
It should be noted that N denotes the number of samples and C the number
of classes, when the discussion refers to the artificially generated data-sets.
In experiments, with real data-sets, the utterances stem from two emotional
speech data-sets, namely the Danish Emotional Speech (DES) corpus [19] and
Speech Under Simulated and Actual Stress (SUSAS) corpus [20]. DES consists
of N = 1160 utterances expressed by 4 actors under C = 5 emotional states,
such as anger, happiness, neutral, sadness, and surprise. SUSAS speech corpus
includes N = 5042 speech utterances expressed under C = 8 styles such as
anger, clear, fast, loud, question, slow, soft, and neutral. Data from 9 speak-
ers with 3 regional accents (i.e. that of Boston, General, and New York) are
exploited. 90 features are extracted from the utterances that include the vari-
ance, the mean, and the median of pitch, formants, and energy contours [15].
D features are selected from the 90 ones. In Figure 10(d), 10 randomly chosen
subsets Z of D = 5 features out of the whole set W of 90 features are built.
For example, one such feature set comprises the mean duration of the rising
slopes of pitch contour, the mean energy value within falling slopes of the
energy contour, the energy below 250 Hz, the energy in the frequency band
3500-3950 Hz, and the energy in the frequency band 600-1000 Hz. As it is seen
in Figure 10(d), it is not feasible to achieve a high correct classification rate
by using real feature sets on DES. In Figure 10(e), a feature set of cardinality
D = 4 is used that comprises the maximum duration of plateaux at maxima,
the median of the energy values within the plateaux at maxima, the median
duration of the falling slopes of energy contour, and the energy below 600 Hz
extracted from database SUSAS. In Figure 10(f), the single feature employed
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Fig. 10. Proposed estimate (48) against sample dispersion (49) for finding the vari-
ance of CCR (51) plotted versus the factors it depends on.

is the interquartile range of energy value. A different number of classes C and
feature dimensionalities D were used in each figure, in order to demonstrate
that (48) does not depend on the number of classes and the dimensionality of
the feature vector, because the information about C and D is captured by the
MCCR parameter.

From the inspection of Figures 10(a) to 10(f), it can be inferred that
̂̂

V CCR10

(UZ
A ) is closer to VCCR1000(U

Z
A ) than V̂CCR10(U

Z
A ) is. Therefore,

̂̂
VCCR10(U

Z
A )
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Fig. 11. Execution time of SFFS when using the standard method vs. the proposed
methods.

is a more accurate estimator of VCCR1000(U
Z
A ) than V̂CCR10(U

Z
A ) is.

Next, we shall exploit (48) in order to find an accurate estimate of the variance
of the correct classification rate during feature selection.

5.2 Feature selection results

The objective in this section is to demonstrate the improvement in speed and
accuracy of the SFFS algorithm, when steps 1 and 4 are implemented with
the proposed methods A and B instead of the standard method.

Three data-sets were used, a) DES with N = 1160 utterances and C = 5
classes, b) a subset of DES with N = 360 utterances and C = 5 classes, and
c) SUSAS with N = 5042 utterances and C = 8 classes. Each data-set is
split into s = 5 equal subsets; 4 out of the 5 subsets are used for training the
classifier, whereas the last one is used to test it. The threshold for the total
number of insertions and deletions M is equal to 100 in all methods. Execution
time for all methods and data-sets is depicted in Figure 11.

It is seen that proposed method A reduces the execution time compared to
the standard method by 50%. This is due to the fact that standard method
performs B=50 cross-validation repetitions for all candidate features, whereas
the proposed method A performs only 10 repetitions during a preliminary
evaluation of features, and if need, another 40 repetitions for a more thorough
evaluation. The proposed method AB is slower than the standard method for
the DES full-set and the DES subset. This is due to the fact that estimated
B̂ = 75 and B̂ = 140 for the DES full-set and the DES subset, respectively, are
greater than B = 50 of the standard method. For SUSAS data-set, B̂ = 20,
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and accordingly the proposed AB method is faster than the standard one.

The benefit of the proposed method AB against the other methods is its
accuracy. A fact which is addressed next. In Figure 12, the MCCR curve
and its confidence interval with respect to the index of insertion and deletion
m are plotted for each method and each data-set. The confidence interval
is approximated by (40). For the standard and the proposed method A, the
variance in the approximation is estimated by (49), whereas for the proposed
method AB the variance is estimated by the proposed estimate (48). Three
observations can be made.

First, the maxima of MCCR curves are not affected by the proposed A or the
proposed AB methods. A deterioration of MCCR might be claimed for the
proposed method AB on DES in Figure 12(c), but the confidence intervals of
Figure 12(c) overlap with those in Figure 12(a).

Second, the MCCR curve versus m for the proposed AB method on the DES
full-set and DES subset (Figure 12(c) and Figure 12(f), respectively) has a
clear peak. This fact allows one to select the best subset of features. This
was happened, because the confidence intervals are taken into consideration
to insert or delete a feature, whereas in the standard method and method A
the decision to insert or delete a feature is taken by using only MCCR values
from 50 repetitions. MCCR estimates from 50 repetitions are not reliable,
because they have a wide confidence interval, as it is seen in Figures 12(a),
12(b), 12(d), and 12(e). So, the proposed method AB takes more accurate
decisions, and therefore, the peak of MCCR is more prominent. The proposed
AB method on SUSAS (Figure 12(i)) does not present a prominent maximum.
SUSAS data-set consists of many utterances (N = 5042), and therefore, the
‘curse of dimensionality’ effect is not obvious. The peak of MCCR curve will
be prominent for M > 100 and D > 90.

Third, it is seen that proposed AB method finds fixed confidence intervals for
all data-sets, whereas the confidence intervals of the standard and the pro-
posed A methods vary significantly among the data-sets. The greatest width
in confidence intervals appears for the DES subset that consists of N = 360
utterances (Figures 12(d) and 12(e)). This confirms (48), where the variance
of CCR is inversely proportional to the number of samples N . By selecting an
appropriate B̂, the proposed AB method finds fixed width confidence intervals
for all data-sets.
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subset (N=360)
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(e) Proposed A on
DES subset (N=360)
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(f) Proposed AB on
DES subset (N=360)
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(i) Proposed AB on
SUSAS (N=5042)

Fig. 12. CCR achieved by standard SFFS and variants with respect to the index of
feature inclusion or exclusion m.

5.3 The number of cross-validation repetitions B̂ plotted as a function of the
parameters it depends on

In this section, B̂ given by (44) is plotted at a = 95% level of significance, for
varying number of folders (s = 2, 5, 10) the set of utterances UW is divided
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into, varying width of the confidence interval of CCR (0.0125 ≤ γ ≤ 0.05),
different cardinalities of U (N = 250, 1000, 5000), and all possible correct
classification rates found for 10 repetitions, i.e. 0 ≤ MCCR10(U

W) ≤ 1.

A 3 dimensional plot of B with respect to γ and MCCR10(U
W) is shown in

Figure 13(a). N and s are set to 1000 and 10, respectively. It is observed that
for γ > 0.05, B is almost 0, whereas as γ → 0, then B →∞. The maximum B
for a certain γ is observed for MCCR10(U

W) = 0.5. This maximum is shown
with a black thick line. In Figures 13(b), 13(c), and 13(d), the same curve is
plotted for various values of s and N . B is great when N = 250 and s = 10,
as shown in Figure 13(b), whereas B is small when N = 5000 and s = 2, as
depicted in Figure 13(d).

6 Conclusions

In this work, the execution time and the accuracy of SFFS method are opti-
mized by exploiting statistical tests instead of comparing just average CCRs.
The statistical tests are more accurate than the average CCRs, because they
employ the variance of CCR. The accuracy of the statistical tests depends on
the accuracy of the estimate of the variance of CCR during cross-validation
repetitions. In this context, an estimate of the variance of CCR, which is more
accurate than the sample dispersion was proposed.

Initially, a theoretical analysis is undertaken assuming that the number of
correctly classified utterances by any classifier in a cross-validation repetition is
a realization of a hypergeometric random variable. An estimate of the variance
of an hypergeometric r.v. is used to yield an accurate estimate of the variance
of the number of correctly classified utterances. Although, our research was
focused on cross-validation, a similar analysis can be conducted for bootstrap
estimates of the correct classification rate as well. The proposal to use the
hypergeometric distribution instead of the binomial one can be considered
as an extension of the work in [21]. In Dietterich’s work, it is mentioned
that the binomial model does not measure variation due to the choice of the
training set. The hypergeometric distribution adopted in our work remedies
this variation, when the training and test sets are chosen with cross-validation.

Next, the number of correctly classified utterances committed by the Bayes
classifier, when each class conditional pdf is distributed as a multivariate Gaus-
sian, is modeled by the aforementioned hypergeometric r.v. An estimate of
the variance of the correct classification rate was derived by using the fact the
correct classification rate and the number of correctly classified utterances are
strongly connected. Obviously, the variance of the correct classification rate is
limited neither by the choice of the classifier nor the pdf modeling.
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Fig. 13. B̂ given by (44) as a function of MCCR10(U
W), γ, s, and N . In

(a) free variables are γ and MCCR10(U
W). The maximum B is observed for

MCCR10(U
W) = 0.5, which is plotted with a black line. For MCCR10(U

W) = 0.5,
B̂ is plotted for various s, N , and γ values in (b),(c), and (d).

Finally, the speed and the accuracy of SFFS was optimized by two methods.
Method A improves the speed of SFFS with a preliminary test to avoid too
many cross-validation repetitions for features that potentially do not improve
the correct classification rate. Method B improves the accuracy of SFFS by
predicting the number of cross-validation repetitions, so that the confidence
intervals of the correct classification rate estimate are set to a user-defined
constant. Method B controls the number of cross-validation repetitions so as
the estimate of correct classification rate and its confidence limits vary less
than the standard SFFS. The improved accuracy of the proposed method B is
also a result of the novel estimate of the variance for the hypergeometric r.v.
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which varies many times less than the sample dispersion. An issue for further
research is the comparison of various feature selection strategies, such as back-
ward or random selection, with respect to the improved confidence intervals
found with the proposed method. Obviously, the proposed technique is not
limited to 90 features, but could handle as many features one wishes to ex-
tract from the utterances. To validate the theoretical results, experiments have
been conducted for speech classification into emotional states as well as for ar-
tificially generated samples. First, it is shown that the proposed method finds
an estimate that varies many times less that the sample dispersion. Second, in
order to demonstrate the improvement in speed and accuracy of SFFS by the
proposed methods A and B, the selection of prosody features for speech clas-
sification into emotional states was elaborated. It is found that the proposed
method A reduces the executional time of SFFS by 50% without deteriorat-
ing its performance. Method B improves the accuracy of SFFS by exploiting
confidence intervals of MCCR for the comparison of features. Accurate CCR
values in SFFS enables the study of the ‘curse of dimensionality’ effect. A
topic that could be further investigated.
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