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Abstract—In this paper, the expectation-maximization (EM) underflow errors, i.e.
algorithm for Gaussian mixture modeling is improved via three N N
statistical tests. The first test is a multivariate normality criterion — _ _
based on the Mahalanobis distance of a sample measurement A(X[E) = lan(Xi|'=-) = Zln f(xi | B), 1)
vector from a certain Gaussian component center. The first test i=1 i=1
is used in order to derive a decision whether to split a component —
into another two or not. The second test is a central tendency 9(XI%)
criterion based.on the observation that mgltivaria}te kurtosis  \where f(x|Z) is the pdf of x. The target is to find the
becomes large |f the component to be s_pllt is a mixture of two optimal parameter vectcg, denoted a&*, so that, (X|Z)
or more underlying Gaussian sources with common centers. If . . . -
the common center hypothesis is true, the component is split IS maximized. Since a closed solution f&F can not be found

into two new components and their centers are initialized by the in general, the EM algorithm is used to iteratively figtby
center of the (old) component candidate for splitting. Otherwise, applying two steps, the so-called expectation step (E}stegp
the splitting is accomplished by a discriminant derived by the the maximization step (M-Step).

third test. This test is based on marginal cumulative distribution . : : )
functions. Experimental results are presented against sevenlotr By introducingunobserved variablea,(x;) to denote the

expectation-maximization variants both on artificially generated probability of a sample measurement vectorbelongs to the
data-sets and real ones. The experimental results demonstet gth componentg = 1,2,...,Q, the conditional expectation
that the proposed EM variant has an increased capability to find of the log-likelihood function is defined as

the underlying model, while maintaining a low execution time.

N Q
Index Terms—Expectation maximization algorithm (EM), Ao (XIE) = ho(x:)1 = 2
Gaussian mixture models (GMM), normality criterion, distribu- 2(X|Z) ZZ ¢(xi) In [ﬂ-qfq(xz | q)}, (2)
tion of Mahalanobis distance, multivariate kurtosis.

i=1 g=1
where f,(x; | E,) is the pdf of theqth component with
parameters€, C =, andw, € [0,1] are the priors of each
density function subject t(Zf:l mq = 1. The EM algorithm
HE Expectation-Maximization algorithm (EM) is widely can be considered as a “soft” version of theneans clustering

T used to find the parameters of a mixture of Gaussiddl- In k-means, each sample measurement vector is assigned
probability density functions (pdfs) or briefly Gaussianmmeo t0 & cluster with probability either O or 1, whereas in EM,
ponents that fits the sample measurement vectors in maximfii@ probability 7,(x;) that a sample measurement vector
likelinood sense [1]. x; € X belongs to theith Gaussian component lies jf, 1].

However, the EM algorithm is not limited only to find!n the special case where each density functiphx|E) is a
the parameters of a density mixture model. It can be us&@ussian one denoted as
to 1) detect samples that deviate from a priori known dis; —-D/2 —0.5
tribu)tions [1], [2];p2) find the weight parampeters in the- Plx | g Sg) = (2m) =" (HS;H) '
weight least squaremethod [1]; 3) calculate the parameters exp{—i(x — ) S (x— )} (3)
of Hidden Markov Models (HMMs) withBaum-Welchor
forward-backwardalgorithm [3]; 4) select features, i.e. to findwhere||-|| is the determinant of the matrix inside the delimiters
a feature subset that achieves the lowest prediction etfor [and D is the dimension cardinality o, the pdf ofx is the

Let X = {x;}, be the observed data, i.& is a set of Gaussian mixture model (GMM)
random vectors (R.Vsx;, wherex; belongs to an arbitrary o
sample spaceX’. Let alsog(X|=) be a certain function of =) = , )
and parameter&, which is often called abkelihood function plxi =) qz:; T (i | #g:S4) )
Thelog-likelihood functioni.e. the natural logarithm af(X |
=) is preferred instead qf(X | E) in order to avoid over- or

I. INTRODUCTION

The following parameters should be estimated for each com-
ponent: the priorry, the sample mean vectqe;, and the
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”27“2’82 for r > 2 are re-estimated using the E- and M} 3rd level: Estimation of the number of compone@ts
Steps [1]: « Forward or backward logic to find the minimum of parsi-
E-step: The probability that each vectar; belongs togth F;]O”,'\IOECS: F{g]e)'f'a (AIC [6], MDL/BIC [7], ICL [8], MDL.
component is calculated by « Number of components found with split-merge critgria
r—1 -1 Qr—1 (Kullback-Leibler distance [11], regression #f(x;) vari-
h;(xl) _ Q7Tq p(Xl ‘ lu'q 7Sq ) , (5) ables [12])'
3 a1 p(x; | /f/_l Srl—l) 2nd level: Alternative EM steps
q¢'=1 a a ? « Deterministic Annealing EM (DAEM) [13];
. « C t-wise EM for Mixt CEMM) [14];
M-step: The prior, the sample mean vector, and the sample loml?on.e.nllmsle ; or Mixtures ( bt ) [14]
dispersion matrix of each component are recalculated ygus| | | St evel- Initialization of component variabtes
I (x;): o k-means [15];
g\ Xi): « Random;
L « Partially random [16];
_ « Re-sampling [17].
S DILL 6) Ping 17]
N Fig. 1. Techniques to avoid local maxima of the log-likelihdadction in
Z h;(xi) X EM algorithm.
=1
Wy, = S—— U]
5 hy (x;) . . .
= logic starts from one component in the GMM and increases
N the number of components by one whenever EM convergences,
> () (i — ) (% — ply) ™ whereas the backward logic starts from many components and
S, = =1 < . (8) removes one component after the convergence of EM [9]. The
ST hr(x;) initial number of componentg in the backward logic can be
= found as follows. The probability that a componenis not

The E- and M-steps alternate until the conditional expauniat repr_esented in th_e_ random initializgti_qn(_i‘& 7“1)6_2' So, ifthe
of the log-likelihood function of the GMM defined as deswabl_e probability of guccessful |n|t|al|zat|o_n is ehbtl —¢,
v o wheree is ? sm:;ll plc(;sgwegnumber, then the initial number of
components?y should be [9]:
ex|=) =Y myxmn () x| g 8p) @ « o
i=1 q=1
. Ol e —
reaches a local maximum. log(1 — Tnin)
For convenience, the EM algorithm for Gaussian mixturehe drawback in (10) is that,,;, should be known a priori.
modeling is abbreviated as EM algorithm. However, EM iParsimonious criteria are outlined in Table I, wherds the
not a panacea, it suffers from two drawbacks: a) the numlgimensionality of=. £*(X | E) is given by (9), whereas for
of Gaussian componentg is usually set a priori, and b) thea certainx; the greatest,(x;) attains the value 1, and the
initialization of the parameters of the Gaussian compaentmainingh,(x;) tend to zero.
&' affects the final result. Therefore, EM converges to a Split-Merge operationsre criteria that are used to decide
local optimum of the parameter space. Several techniqugsether a component should be split or a merger of two
have been used in order to escape from local optima. Thesgnponents should occur. A split criterion could be based on
techniques can be divided into three levels according to ttiee multivariate (MV) kurtosis, because a low or a high MV
part of the EM algorithm are applied to. These levels alaurtosis value is an indication that a component should be sp
shown in Figure 1. In the 3rd level, techniques for estinmatin21], [22]. However, the confidence intervals for multiatg
the number of component3 can be found. In the 2nd level, kurtosis are accurate only asymptotically, i.e. when thainer
there are technigques that use other EM steps than the sthndfisample measurement vectors tends to infinity [23]. A merge
EM steps in order to escape from local optima. Finally, ioriterion of two components, ¢’ is the inner product [12]
level 1, techniques that initialize the Gaussian component
parameters are met. Examples of the techniques from each Jmergdd, q') = [hq(x1), hy(x2), ey hg(an)]T
level will be described next. The examples will be used for [hg (1), he (z2), .. hy(xN)]- (11)

the comparison between the state-of-the-art methods stgain . _
the proposed method in Section V-B. However, this criterion may not yield a merger of two non-

Gaussian components to a single Gaussian one. It is recom-
o mended only for components with similar parameters, and in
A. Estimation of the number of compone@ig3rd level) addition, the confidence intervals for this criterion haw n
The number of componenég can be found by parsimoniousbeen found yet. Sequences of split-merge operations ca® cau
criteria or by split-merge operations applied to composent oscillations around a number of components, a fact which can
Parsimonious criteriarelate the log-likelihood function of increase the execution time.
the model with the number of free parameters in order to pre-The goal of this paper is to present a split technique
vent an infinite number of mixture components. The forwarthat does not require any component merging. The proposed

1 Q
o8¢ , where m,, = miIll{ﬂ'q}. (20)
q=



TABLE |
PARSIMONIOUS CRITERIA USED TO PENALIZE THE LOGLIKELIHOOD FUNCTION

Name Penalty function to minimize Reference
Akaike Information criterion (AIC) —L&(X]E)+2v [6], [18]
Minimum description length or Bayesian Informa- —£(X | E) + 7 In(N) [19], [9], [20]
tion Criterion (MDL/BIC)
Integrated Completed likelihood -&(X[E)+zIn(N) [19]
. . . —_— Q N v+Q v Q N
Minimum Description Length variant (MD4) —LX|E)+ ¥Ingm + 52+ 35 21 In =52 [9]
q=
N ) . E(X|E) - 2 X
egative Entropy Criterion (NEC) TEE-sXE0=D)" EXxzE)=—- 21 21 hq(x:) Inhg(x;) [10]
g=1ln=

splitting criterion can be considered simply as a trans&diom that of the standard M-Step and it follows a longer path in
of a D-dimensional space onto an one dimensional space. Sthe parameter space in order to converge to the final solution
sequently, a univariate distribution test in the one dinmra which might yield better estimates & [14].

space is derived. The transformation from many dimensions

to_ one dimension is accomplished through the Mahalanolaif Initialization methods (1st level)
distance of each sample measurement vector from the mean o

vector of a certain Gaussian component, which will be called Several initialization methods for the parameters of each
hereafter as Mahalanobis distance. The component whERmPonent can be found in the literature.ramdom initial-
each sample measurement vector belongs to is found byiZafionfor GMMs, the component priors are equalltay, the
assignment that uses the unobserved variables. SuchriorriteC€Nters are randomly chosen sample measurement vectdrs, an
has been extensively used for assessing multivariate fioymath€ covariance matrices of the components denotesi, are

[24], [25], but it has not been explored yet as a plug-iifiitialized as [9]
criterion for splitting non-Gaussian components in EM. The 1

Mahalanobis distance can be treated as a random variabje (r. S, = 10D trace(S) (13)

that follows a certain beta pdf as it is proven in a lemM@pareg js the covariance matrix of the entif Initialization
in [26]. Since the proof qf this I_emma is rare to find, it IShrough k-means algorithm is also widely used [15], [13].
rather complex, because it contains a series of theorerds, ayneans, however, is itself sensitive to local optima of the
it can be easily confused with other proofs for several typgs -ameter space and might yield a biased initilization. In
of Mahalanobis distances, we revise a great part of the propfrial randominitialization, a component is randomly added
in the Appendix. in the GMM after convergence of the EM algorithm, and the
parameters of the new component as well as the priors of the
B. Alternative EM steps (2nd level) old components are refined with the EM algorithm. During
I%réis procedure the old component centers and old covariance

Two methods that use different E- and M-Steps than the, [0 7o "ot fixed [16]Re-sampling techniquesse
standard ones in order to escape from local optima have beenh P bing 4

reported, namely the deterministic annealing EM (DAEM andom_ [1(.3]’ bootstrap [27] or cros_s-valldat_lo_n_ estimgiey
[13] and the component-wise EM (CEMM) [14]. In DAEM f the likelihood function by sampling the initial samplet se
the E-Step is mogified by a parametefs € [1 O(;) called in order to find the best initialization for EM, which, howeye

temperature. Specifically, the unobservable variallgs;) may not y|el_d the global_ optlmum_ E. T .
are found by The contribution of this paper in the initialization level i

in the initialization of two new components after splittiag
(12) old one. Splitting is accomplished either by a discriminant
or by initializing the centers of the new components by
Z [mg for (x| Eq))° setting them equal to the center of the old component. The
i=t MV kurtosis is used as a switch for deciding among the
As 1/3 increasesh,(x;) — 1/Q, i.e. a sample measurementforementioned split methods. A large multivariate kugos
vector is more likely to belong to all components. Therefor@alue of sample measurement vectors that belong to the old
component parameters become similar and the chancectenponent indicates that this cluster of sample measuremen
escape from a local optimum in the parameter space is highvéctors is an outcome of a leptokurtic distribution. Since w
usual strategy is to s¢t= 0.9 until convergence of DAEM, to assume that only Gaussians exist in the mixture, the lepticku
increases by 0.05, i.e.3 — [+ 0.05, and re-apply DAEM. distribution can result when two or more Gaussian sources
The procedure stops whef = 1, where DAEM becomes with common centers are present. Otherwise, if kurtosiseval

[mq.fq(x | Eq)]ﬁ

hq (xi) =

actually the standard EM. is small, then the cluster is an outcome of a platykurtic
In the CEMM, the M-Step is altered as follows. In thelistribution. Platykurtic distributions could be obtathéen,
rth iteration of EM, only the component indexed ly= if two or more Gaussian sources with separate centers exist.

mod (r,@) + 1 is updated. This results to an M-Step thaTherefore, the old cluster is split by a discriminant. In the
maximizes the log-likelihood function with a slower ratath following, the outline of this paper is presented.



D. Outline A) Assignment. Each sample measurement vector is as-

The outline of this paper is as follows. In Section II, the §igned to a clustet,, ..., Lq as follows. Let us assume that
steps of the proposed algorithm are described. The secdhd:) iS the probability that a sample measurement vector
and the third steps are detailed in separate sections. RfONgS to componew,. h,(x;) are obtained by the EM algo-

second step of the proposed algorithm usesudtivariate Mthm after its convergence. Realizations i = 1,2,..., N of
normality criterionbased on the Mahalanobis distance of eaéh'-V- uniform in[0, 1] are created. For every=1,2,..., N,
sample measurement vector from the component center to q-1 q

decide if a component should be split, as it is detailed in if o; € [Z he (%i), hq/(xi)}, thenx; € £,.  (14)
Section Ill. The third step of the proposed algorithm emplay a'=1 ¢'=1

central tendency criterion based on the expected MV kutogihjs assignment results to Gaussian distributed clustees

of the Gaussian density to initialize the centers of the twpiheir components overlap. An example of 2 components is
components during splitting, which is described in Sect\n depicted in Figures 3(a) and 3(b).
Experimental results on artificially generated and reah-ciats B) Find the cluster to be split Let ¢* denote the index

as well as comparisons against other EM variants are givengfithe cluster to be split, whergt € {1,2,...,Q}. Formally
Section V. Finally, conclusions are drawn in Section VI. L, is the cluster that satisfies

[l. ALGORITHM DESCRIPTION q = argmax [Dz:q — (L= A)|Lql]- (15)
q=L,2,...,
The general idea of the proposed algorithm is to begin wi

a single cluster, split the cluster into two clusters, sipiét two i Dr, <(1=XN)|Ly], Vg =1,2,...,Q, the algorithm stops
. . . because no cluster deviates from the MV normal distribution
clusters into three clusters and so on, until every clusténe

outcome of a single multivariate Gaussian source. Thesmuspnly one Gaussian is chosen to be split, because othervése th

to be split is found via a multivariate normality test based Oalgonthm starts splitting clusters that are modeled welMy

the Mahalanobis distance of each sample measurement Vegglussmn densities. Such an exampleqo« 2 components,

from the component center it belongs to. The cluster with tt)néimelygl andgy, is depicted in Figures 4(a), 4(b), and 4(c).

worst fit with respect to the Mahalanobis distance distitut n over sphttmg case 1S shown n Figure 4(b).’ wr_lere both
) o . and G, are split. If G5 is only split, as shown in Figure 4(c),
is split into two clusters that will be called as new cluster; . .

. o then the correct number of Gaussian components is found.
hereafter. If the MV kurtosis of the old cluster is signifitgn C) Kurtosis switch: The spliting of £, into clusters
large, the centers of the new clusters are set both equaéto g) ' P 9 a

! H ! H H
old cluster center initially, otherwise the old cluster its 7~ 7 .an_d Lo, W'th.Q.. " Q + 1 is performed either by a
. N . : discriminant or by initializing both new component centers
with a discriminant perpendicular to an axis.

: . with the old component center. The choice of the splitting
Let the set ofD-dimensional sample measurement VeCtornS1ethod depnends on the value of MV kurtosis for cluster
X be modeled by a mixture of Gaussian multivariate densitie&énoted agp((g ) [28]. A large K (L, ) value indicatezt?hat
. . i . - T ) -
'1rh2a t |s,363 Isaggnj;iiri?u:tzﬁtheisugI?Qaﬁjz;tlil;iteorf éggs;an L4+ is the outcome of a leptokurtic distribution. Since, only
’df’g” "Th('a oal is to find(G, } For readers’ convenience Gaussians exist in the mixture, the leptokurtic distribniti

pat &g 9 =1 A 'could be the outcome of two or more Gaussian sources with
a flow chart of the algorithm is sketched in Figure 2. Let U mmon centers. An example of high MV kurtosis value
assume the null hypothesB, = {£, ~ gq}le, ie. X is ’ b 9

: is depicted in Figure 5, wher€,. is the outcome of two
::ngt?elr?g by componentsj, where each component fits theGaussian sources with common centers. Figure 5(b) shows
q-

Initially, we make the hypothesis thaly = £, ~ Gy, the initialization of EM, whenC,- is split by a discriminant,

) . . . whereas in Figure 5(d) the initialization of EM with the cerst
where £, = X, i.e. £, is the outcome of a single Gaussian o .

of the new components initially set equal to the old center is
sourceG;. The parameters ofj; are the the sample mean

i : . presented. From the comparison of the GMMs in Figures 5(c)
;’ﬁgtgrrit’; r?onr? tﬁzrﬂgazﬁr%irstfg nn;?rtrzz(li?f Zef' C%S;fgfbbe and 5(e), it can be inferred that the best GMM is found by
. y £1 jnitializing the centers of the new components with the eent
is the number of sample measurement vectorg pthat are

. : . o of the original component.

outside a proper conﬂdence_lnterval for _the dlstrlbut_lorlma_‘ Let Ky be the first-order moment of the kurtosis of the MV
Mahglanobls d|stanqéD£1 W'" b_e _analypgally described in Gaussian distribution derived in Section IV. Splitting isne
Section 1ll. For the time being, it is sufficient to test whetth according to:
De, > (1 — X)|L1], where|L,] is the cardinality of sample '
measurement vectors that belongadg, in order to reject the
hypothesis that’; is the outcome of a single Gaussian sourdea) initializing the centers of the new components with
at A=99% confidence level. the old component center: L, is split into clusters’’ -

If D, > (1 — A)[£4], the hypothesisHy = £; ~ G, and L'/, where Q" = @Q + 1, by initializing p;. < p,.
is rejected. Accordingly,L; = X should be split into£, andpg, < p,.. Additionally, the priorsr;. and g, of the
and £, clusters so thak = nglﬁq. We proceed to testing new components are both set to one half of the initial a priori
the hypothesidiy = {£, ~ G, 3:1. The general hypothesis probability of the cluster, i.e%. The covariance matrices
Hy={L, ~ gq}ff:l with @ > 1, is described next. Sy+» St are randomly initialized. A random initialization of

if K(Lq)> Ko, (16)
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Fig. 2. Steps of the proposed algorithm.

Xs X, Ly
Proposed assignment
“Soft” to “hard” labels ..
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{he(xi)}g=12 — {1,2} YOl
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0 X, 0 <

@

Fig. 3.

(b)

a) Two Gaussian densities that overlap when the pilityafor a sample measurement vectgs belongs to component = 1,2 is hq(x;); b)

Proposed hard assignment with the help of a random variablthad clustersC; and Lo are the outcome of two Gaussians.

Ly, 61

@Q=2

Fig. 4.
algorithm is obtained wheifs is split only.

£/17 gll

X5

) Q =4, L1 =LI1 ULy,
Lo=L'5U E’g

X5

L',G"

.S ..
*of M £/37g/3
3

.

. 5/27 g/2

X

©Q =3, L1 =L,
Lo=L'5U [:/3

a) GMM with@ = 2 components wher®,, — 0.01|L2| > Dz, —0.01|£1| > 0; b) Both £1 and L2 are split; c) A better initialization for EM

covariance matrices is done by settiﬁg,,S’Q, equal to two same covariance matrices on the top of the same centers and
different D x D diagonal matrices, respectively. The diagonahe same a priori probabilities. If the two new components,

elements of each matrix are realizations of the ¢,where

22D(‘£q* _1) 2
||Sq*

The random initialization of the covariance matrix stenwsrfr
the theorem stating that marginal variance should folloe
— 1 degrees of freedom. We use

x? distribution with |-

~ X|Lgx|-1-

created after a split, had the same covariance matrices, the

according to (5)-(8), the component paramet&rs! would

17

be equal ta=", i.e. E would not be optimized. Otherwise, a

Db) discriminant is applied: That is, L, is split into

(17) which produces different covariance matrices instefad
(13) that results to identical covariance matrices in orer
avoid creating two new components, which would have the

clustersC’,« and L'/, where@' = @ + 1, by a discriminant
tlpyperplane found with respect to marginal statistics. The
Gdiscriminant hyperplane is the value of vecigr € £,- along



Discriminant

E/Q/7 g/Q/ L/QI7 g/Q/
(b) Initialization (c) Convergence
(a) Cluster to be split

Initialized with
the old center

L'q,Gq Lg,G'g
(d) Initialization (e) Convergence
Fig. 5. Example of splitting clustef .
axis X4« found by literature [9], [16]. It has been employed in the experirnsent
o Py, (2 _p ) (18) reported in Section V-B. The absolute values in (22) are
Tirds = J :afg;nax p Tia) = Fx,(ia), necessary, becausg X | =) can be negative, since it involves

i=1,2,...,|Lq] the logarithmic operator.

Steps (A) to (E) are repeated with the newly found pa-
meters, i.eL, « L, G, — G, for ¢ = 1,2,...,Q’, and

Q <« @Q'. The algorithm stops when no cluster diverges from
the MV Gaussian. The proposed algorithm is summarized in
dFigure 7.

where F'x, (z;4) is the theoretical marginal Gaussian cumula‘;a
tive distribution function (cdf) with parameters estinthtey
the marginal sample mean and variance, ﬁaq(wid) is the
empirical marginal cdf onXy-axis calculated from thenass
function[29]. The theoretical marginal Gaussian cdf is foun
via the error function. The hyperplang- - is perpendicular
to Xy4--axis and has the property of dividing a cluster into
two separate clusters. For example, in Figure 6{&)y- is
chosen as value;- € X onto axis X», because, as it is A process to establish a hypothesis that a random vector

seen from the comparison of Figures 6(b) and 6(c) the highé&V.) = = [X1, Xa,..., Xp]" is distributed according to
distanceFx, (z:4) — Fix,(z:4) is observed foud = 2 . After the multivariate Gaussian distribution is presented. Xet
splitting £,- into clusterst’,- and £/, their centers, sample {Xi}iL1 be a set ofV" sample measurement vectorse R”
dispersion matrices, and priors are used to initialize tve EOf the R.V.z. For example N' sample measurement vectors
algorithm. By making the initialization as in Figure 6(d)Of @ D-dimensional R.V. are depicted in Figure 8, whdve
the EM converges to the most descriptive GMM shown if$ limited to 2. The Mahalanobis distance xf € X from the

IIl. HYPOTHESISTESTING FORMV NORMALITY WITH
RESPECT TOMAHALANOBIS DISTANCE

Figure 6(e). center ofX is defined as
E) Apply th_e EM_ algorithm._ The EM algolrithrr) ref’ineg/the ri = (xi — %) 7S (x; — %) (23)
GMM model iteratively, with initial= ' = {r,', p,', S' .,
set as The empirical cdf of the r.vR; admitting values-;, denoted
) | as I'g,(r:), is found via the mass function, i.e. by sorting
7rq1 = T", ¢=1,2,...,Q, where N =|%|,(19) {r;}}¥, in ascending order and by lettingg, (r;) = i/N.
) 1 Let Fg,(r;) be the theoretical cdf of?; given the mean
uql — ] Z x;, and (20) vectorx and the sample dispersion mat$of X, which is
' x;eLy revised in the Appendix. IfV,., denotes the number of sample
measurement vectors inside thgequiprobable ellipse, then
/ 1 ’ ’ it can be inferred thatV,.. is a binomial r.v. with parameters
1 _ ! _INT s
S¢ = L] —1 Z e A G N and Fg,(r;), i.e.
q x; €L i
. N _
The EM algorithm stops when P(N,, =k) = (k:> (Fr, (ri))k(l ~ Fp, (m)N k’ (24)

='r+1y _ ='r -5 =
[ [ET) - S(X &N <107 | BT (22) becauseFk, (r;) is also the probability of having a sample

Obviously (22) is a heuristic method to find the local maxneasurement vector inside the ellipse with Mahalanobis dis
imum of the log-likelihood function used many times irtance equal to;.
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Fig. 6. a) Modeling a set of 2 sample measurement vectors, b) comparison between the margmadlincdf and empirical marginal cdf fok,, c) the
same forX», d) splitting by a discriminant, and e) GMM after EM convergen

Input is £, <+ X and initial hypothesis id1y = £1 ~ G1. Set number of component < 1.
- Estimate the MV normality criterioD., according to algorithm summarized in Figure 9.
-1If D, < (1 — X)|L1] stop, else splitC; according to steps (C-D).
A) Assign sample sample measurement vectors to clusters
- Create realizationg;, i« = 1,2,..., N of a r.v. uniform in[0, 1] and apply (14).

B) Test whetherHy = {£, ~ gq}Q

- Find ¢* = argmax [Dr, — (1= X)[Lg]].
q=1,2,...,

- Lo stop, else splitZ,« according to steps (C-D).
If D, Lq | litC, di (C-D)

C-D) Split ﬁq* into E’q* and L' g/, whereQ' — @ + 1.
C) Find K(L4+) from (33), andK, from (35).
Da) If K(Lg) > Ko, then initialize ;. < p,. andug, < p, .. Covariance matrices of new compones{s , S, are randomly
initialized according to (17). Also set/. — % [Lg-l
Db) Else if K(Lq4+) < Ko, split L4+ into £~ and £’ by the discriminant found with (18).
-The remaining clusters remain intact, i€, «— L, forq=1,2,...,¢" —1,¢" +1,...,Q.
E) Initialize EM with {L’q}q 1» and repeat E- and M-Steps until convergence according to (22).
- Refine GMM by settingC, «— £L'q, G +— G4, forg=1,2,...,Q’, andQ «— Q' and go to step (A).

and 71'22/ —

Fig. 7. Proposed clustering algorithm based on EM.

Let k., € [0,N] be the low confidence limit ofN,, whereX € {0.90,0.95,0.99} in most cases [29]. Starting with

at 100A% confidence level. LelkhA € [ ,N] be the high the results in [29], we revise the algorithm to find the con-
confidence limit ofN,, for i = 1,2,..., N. The confidence fidence interval(k.,,k/:,) for a binomial r.v., subsequently
limits should satisfy The novelty in this section is the derivation Ok, k),

which is the confidence interval for the number of sample
N

N i Nek measurement vectors inside the ellipse defined; &t 1001%
Z (k;) (Fr,(ri))" (1= Fr,(r:)) = level of confidence.
k=kiin First, if N is large enough andg, (r;) is neither near 0
Kix nor near 1, i.e.,
< (N k k1= A
> () ) (- ) =15 @9
k=0 NFFp, (7’1)(1 — Fg, (’I"Z)) > 1, (26)



.t Xy " L. one Fg,(r;), whenr < 1.2, That is, less sample measurement

. ... N . N, vectors than expected are inside the corresponding ellifrse
.. . MV normality criterion valueDx counts how many times
e e el . ~ . AN
_ ISR Fg,(r;) falls outS|de(le?*, kT*) ie.
. .{' X
: g . Dy = > 1. (31)
0. . T/L
: e i, (r)= 20 OF "~ F (r)<0

If Dx > (1 — AN, thenHy = X ~ G is rejected atl00\%
significance level. For example, ¥ = 0.95 and N = 100,
D« should be greater than 5 in order to rejéfg = X ~ G.

according to the DeMoivre-Laplace theorem the binomial dis The value ofA is chosen according to the value &f due
tribution can be approximated by a Gaussian distributicth wit0 quantization, i.e. sinc®x € {0,1,2,..., N} = Dx/N €
meanN Fy, (r;) and varianceN Fg, (r;)(1 — Fr, (r:)) [29]. A {0,1/N, 2/N, ...,1}, sox € {0,1/N,2/N,...,1}. If N is
typical value for this assumption & Fg, (r;)(1 — Fr, (r;)) > small (e.g. ifN = 20), then) € {0,0.05,0.1,...,1}, so\ can

Fig. 8. r; defines an ellipse that separates the sample set into twogiimms.

25 [30]. So, not be 0.99. In order to avoid such discrepancies, we propose
(ks ki) = (INFr, (1) = 2av/2NF, (r)(1 = Fi (r2)), 099 # N 2100
A=14 095 if 20< N <100, (32)
[NFR,(ri) + 2x \/QNFRi (ri)(1 = Fp, (TZ))D’ (27) 0.9 if 10 < N < 20.
whgrg[ ] denotes the closest integer to the number insige nr 10, X is not split, because according to (32) the sig-
delimiters, andz, equals to 1.16, 1.39, 1.82, fok = pjficance level\ should be below 0.9. The proposed algorithm
0.9,0.95,0.99, respectively. _ . for testing whether a set of measurement vectors stems from
Second, if (26) is violated, then the confidence interval single multivariate Gaussian component is summarized in
(k;ﬁ;A,k;ZA) is estimated by Figure 9.
MN k N—k
ké;,\ = argmin ’Z (k:) (FRi(ri)) (1 - FR,;(Tz‘)) 1) Estimater; = (x; — K)Ts*(xi — x) for eachi =
k1=0,1,...N '3 0 1,2,...,N;
1—A 2) Sort{r;}*, in ascending order, and sk, (r;) = i/N;
T ) (28) 3) Evaluate the confidence intervels;.,, kl',) using (27),
N N (28), and (29).
o . NY \\N—k 4) The hypothesigiy = X ~ G that the sample sét stems
ki;/\ B ka:rl%mlrllo‘ Z (k:) (FR'L' (T’L)) (1 —Fr (T’)) from the multivariate Gaussiag is rejected atl00A%
T k=ko confidence level ifDx > (1—\)N, whereDx and ) are
_1 — )\‘ (29) given by (31) and (32), respectively.
. . . 2 Fig. 9. The MV normality criterion.
The hypothesis test should validate if
N,  rkby KRy
N,, € (K, b ne (22,52
i E( z,k7k‘1,k) = N N ) N XQ
) KL, kR,
P (ri () 30
R (ri) € (37 (30)
vV i = 1,2,...,N. So we formulate the following null
hypothesis .
Hy = X ~ G: The hypothesist stems fromG is accepted at
100A% confidence level if 0

N l h ]

Fg,(r;) € (]“T;*, kT*) for at leastA|X| out of | X]| times.
Fig. 10. A set of D sample measurement vectors.

For example, a set of sample measurement veciprs-

{(zi1, 2i2)"}72 that stems from a mixture of two Gaussians The MV kurtosis and the expected MV kurtosis for the

is artificially generated and plotted in Figure 10. Let ongaussian case, that are used in the proposed EM algorithm,
Gaussian be fitted ont®. The ellipse corresponds to=1.2. il be explained next.

Let us assume that; are sorted in ascending order. The MV
test is applied to test null hypothesif, = X ~ G. In Figure
11, the empirical cdf ofr;, i.e. g, (r;) = i/N, is plotted
and compared against its confidence intervals estimated fro The multivariate (MV) kurtosis of a set of realizatiofis=
(27)-(29). Fg, (r;) is significantly lower than the theoretical{x;}~ , of the D-dimensional R.Vz = [X;, X,...,Xp]|”

IV. MULTIVARIATE KURTOSIS TEST



found that K, as is estimated by Mardia, is inaccurate for
0.8 4+ small N. Therefore we propose a better estimate than that of
Mardia.
£ 067 Theorem 1: The first-order moment of MV kurtosis is
0.4 + / e e o ¢ Empirical: F'g, (;) 1\2N -1
~ g Theoretical:l{ERl(ri) Ko = E(K) = (1 - N) N——HD(D + 2)' (35)
0.2 4—/ /".: —-— Upper conf. limit:k!y oo /N
A : — — — Lower conf. limit: k} o g9/N Proof: Let us assume that, are realizations of r.vsR;.
0 12 r By applying the average operator to both sides of (33), we
obtain
Fig. 11. Multivariate normality criterion for the set of sarapheasurement 1 N
vectors shown in Figure 10. E(K) = —E( R?)_ 36
(K) =+ g z (36)
is defined by K. Mardia as [28] It is known from Appendix that?; are identically distributed
N r.vs. according to
P (39)
K(X) =) m N D N-D-1
N~ - — ), i=1,2,...,N,

(N_l)QRiNfBeta(ri| o B

wherer; is the Mahalanobis distance estimated by (23). (37)
Multivariate kurtosis is a measure of the peakedness ofaad it is also known that if rvX ~ fgeio (2 | a,b), then [30]

cluster [31]. It is experimentally found that it can be used t Mt

detect if a clustef is the result of two or more MV Gaussian B(XM) = H a+m (38)
sources with common centers. This observation is supported - a+b+m’
by the following reasoning: Large kurtosis indicates tfat m=0
stems from a leptokurtic distribution, whereas a low kugosSo from (37) and (38), it can be inferred that,
denotes thak stems from a platykurtic distribution. Since it is
assumed that Gaussian sources only underlie the sample mea- NM N L+m
surement vectors, a leptokurtic distribution happens drilyo E(mRi ) = H N-1 4 (39)
or more Gaussian densities share a common center, whereas a m=0 2
platykurtic distribution happens when the distance betwbe or
centers of the underlying Gaussian sources is large. Fr8im (3 ong M—1
it is evident that the domain d& (%) is (0, ). Let us assume B(RM) = (N-1) D +2m Vi—192 N
that a MV Gaussian density has expected kurtosis (or first- * NMo AN -1+ 2m’ Ty
order moment)K, and [Ko.0.025, Ko.0.975] IS its confidence (40)
interval at 95% level of significance. By definition the ordefor all ordersM =1,2,...
of these values is From (40), it is deduced that

0< KQ;0.0QF) < Ky < K0;0,975 < 00. (34) E(RZIL[) _ E(Rjﬂ) if j 7& i, (41)

Three cases exist, namely

o Hy : if K(X) S [K0;0.25,K0;0_975], X is distributed

according to the MV Gaussian pdf;

o Hy:if K(X) € (0,Ko,.25), thenX is platykurtic; | X

e Hj:if K(X) € (Ko.o.975,00), X is leptokurtic. E(K) = v ZE(R?) = E(R?). (42)
We wish to establish offf] is true or not. The following i=1
mathematical reasoning is applied. By using the multivari o .
normality test based on Mahalanobis distance describe(?:jﬁ;j\js_ 2, (40) yields (35).
Section IlIl, the necessary information to establish whefiig
is valid or not is obtained. IfH, is not valid, eitherH; or
Hj will be valid. To check which of the alternatived; or
Hj is valid, we examine whethdk (X) > K, holds or not. If V. EXPERIMENTAL RESULTS
K(X) > Koy > Ko;o_ogg, is valid, then aISCK(.’{) > K0;0,025
is valid. So H; can not be valid, and by reduction ad Experiments are divided into three sets. Experimental evi-
absurdumH; should be valid. Thus, it is established thatlence to validate the accuracy of (35) is included in sulsect
X is leptokurtic without having to estimat&., 975. Ko can V-A. Comparisons of the proposed GMM method against other
be easily estimated. To the opposite, only approximations f{GMM variants are performed in subsection V-B, and finally
Ko.0.975 €Xist, when is great [23]. More specifically, Mardia the initialization offered by the proposed MV kurtosis test
estimatedK, [23]. According to the following derivations we typical clustering cases is demonstrated in subsection V-C

fori,j=1,2,...,NandM =1,2,....
By using (41), (36) becomes

efulness of the proposed estimator (35) is demoedtrat
in the following lines.
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Fig. 12. The first-order moment of the multivariate kurtoBi6K) of a MV Gaussian distributed cluster with respect to the nunobsample measurement
vectors N, and for feature dimension (d) = 2 (b) D = 5, and (c)D = 10.

A. Experiments on the proposed estimate of expected Mid the energy in the band 1-2.8 kHz normalized by the

kurtosis (35) duration of each utterance. Sétis the second real data-set
By comparing the proposed estimate (35) of MV kurtosihat contains a total of 189_0 utte_rances in anger, neutnal, a

soft speech styles. A two dimensional feature vector wad use

_ N - 1D(D +9) (43) consisting of the energy values within the falling slopes of
N+1 ’ energy contours and the energy in the frequency band 3.5-

derived by Mardia [23, eq. 3.16], it is easily seen that the tw3.95 kHz.

estimates differ by the factql — +;)%. As Nlirn (1-%)2=1, Methods compared: According to the categorization in

the difference becomes negligible. In Figure 12, the pregosFigure 1, we term the EM variants according to the following
estimate (35) of the average of multivariate kurtosis fatfiee template: “3rd level technique - 2nd level technique - 1st
dimensionD = 2,5, and 10, and varyingV, is compared level technique”. For example, “Forward MDL-EM-Random”

against the standard estimate (43), and the empirical astim's the EM variant that employs the forward logic with the

found with Monte-Carlo repetitions. The latter is found byMDL criterion to estimate the number of components, and
averaging the kurtosigs (X) for 1000 artificially generated the standard EM steps to refine a randomly initialized GMM.
setsX. As can be seen in Figures 12(a), (b), and (c), tH&y using the aforementioned terminology seven EM variants,
proposed estimate (35) is closer to the empiricaj one for Q]]ose listed in the second column of Table Il, are included in

values of N, whereas the one suggested by Mardia (43) ®/r comparative study. The convergence of each EM variant
accurate only for largeV. is judged according to (22). In 5th, 6th, and 7th methods,
we chose to estimate the number of componéntwith the

B. Comparison of the proposed method for GMM againMDL criterion, because the authors do not define a method

to
E(K)

other GMM methods. to estimate it. In methods 1 to 6, the random initializatien i

The proposed algorithm is compared against 7 other E
variants according to 4 evaluation criteria for 5 data-sety
1000 repetitions of the same experiment.

Data-sets Three artificially generated data-sets and two real «
data-sets were used. The artificially generated data-sets a
proposed as benchmark data for testing EM variants in other
investigations [13], [9], [11]. The parameters for each fué t
three artificial generated data-sets as well as one rdalizat
of each data-set can be found in Figures 13(a), 13(b), and
13(c), respectively. Setl is composed of few well separated
components. SeB is a mixture of few heavily overlapped
components with different priors. Sét is a set of many
partially overlapping components with equal priors.

The two real data sets are utterances extracted from the
Speech Under Simulated and Actual Stress data collection
[32]. The utterances are 35 isolated words such as “break”,
“go”, “one”, expressed from 9 male military persons in a
studio environment. Each utterance is expressed two times
by each speaker. The first real data-set, denoted agDSet
contains 1890 utterances equally separated to 3 speeés styl
(classes), namely slow, neutral, and fast. Each style isshadd
as a mixture of Gaussians, where feature vectors extracted
contain 5 features, namely the maximum duration of pitch e
contour plateaux at maxima, the median of durations for the
rising slopes of pitch contour, the median of durations Far t
falling slopes of pitch contour, the maximum energy value,

meferred thark-means, so that results are comparable.
Evaluation criteria: The comparison is perform according
to the following criteria:

Correctnesgin %): Correctness is the ratio of the times a
correct GMM is found in 1000 Monte-Carlo repetitions.
In each Monte-Carlo repetition of the experiment, a new
realization of the data-set is generat&brrectness is
evaluated only for artificially generated data-setse-
cause the true underlying Gaussian sources in real data-
sets are unknown.

Prediction error (in %): The classification error of the
Bayes classifier when each class conditional pdf of real
data is modeled by a mixture of Gaussians in 1000 cross-
validation repetitions, where 90% of the available data
was used for designing the GMMs and 10% for evaluating
the prediction error [33]Prediction error is used instead
of correctness in order to evaluate the performance of
EM methods for real dataThe confidence intervals
for the prediction error are estimated from the variance
of prediction error in 1000 cross-validation repetitions,
where it is assumed that the prediction error follows the
Gaussian distribution.

Average number of EM iterationdt is the average
number of EM iterations required for an EM method to
converge in 1000 Monte-Carlo repetitiorisis not used

in real data-sets, where the true model is unknown
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Fig. 13. Three artificially generated data-sets.

« Average execution tim@gn sec): It is the average execu-compared to 0.31 sec of method 7.
tion time measured over 1000 Monte-Carlo repetitions for Methods 4 and 7 achieved 86.8% and 96.3% correctness
artificially generated data or from 1000 cross-validatioagainst 77.8% achieved by the proposed method forCSet
repetitions for real datdt is more indicative about the Method 4, however requires 17.94 sec execution time, which
computational needs of each EM method than the averaigethree times bigger than 5.67 sec needed for by the proposed
number of EM stepsThe experiments are conducted omethod. For this data-set, method 7 has shown the highest
a PC with Pentium 4 CPU at 3 GHz and 1 Gb RAM afccuracy with 96.3% and the lowest execution time at 2.09

400 MHz, by using Matlab 7.1. sec.
From the results for artificially generated data presented i The prediction error and execution time results for reahdat
Table II, it can be inferred that the proposed method B&ets are presented in Table Ill. In addition, the prediction

the most accurate one for Set with 91.8% correctness, error when the design set is used also for testing is given
while maintaining the second lowest execution time, i.&20. inside the parentheses. In the last two columns the executio
sec. The 3rd and 6th methods follow with 85% and 77.9%me of each method when 10% is used for testing is shown.
respectively. However, method 6 with 846 iterations is éath Execution times that correspond to prediction error result
slow, which is due to the temperature parameter involveiiside parentheses are omitted. It can be seen that theggopo
which takes three values, namef¥, 54=, 1. High execution method has achieved the lowest prediction error for Bet
time is observed for method 4, because it begins Witk 28  i.e. 42.6:0.3%. Method 7 follows with 42%0.3%. From the
components to reach finall® = 3. The lowest execution time comparison with the prediction error achieved by a single
has been measured for method 7. However, the partial randG@ussian model, it is inferred that the proposed method
initialization leads to local optima of the EM algorithm andmproves prediction error by 6.5%. As regards Semethod
correctness drops t89.2%. 7 achieved about the same prediction error with the proposed
For SetB, methods 1, 2, 5, and 6 find only two component®iethod, i.e. about 47.4%. However, method 7 was three times
instead of four. This is due to the fact that the parsimoniod@ster than the proposed one can be seen from the last column.
criteria yield local minima with respect @, that are confused From the results inside parentheses, it is seen that methods
with the global minimum. A solution would be to inspect all7, and the proposed one achieved 36.9%, 39.9%, and 39.8% for
possible Q. This strategy is followed by method 4, whichSetD, whereas the single Gaussian model achieves 47.5%. As
however is rather slow, as it is seen from its execution timeggards Sef, only method 7 and the proposed one improved
It is confirmed that ICL [8] and MDL [9] criteria employed the 48.9% achieved by a single Gaussian component modeling.
in methods 3 and 4, respectively, are not so sensitive td loca
minima as MDL and AIC criteria used in methods 1, 2, 5 e .
and 6. Correctness for each EM method drops for this s& Initialization offered by the proposed MV kurtosis test
since the prior of the fourth component is small, i.e. 0.1, Experiments that demonstrate the advantages of the MV
and greatly overlaps with another component. The propodaattosis test when it is used as a switch between splitting a
method achieved 65.9% correctness, the highest one for thligster with a discriminant vs. setting the new cluster eent
set, but its execution time is 1.27 sec, which is rather loragual to the center of the cluster to be split are conducteur. F
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TABLE Il
COMPARISON WITH OTHEREM VARIANTS FOR ARTIFICIAL DATA

Correctness (%) Average EM itera- || Average execution
tions time (sec)

[# ] Method/Data-set | AT B CJA]IB]CJJ AT BT C ]
1 Forward MDL-EM-Random 713 22 [ 231 329 | 96 512 1.13] 034 7.45
2 Forward AIC-EM-Random 76.6 | 44 | 225 380 | 107 | 532 129 037 7.07
3 Forward ICL-EM-Random [8] 85 | 321 221 381 | 208 | 546 125|087 7.26
4 Backward MDLy-EM-Random [9] 712 | 57.7] 86.8 | 606 | 452 | 685 || 5.86 | 5.25 | 17.94
5 Forward MDL-CEMM-Random [14] | 71.1 0 159 || 324 | 41 | 1663 || 0.83 | 0.12 | 14.96
6 Forward MDL-DAEM-Random [13] | 77.9 | 0.5 0 846 | 196 | 245 || 3.16 | 0.72 | 1.74
7 | Forward MDL-EM-Partial Random [16] 59.2 | 57.1 | 96.3 || 52 42 164 || 0.29 | 0.31 | 2.09
8 Split-EM-Discriminant (Proposed) 91.8 | 659 | 778 || 80 | 115 | 267 0.72 | 1.27 | 5.67

TABLE Il

COMPARISON WITH OTHEREM VARIANTS FOR REAL DATA

Prediction error (%) | Average execution time (sec) |

[ # | Method/Data-set | D [ £ | D [ €

1 | Forward MDL-EM-Random 43.7+ 0.3, (41.6) 49.8+ 0.2, (49.8) 1.05+ 0.03, 0.97+ 0.03

2 | Forward AIC-EM-Random 44.2 + 0.3, (40.9) 49.6 £ 0.2, (49.5) 1.83+ 0.05, 1.10+ 0.05

3 | Forward ICL-EM-Random [8] 440+ 0.3, (41.4) 49.9+ 0.2, (49.7) 1.26 £ 0.03, 1.18 £+ 0.05

4 | Backward MDLy-EM-Random [9] 429+ 0.2, 36.9) 49.7+ 0.2, (48.8) 2.93+ 0.06, 20.24+ 0.29
5 | Forward MDL-CEMM-Random [14] 442+ 0.3, (41.9) 49.7+ 0.2, (49.8) 3.124+ 0.08, 3.43+ 0.10

6 | Forward MDL-DAEM-Random [13] 455+ 0.3, (43.8) 49.2+ 0.2, (49.3) 0.41+ 0.01, 1.28+ 0.04

7 | Forward MDL-EM-Partial Random [16] 42.7+ 0.2, (39.9) 472+ 0.2, 46.1) 0.89+ 0.02, 0.96 + 0.02

8 | Split-EM-Discriminant (Proposed) 42.0+ 0.3 (39.8) 474+ 0.2, (47.1) 2.66 £+ 0.26, 3.51+ 0.10

9 | Single Gaussian modeled pdf 48.5+ 0.2, (47.5) 49.0+ 0.2, (48.9) 0.004t4 - 107 0.004+6 - 10~°

TABLE IV
INITIALIZATION EXAMPLES

Case 4:K = 6.029

&

-

Case 1:K = 13.789 Case 2:K = 7.452

N

Case 3:K = 10.104

Discriminant
(Ko < 7.946)

(@) @)
Corr.: 30.0%, Time: 0.485 Corr.:100.0%, Time: 0.273
)
.| - :
c % .
83 ¢
o~
9 A
€ o ' L}
g<| -
o (b) (h)

Corr.: 99.2%, Time: 0.472 Corr.: 93.2%, Time: 0.417 Corr.: 98.2%, Time: 0.350 Corr.: 98.9%, Time: 0.309
Abbreviations: Corr. stands for averaged correctness, and Time stands for avetagetiba time, both estimated for 1000 Monte Carlo repetitions of the expeti

typical cases are shown in Table IV. The first case, showime second and the third lines of Table IV, the initializatio
in Figures (a) and (b) inside Table IV, depicts a clusteringsults offered by the discriminant and the common centers
problem of two sources with common centers. The seconmitthods are shown, respectively. The average correctnéss a
case (Figures (c) and (d)) is a clustering problem when gsurt¢he execution time of EM for 1000 Monte Carlo repetitions are
greatly overlap. The third case, presented in Figures (d) ancluded for each initialization. It is seen that the iriiations

(f), is another clustering problem involving two sourceshwi that result to the highest correctness and lowest exectitign
common centers, which is not so symmetrical as the first casee those presented in Figures (b), (c), (f), and (g). Froen th
Finally, the fourth case represents a clustering probleranvhcomparison of the MV kurtosis values of the first line with the
sources do not overlap. The number of samplésn each decision threshold(, = 7.946, it is inferred that the proposed
case is 600 equally distributed between the sources. The Méthod selects the best initialization for each case.

kurtosis value for each case is shown in the first line of Table

IV. From (35), it is inferred thaf<, which is employed in the

MV kurtosis test equals 7.946 faN = 600 and D = 2. In



13

VI. CONCLUSIONS Accordingly (45) becomes

An algorithm based on expectation-maximization algorithm ri = (x; — %78 (x; — X). (48)
for clustering sample measurement vectors for any dimansio
has been proposed. The basic idea behind the algorith@f £: be r.v.s that admit values; given by (48) fori =
is to employ multivariate statistical tests as plug-inema 1,2,...,N. The distribution of Mahalanobis distance is the
for splitting non-Gaussian distributed clusters to Gaarssidistribution of the r.v.R;. In this Appendix, we will revise the
distributed ones. following proof which is attributed to S. S. Wilks [26]. &
From the experiments, it is inferred that the proposdg distributed as in (44), theR; obeys
method as well as methods 4 [9] and 7 [16], are the most v N D N—D-1
accurate ones. Method 7, however, sometimes fails to liaétia mRi ~ fBeta(mri | o #)7 (49)
correctly the GMM because, the partial random initialiaati . o _
is accomplished by keeping the old components of the GM¥Nere fzeia (7 | a,b) is the beta distribution with parameters
fixed, while refining the new component. Method 4 is found @1d b, and D < N. The cumulative distribution function
rather slow, because it assumes initially a great number (§fif) Of Ri is necessary for testing MV normality hypothesis

components in the mixture. The proposed method has bdBrpection lll. g, (r;) according to (49) is

found to suffer sometimes from over-splitting. This proble D N—-D-—1
may be solved by changing the calculation of the confidence Fr,(ri) = I(vaj‘li)z (3’ f)v (50)
limits of Fg,(r;) in Section lll, or by employing also the

Xerelz(a,b) is the incomplete beta function.
The logical sequence of the proof is summarized in Figure
4, The proof tha{Nf_Vil)QRi is distributed angem(ﬁri |

angle information between a sample measurement vector
the center of a component. The information related to théean
of a sample measurement vector from the component ce
is lost either in the multivariate normality test that is &ds
on the Mahalanobis distance of each sample measurem'sfnheorem 2: Wishart 192|3_>| Theorem 3: Hotelling 193|]_
vector from the component center or the multivariate kistos I
which is simply the sum of squares of the aforementioned - a|Theorem 4 Wilks 196$
Mahalanobis distances. Therefore, the proposed metholdecan
extended with statistical tests based on the angle infoomat

to assess multivariate normality [28], [34]. | Lemma 2: pdf ofR;
APPENDIX Fig. 14. Logical sequence of steps to arrive at the disidbutf Mahalanobis
distance.
The assumption that Mahalanobis distance can be treated as
a r.v. R; that follows a beta distribution was extensively use@, N‘QD‘l) is given in Lemma 2. However, before dealing
in Sections I, lll, and IV. The proof of this assumption iswith Lemma 2, first some additional theorems and lemmata
rather complex, so it will be revised here. should be proven. Theorem 2 defines the distribution of the
Let us assume that = [X;, X,, ..., Xp]T is a sample dispersion matrix of a multivariate Gaussian R.V..

D-dimensional vector that is distributed according to the Theorem 2: The matrixS follows the Wishart distribution
multivariate (MV) normal distributionMVNp(u, ¥) with  Wp(3, N) with scale matrix3 and degrees of freedoiv.

probability density function (pdf) The pdf of A= (N -1)S'is
1 1 _ N-D-2 1 _1
px| 1, E) = —p——rexp{—5 (x—p) =7 (x—p)} IA[77= exp { —3tr(Z7°A)
(2m) = (||2]))? 2 A) = ( 5 ) (51)
(44) (N—1)D D(D—1) (N—1) N—i
_ : . ” : 27 o |[ZB] T T
where||X|| is the determinant of non-singular positive semi- i=1

definite covariance matri2. The Mahalanobis distance be'wherel“( ) is the Gamma function,

tweenx and u is defined as Proof: See [35]. -
r=x—-p)TS (x—p). (45) The next theorem defines the distribution of the scaled Eu-
clidean distance where relationships across dimensioas ar

In most cases, the mean vecjoiand the covariance matrX tgken into account.

are unknown, and therefore, they are replaced by the samplgheorem 3: If 72 = Y7S-!Y where Y and S are

mean vectok and the sample dispersion matfixof a set of independent and distributed accordingMBVN (0, X) and

sample measurement vectots= {x;};", defined as Wp(X, N) respectively, therdl™® obeys the Hotelling distri-
bution:

1 N
~ Xj, 46 N
V2 “o Fra(t2) = [(7)

"l
Il

1 & N
S = m;(xj—i)(xj—f)T- (47) (1+N_1) ’. (52)
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Proof: See [36], [37]. B wherea’*® is the cofactor ofjkth element inA_, % There-
Let us prove the following lemma that will be subsefore,
guently exploited in the proof of Theorem 4.
N

1
Lemma 1: If > denotes the sum from = 1 to N R = v 2 =
i=1(¢) = al*€) (ze; —T;)(wer — T
excluding¢ and A ]%;1 (vej =) (wen = )
L e (69)
Ag 2 Y (i —X)(xi —Xe)", (53) 1+ 55 (xe = X)TA) (x¢ = X)
i=1(§)
where Since,Ag) = (N — 2)S(¢) = A(g = o 2)8(51 then
1 N
= 1
i=1(8) L+ vryv—gy (xe = X)TS ) (x¢ — %)
then N Since X ~ MV Np(0, X=13):
_ _ Xe — X ~v , :
Ag=A- 57 (x¢ = X)(x¢ —%)". (55) ¢ PN
o _N-1 X F X1+t Xep - H XN
Proof: It is known that XemXN =Ty X N
N -1 N -1
N ~ MVNp w, (——)?% )~
(inx;?r)—NiiT: ) ( N N ) N
‘ NMVND<(N— D, (N—l)E) = MVNp(0, ——5),
N

( Z X X1 ) + Xing — Nx %%, (56) (66)

i=1(¢)
by assuming thatde = |/ 5(xe — X), then d¢ ~

MV Np(0,X). Therefore, (65) becomes

WE

A = (D xx{)—(N=DxeXl, (67 ,
i R . (67)
NE = (N — 1% + xe. (58) © 7 Ty TSl
Then According to Theorem 3 and given thdt ~ MV Np(0,X)

A—Ayg = xgng — Nxx + (N — 1)§(€)§£)' (59) andS) ~ Wp(X,N — 1), Wheredg and S(g) are indepen-

dently distributed, becausk is not involved in the estimation

By replacingx () with (58), (55) is obtained. B of S, itis inferred that the distribution de =d 5(5
is

Theorem 4: Let

r(;l) D1
|A )] 2.) = 2 ( © )
R # Mo 60 o) = i) (W -2
2 _N-1
be called as one-outlier scatter ratio for sample measureme (1 + o ) . (68)
N -2

vector x¢, i.e. it denotes how much the dispersion of the

whole set differs from the same set, wheg '% elch[l)J;:ied. By using the fundamental theorem for functions of one r.v.

. . . N7 —
Re) follows the beta distribution/seta(r¢) | =2+ 5)-  [29], the distribution ofR(e) = —L— is found as follows:
Proof: If a;r and a;ne), J,k = 1,2,...,D are the 1+N<s>

elements ofA andA ) respectively, then according to Lemma

1 N fT(E)( )
Ujk = Gjk(e) + m(zsy Zj)(wer — Ty),  (61) Fre (@) = |dg(t(£))| ’ (69)
dt2
wherez; denotes thgth element ofk. Let us denote|A|| =
|lajx|| the determinant of a matrix, then from (61) where
N 2 _ 1
lajell = llajue) + — (we; — ) (@ee — Ti)l[. (62) 9(tie) = ; (70)
N 1 1 + N(E)Q
So 2
D Wiltg) (1+ i )_2 : (7)
N O o _ d?, N-2) N-2
lajell = llagie 11+ 57— > @O (wg =) (wer—Tn)),

= 63 = (V-2)( ! ). (72)



So,
£t (N =2)P (¥
(6) 2
fR(&)(T(f)):(l—’—NiQ) (N -2)r N7D721)F(2)
2 2
1 Tl 1\
Go-vV" Go) - 73)
UG 7€)
F(%) Nl _o41-D
F(N72Dfl)11(%)(1 r(f)) 2 r(g) ) (74)
which is the fpeia (re) | 2=2=2, L) distribution. [
Lemma 2: If R(g) ~ fBeta(r(f) | %, %) then
N N D N—-D-1
mRi ~ fBeta(mri ‘ E» #) (75)

Proof: From (61), we obtaifu;; ) = ajx — g (zej —
Tj)((bgk - fk). Then

Hajk(g)H N D ik
e =l | — T, —7y), (76
[lajil| N 11_]_:1“ (zej — 7)) (wer — Tp), (76)

wherea’* is the cofactor ofjkth element inA~'. Hence,

N _ _ _
R =1-5—xe~ X)TA (xe = %) (T7)
Given thatA~! = S, it is inferred that
T a— —
R =1~- m(xf -%)"S7 (xe — %) =
1N po Re=1-R (78)
(N—1)2 € (N_1)2 = &)-
Since Re) ~ fpeta(re) | 7745) = 1- R ~

|
[Beta(1 — (e | £, 2=2=1) [30]. Therefore from (78), it is

(10]

(11]

(12]

(13]

(14]

(15]

(16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]
[24]

(25]

deduced that [26]
N g ( N D N—D—l) [27]
(N—pzie ey e T ‘
(79) [28]
By replacing¢ with 4, the proof is concluded. The result (79)[29]
is valid for every value ofV and D with D < N <oco. H
(30]
REFERENCES [31]
[1] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likebod
from incomplete data via the EM algorithmJ. Roy. Stat. Soc. (B) [32]
vol. 39, no. 1, pp. 1-38, 1977.
[2] G. McLachlan and T. KrishnanThe EM Algorithm and Extensions
N.Y. Wiley, 1997. [33]
[3] L. R. Rabiner and B. H. Juandg;undamentals of Speech Recognition
Prentice-Hall, Englewood Cliffs, NJ, 1993. [34]
[4] M. Law, M. Figueiredo, and A. Jain, “Simultaneous featwalection
and clustering using mixture modeldEEE Trans. Pattern Anal. and [35]
Machine Intell, vol. 26, no. 9, pp. 1154-1166, 2004.
[5] C. Manning and H. Sditze, Foundations of Statistical Natural Lan-
guage Processing Cambridge: MIT Press, 1999. [36]
[6] H. Akaike, “A new look at the statistical model identifigat,” IEEE
Trans. Automat. Contrvol. 19, no. 6, p. 716, 1974. [37]
[7] J. Rissanen, “Stochastic complexity’ Roy. Stat. Soc. (Byol. 49, pp.
223-239 and 253-265, 1987.
[8] C. Biernacki, G. Celeux, and G. Govaert, “Assesing a mixtmodel
for clustering with the integrated completed likelihoodEZEE Trans.
Pattern Anal. and Machine Intellvol. 22, no. 7, pp. 719-725, 2000.
[9] M. A. T. Figueiredo and A. K. Jain, “Unsupervised leamiof finite

mixture models,1IEEE Trans. Pattern Anal. and Machine InteNol. 24,
no. 3, pp. 381-396, 2002.

15

G. Celeux and G. Soromenho, “An entropy criterion foressing the
number of clusters on a mixture model’ Classification vol. 13, pp.
195-212, 1996.

B. Zhang, C. Zhang, and X. Yi, “Competitive EM algorithrarffinite
mixture models,"Pat. Recognitionvol. 37, pp. 131-144, 2004.

N. Ueda and R. Nakano, “EM algorithm with split and merge@tions
for mixture models,”Systems and Computers in Japawl. 31, no. 5,
pp. 930-940, 2000.

——, “Deterministic annealing EM algorithmNeural Networksno. 11,
pp. 271-282, 1998.

G. Celeux, S. Cretien, F. Forbes, and A. Mkhadri, “A comgot-wise
EM algorithm for mixtures,"J. Computational and Graphical Statistics
vol. 10, pp. 669-712, 2001.

J. MacQueen, “Some methods for classification and arslysimul-
tivariate observations,” inProc. 5-th Berkeley Symp. Mathematical
Statistics and Probability Berkeley, Univ. of California Press, 1967,
pp. 281-297.

J. Verbeek, M. Vlassis, and B. Bse, “Efficient greedy learning of
Gaussian mixture modelsNeural Computationvol. 5, no. 2, pp. 469—
485, 2003.

P. Smyth, “Model selection for probabilistic clustegirusing cross-
validated likelihood,"Statistics & Computingvol. 9, p. 63, 2000.

D. Ververidis and C. Kotropoulos, “Emotional speechssification using
Gaussian mixture models and the sequential floating forwdettsen
algorithm,” in Proc. IEEE Int. Conf. Multimedia and Exp@005, pp.
1500-1503.

C. Biernacki, G. Celeux, and G. Govaert, “An improvemehthe NEC
criterion for assessing the number of clusters in a mixture hiofat.
Rec. Lettersvol. 20, pp. 267-272, 1999.

G. Almpanidis and C. Kotropoulos, “Phonemic segmentatisimg the
generalized Gamma distribution and small-sample Bayesiamaftton
criterion,” Speech Communicatipmol. 50, no. 1, pp. 38-55, 2008.

N. Vlassis and A. Likas, “A kurtosis-based dynamic agmuio to
Gaussian mixture modelingEEE Trans. Syst., Man, Cybern, yol. 29,
no. 4, pp. 393-399, 1999.

N. Vlassis, A. Likas, and B. Kise, “A multivariate kurtosis-based
approach to Gaussian mixture modeling,” Computer Sciencéutest
Univ. of Amsterdam, Tech. Rep. IAS-UVA-00-04, 2000.

K. Mardia, “Measures of multivariate skewness and ksigowith
applications,"Biometrikg vol. 57, no. 3, p. 519, 1970.

J. Koziol, “A class of invariant procedures for assegsmultivariate
normality,” Biometrika vol. 69, no. 2, p. 423, 1982.

E. Lessaffre, “Normality tests and transformationBdt. Rec. Letters
vol. 1, pp. 187-199, 1983.

S. S. Wilks,Mathematical Statistics N.Y. Wiley, 1962.

G. McLachlan, “On bootstraping the likelihood ratiostestatistic for
the number of components in a normal mixtur@gplied Stat.vol. 36,
no. 3, pp. 318-324, 1987.

K. Mardia, J. Kent, and J. BibbyMultivariate Analysis
Academic Press, 1979.

A. Papoulis and S. U. PillaiProbability, Random Variables, and
Stochastic Processedth ed. N.Y.: McGraw-Hill, 2002.

M. Evans, N. Hastings, and J. PeacoSkatistical Distributions N.Y.
Wiley, 2000.

R. Darlington, “Is kurtosis really peakednes#&merican Statistician
vol. 24, no. 2, pp. 19-22, 1970.

J. H. L. Hansen and B. D. Womack, “Feature analysis andrateu
network-based classification of speech under strédSEE Trans. Speech
and Audio Processingvol. 4, no. 4, pp. 307-313, 1996.

K. Fukunaga,Introduction to Statistical Pattern Recognitio@nd ed.
N.Y.: Academic Press, 1990.

J. Koziol, “On assesing multivariate normality). Royal Stat. Soc.
vol. 45, no. 3, pp. 358-361, 1983.

J. Wishart, “The generalized product moment distributin samples
from a normal multivariate populationBiometrika vol. 20A, no. 1/2,
pp. 32-52, 1928.

H. Hotelling, “The generalization of Student’s raticAnnals of Math.
Statistics vol. 2, no. 3, pp. 360-378, 1931.

T. Anderson,An Introduction to Multivariate Statistical Analysis J.
Wiley & Sons: N.Y., 1984.

London:



16

Constantine Kotropoulos received the Diploma
degree with honors in Electrical Engineering in 1988
and the PhD degree in Electrical & Computer Engi-
neering in 1993, both from the Aristotle University
of Thessaloniki.

Since 2002 he has been an Assistant Professor
the Department of Informatics at the Aristotle Uni-
versity of Thessaloniki. From 1989 to 1993 he was
a research and teaching assistant in the Departme
of Electrical & Computer Engineering at the same
university. In 1995, he joined the Department of In-
formatics at the Aristotle University of Thessaloniki as aiseresearcher and
served then as a Lecturer from 1997 to 2001. He has also cwmwtesearch
in the Signal Processing Laboratory at Tampere Universityfefhnology,
Finland during the summer of 1993. He has authored 32 jourrmmérsal39
conference papers, and contributed 6 chapters to editeksbodis areas of
expertise. He is co-editor of the book “Nonlinear Model-8asmage/Video
Processing and Analysis” (J. Wiley and Sons, 2001). Hiserurresearch
interests include speech, audio, and language processigngl processing;
pattern recognition; multimedia information retrieval; bidneauthentication
techniques, and human-centered multi-modal computer intenact

Prof. Kotropoulos was a scholar of the State Scholarshiméation of Greece
and the Bodossaki Foundation. He is a senior member of the |EfEEaa
member of EURASIP, IAPR, ISCA, and the Technical Chamber of Gree

Dimitrios Ververidis was born in Karies, Leukada,
Greece, in 1978. He received the B.Sc. degree in
Mathematics in 2001 and the M.Sc. degree in Med-
ical Informatics in 2003, both from the Aristotle
University of Thessaloniki. He authored 3 journal
papers, and 13 conference papers. He is currently
concluding his studies towards the Ph.D. degree in
Informatics at the Aristotle University of Thessa-
loniki. His research interests include digital speech
processing, pattern recognition, and multivariate sta-
tistical analysis.



