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Abstract

In this paper, a novel algorithm for shape matching based on the Hausdorff
distance and a binary search tree data structure is proposed. The shapes are
stored in a binary search tree that can be traversed according to a Hausdorff-
like similarity measure that allows us to make routing decisions at any given
internal node. Each node functions as a classifier that can be trained using
supervised learning. These node classifiers are very similar to perceptrons,
and can be trained by formulating a probabilistic criterion for the expected
performance of the classifier, then maximizing that criterion. Methods for
node insertion and deletion are also available, so that a tree can be dynam-
ically updated. While offline training is time consuming, all online training
and both online and offline testing operations can be performed in O(logn)
time. Experimental results on pedestrian detection indicate the efficiency of
the proposed method in shape matching.

1. Introduction

The ability to locate and identify an object in an image or a video segment
is a core task in visual information understanding. Out of the different object
features that can be used for detection, object shape provides robustness to
texture and illumination. Given an input image and a collection of shapes in
a database, the objective it to detect the presence and estimate the location
of any shape stored in the database. In order to use shape matching for
object recognition, one must consider the following factors:
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• shape representation

• shape matching

• shape database organization.

In this paper, our main contribution concerns the last two factors, as we
propose a novel way to efficiently manage large shape databases and train
shape classifiers that can be used in binary search trees for shapes.

1.1. Shape representation

A 2D shape can be represented in various forms. For an overview, the
reader may refer to [35]. One possible representation is contour based, in
which a shape is described as closed, continuous, parametric curve [12]. The
statistical shape analysis regarding this representation is related mostly to
clustering and hierarchical organization [27]. The dissimilarity between two
shapes is proportional to the amount of effort required by the geodesic of one
shape in order to morph into the geodesic of the other one.

Another way to represent a shape is by describing the shape using ele-
ments from a set of features. The work presented in [11] syntactically de-
scribes a shape as an ordered list of line segments that are characterized by
their length and orientation. Matching and clustering are achieved through
techniques inspired by text string matching algorithms. In similar fashion,
[28] uses Shock Trees, a variation of the Shock Graph [26], to represent shapes
and clusters shapes by merging individual shapes’ Shock Trees into the clus-
ters’ Shock Trees in a way that minimizes the minimum description length
of the entire dataset.

The simplest and most abstract way to represent a 2D contour is as
a list of points. There is no requirement for closure, nor any information
regarding the interconnectivity of said points. Such a list of points can be
easily obtained, for example, by applying an edge detector on the image.

1.2. Shape matching

Object recognition through shape matching involves comparing an input
shape with various template shapes and reporting the template with the
highest similarity (or lowest dissimilarity) to the input shape. There are
various similarity measures to be considered for this task [31]. A very useful
similarity measure that can be easily computed is the Hausdorff Distance [22,
23] and its many variants. The Hausdorff Distance was originally introduced
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to measure similarity between two sets of points, so it can also be used to
measure similarity between shapes, since we can consider them to be sets of
points. In fact, Hausdorff distance based metrics have been widely used for
locating objects in images [22, 4]. The directed Hausdorff distance formula
from point set X to point set Y is given by:

DDHD(X ,Y) = max
x∈X

(min
y∈Y

(d(x,y))), (1)

where d(x,y) is the scalar L2 distance between point x of point set X to
point y of point set Y . The overall Hausdorff distance is defined as:

DHD = max(DDHD(X ,Y), DDHD(Y ,X )). (2)

This measure, however, is very sensitive to outliers. In practice, several
other variants of the Hausdorff distance are preferred over the original defi-
nition. Such variants include the k-th quantile Hausdorff distance, the mod-
ified Hausdorff distance and the weighted Hausdorff distance, used in [17]
to match letters in scanned text. The interested reader may refer to [6] for
the description of each variant and their performance comparison between
the various Hausdorff distance variants. An image window that is densely
populated by edge pixels will yield small Hausdorff distances (thus high sim-
ilarity), when any template is matched against it. This leads to many false
positive decisions. In order to overcome this problem, taking the orientation
of the edges into account has been proposed in [20].

Probabilistic formulations of Hausdorff distance based metrics revolve
mostly around using previous measurements to affect the number of possible
future searches. When searching for a certain template in an image, the
matching results of that template in a specific location in the image can be
used to infer whether it is necessary to search in neighbouring spots or not
through maximum likelihood estimation [19]. A probabilistic model is used
in [10] to determine whether a matching result given for a certain template
can warrant the further matching of similar templates. In this paper, we
attempt probabilistic formulations on pixel level, studying how to choose the
right template in the presence of displaced pixels in the input shape, which
is a more challenging task.

1.3. Shape template database organization

As the template database becomes larger, exhaustive template search
becomes impractical and the need of a better organization the template
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database aiming to minimize the cost of the search operations arises. Many
applications, such as visual surveillance or pedestrian detection systems have
real-time constraints, thus the template search speed is vital to the viability
of such a system.

While binary decision trees have been employed for shape related tasks,
these attempts mostly considered shape classification based on the presence
or absence of features [25], or feature extraction for classification purposes
[2]. A tree of weak classifiers has also been proposed in [8] for a sports
pictures classification system. However, there is a key difference between
the labelled classification task the above works handle and shape template
matching. In the case of template matching, there is no correct answer
concerning the decision of the classifier at each node. The objective is to find
which template bears the closest resemblance to a target input shape. It is
possible that every template of the training set is a sample from the same
class and that every template belongs to its own subclass. Classical binary
decision tree construction works by selecting a feature that minimizes the
class entropy in the resulting split subsets. However, measuring entropy in
this case is pointless, as the class entropy of the entire training set is 0, while
the subclass entropy is impossible to reduce by splitting the training set.
It is for this reason that such training methods are unsuitable for template
matching.

An early attempt to take advantage of tree structures to match shapes
can be found in [1], where a license plate reading system through template
matching is presented. It uses 37 templates and employs a Coarse-to-Fine
Strategy to first find rectangular areas in an input image then uses a data
structure similar to a B-tree to gradually refine the matching. This tree’s
nodes represent clusters of templates, with the root containing every template
and each child node representing a sub-cluster of its parent’s cluster, until
the leaf nodes, which only contain one template.

The tree construction issue is also addressed in [10], by organizing the
templates in a data structure again similar to a B-tree. The templates are
initially grouped in subsets in the tree leaves, based on their mutual similar-
ity. Along the path from a subset of templates to the root, a shape exemplar
is selected to represent the subset of the previous level tree nodes to the
new level. These representatives (called exemplars) are again grouped by
similarity and the process repeats, thus creating a hierarchical structure. A
probabilistic model is used to determine whether to search further down a
tree path or not, based on the matching result of the current node exemplar,
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in order to reduce the total number of measurements in a set of multiple
templates. The weak point of this approach is that it provides no theoretical
sublinear upper bound in search complexity, as it allows multiple paths to
be followed at each tree node, and it also does not allow new templates to
be added in an already constructed tree.

A self-balancing binary search tree (BST) is a well known data structure
for the quick search, insertion and deletion of data. It was originally pro-
posed for the efficient storage of real and integer numbers and it has been
successfully adapted for storing other information as well [13]. The many
useful properties of binary search trees are a clear motivation for attempting
an adaptation of this data structure for the handling of shapes. The chal-
lenge lies in the fact that Hausdorff distance relationships lack several useful
properties. For example, they are not transitive, they are not symmetric and
they do not have to satisfy the triangular inequality [31]. Thus, there is no
way to order shape similarity for a standard binary search.

Such an attempt at adapting the binary search tree data structure to be
used for shapes has been proposed in [29], where the traditional BST opera-
tions for the search, insertion and deletion of nodes are presented, along with
a weak classifier inside the internal nodes that facilitates these operations.
By using the described data structure it is possible to search for (and even
insert or delete) shape templates in logarithmic worst case computational
complexity. Furthermore, whenever the number of templates doubles, a bal-
anced BST needs only one more tree level to handle the extra data, which
means that the scalability of the structure is also very good.

1.4. Paper Outline

In this paper, we propose a novel offline node training algorithm and a
novel offline tree construction method for a binary search tree data structure
for shapes. Our work is also closely related to [10]. Our novelty consists
of the definition of a novel weak classifier, a method to train it and the
organization of said weak classifiers into a tree structure for improved shape
matching results.

In order to obtain the offline node training formulae, we perform prob-
abilistic formulations at pixel-level, thus examining the low-level elements
of shape matching. So far, various probabilistic formulations of Hausdorff
distance have been discussed. However, they are only based on distance
measurements, a high-level element of the Hausdorff based metrics. The
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usefulness of this approach is more limited, due to the poor properties of
Hausdorff distance relationships.

This paper is organized as follows: In section 2 the proposed similar-
ity measure is briefly discussed and the functionality of the proposed trees’
nodes is defined. The offline construction of a binary search tree for shape
templates is described in section 3. The implementation and computational
complexity details are given in section 4. The various experiments on both
artificially generated data and real data concerning pedestrian detection the
were conducted to evaluate the performance of the proposed structure are
detailed in section 5. Finally, the paper is concluded in section 6.

2. Tree Structure

The proposed data structure is a binary shape tree for shapes and will
henceforth be referred to as a shape tree. For our purposes, we view a shape
as a set of points with 2-dimensional integer (pixel) coordinates of the form
[i, j]T . A shape can either be represented as a set of points X , or as a binary
NX ×MX matrix X such that:

X(i, j) =

{

1, if x = [i, j]T ∈ X
0, otherwise.

Any shape stored in a shape tree is referred to as a template Ti, while Ti will
be used to denote the template in matrix form. All the templates that are
to be stored in a shape tree form the training set T = {T1, T2, . . . } of that
tree.

2.1. Activated Hausdorff Proximity

In this section we describe the similarity measure between two shapes X
and Y that the weak classifiers are based on. Among the many variants of
the Hausdorff Distance, the one found to yield the best results [6] is known
as the Modified Hausdorff Distance (MHD) [4]:

DMHD(X ,Y) =
1

|X |

∑

x∈X

d(x,Y)

Where |X | is the cardinality of the point set X and d(x,Y) = miny∈Y ||x−
y||2. We will be employing a similarity measure that is based on the Modi-
fied Hausdorff Distance, but uses the exponential kernel activation function
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(e−αx) on the individual distances d(x,Y). This similarity measure will be
referred to as Activated Hausdorff Proximity (AHP):

PAHP (X ,Y) ,
1

|X |

∑

x∈X

e−αd(x,Y) (3)

where X is the input shape, Y is the target shape to be matched to X and α
is a constant that determines how fast the activation function decreases with
the distance d(x,Y).

We use this activation function in order to normalize the similarity mea-
sure to (0, 1], 1 meaning that for every point x in X there is a point y in
Y placed in the same relative coordinates. As dissimilarity increases, the
AHP measure tends to 0. The proposed measure also provides robustness
against outliers to some degree. Indeed, after a certain distance (determined
by the parameter α), any point is considered as an outlier and its effect on
the similarity measure is almost constant, regardless of the actual distance
(due to the tail of the exponential function). This means that the measure
is only affected by the number of outliers and not their position.

In practice, in order to calculate AHP, we use a distance transform (DT)
[3] on the target set Y that outputs a matrix Φ, such that each element
Φ(i, j) is the integer approximation of the distance of point x = [i, j]T from
the closest point in Y , i.e. Φ(i, j) ≈ d(x,Y). We will henceforth use matrices
instead of point sets in the similarity measure, as it is more convenient to do
so in mathematical expressions. If X is a binary matrix obtained by a point
set X and Φ is the distance transform matrix of point set Y , we define the
similarity measure as follows:

g(X,Φ) =
1

∑MX

i=1

∑NX

j=1X(i, j)

MX
∑

i=1

NX
∑

j=1

X(i, j)e−αΦ(i,j) (4)

2.2. Tree Nodes

The templates are organized in a binary search tree (shape tree), in order
to have fast and efficient search capabilities. There are two different types of
nodes in such a binary search tree: leaf nodes and internal nodes.

2.2.1. Leaf Nodes

A leaf node pi contains a single template Ti from the training set T along
with its Distance Transform. The template is stored as a set of 2-dimensional
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Figure 1: A leaf node containing a template and its distance transform.

points with integer coordinates. The template distance transform is a matrix
whose dimension is NT × MT , where NT , MT are the template height and
width, respectively (in pixels). Only leaf nodes can contain templates. A
sample leaf node can be seen in Figure 1.

2.2.2. Internal Nodes

The internal nodes are used to determine the search path to the leaf
nodes, where the actual data is stored. An internal node q contains two
matrices denoted as SL =

∑

Ti∈Lq
Ti and SR =

∑

Ti∈Rq
Ti. These matrices

contain the sum of every real template matrix Ti that belongs to the left
subtree set Lq and the sum of every real template matrix that belongs to the
right subtree set Rq of q, respectively. They are used by the online training
procedure and we preserve them even in an offline trained tree, in case that
tree will later have to be updated online. Moreover, node q also contains
two matrices, WL and WR, which are used to determine the search path
an input shape will follow. Matrix WL attempts to measure the similarity
of an input shape to the templates on the left subtree, while WR does the
same for the right subtree. A key difference with the online approach in [29]
is that they are not the Distance Transforms of SL and SR, but instead they
are weight matrices resulting from training that direct incoming shapes more
accurately than the online approach in tree traversal. The training process
is detailed in section 3.1. These matrices contain non-negative real numbers
during the training procedure which are later rounded to integer matrices.
They determine whether the node directs a search to its left or right subtree.
The dimension of all these matrices is also MT × NT . Figure 2 shows a
sample internal node. Matrices WL and WR were obtained through the
offline training process and thus have lower than average values near points
that coincide with templates on their respective subtree, thus resulting in
higher similarity measurements when presented with a shape that resembles

8



SL WL WR SR

(a)

(b) (c)

Figure 2: An internal node. (a) The matrices of the internal node. (b) The templates
belonging the node’s left subtree. (c) The templates belonging to the node’s right subtree.

templates on their subtree, and higher than average values on points that
coincide with templates in their opposite tree.

In order to search for an input shape X in a shape tree, we must follow
a path of internal nodes starting from the tree root and ending in the leaf
node that corresponds to the matching template. Each internal node on that
path must decide on which subtree it must direct the search. The decision
on which path to follow at a shape tree internal node for an input shape X
corresponding to the binary matrix X is made according to the sign of the
quantity

c = g(X,WL)− g(X,WR) (5)

This type of weak classifier can be seen as equivalent to a linear percep-
tron. In order to replicate the internal node’s classification of an input shape
X with a perceptron, that perceptron would have to receive the elements of
X as input, with e−αWL(i,j)−e−αWR(i,j) being the synapse weight to the input
X(i, j). An illustration of this equivalence can be seen in Figure 3. The
separating hyperplane of the perceptron is exactly the same as the internal
node’s separating hyperplane, though their difference is that the perceptron’s
output is not normalized by the sum of units in the input.
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e  WL(1,1)  e  WR(1,1)e  WLW (1,1)
 e  WRW (1,1)

e  WL(1,2)  e  WR(1,2)e  WLW (1,2)
 e  WRW (1,2)

e  WL(MT ,NT )  e  WR(MT ,NT )e  WLW (MT ,NT )  e  WRW (MT ,NT )
X(MT , NT )X(MTMM ,NTNN )

X(1, 2)X(1, 2)

X(1, 1)X(1, 1)

...

...

PP
...
...

Figure 3: The equivalent perceptron of an internal node classifier.

2.3. Search

When we search for an input shape X inside a shape tree, we want to
find the template that is most similar to the input shape. To do so, we start
from the tree root and follow the path of nodes, as dictated by comparing the
similarities of X with each node’s WL and WR using (4), until we reach a
leaf node. We then report the template of that leaf node as the most similar
result.

As it stands, however, we cannot guarantee that the first search result
(leaf node) is the best match as it takes only one wrong decision to miss
the correct node. To overcome this problem, we define a measure called the
confidence |c| of each node in the path, where c is given by (5). We can use
this confidence measure to backtrack through the path, reverse the traversal
decision at the node with the lowest confidence and proceed to search the
subtree we skipped in the previous search. Once a decision at a certain node
has been reversed, we set that node’s confidence to 1, so that its decision will
not be switched back again, until the search is over. This way, if we allow t
tries, we come up with t template candidates. We determine the best match
by exhaustive search between these t candidates.

Node confidence is a measure of how easily separable the templates on
each subtree are. The values of node confidence along the path from the root
to a leaf are expected to be lower a) towards the root of the path, because
there will be a lot of templates to separate in each subtree and, thus, more
difficult to make a correct decision and b) towards the end of the path,
because templates, whose lowest common ancestor is near the leaves of the
tree will be similar and, thus, again, the corresponding node will be more
difficult to make a correct decision. Node confidences are expected to be
higher in nodes in the middle of the path, as the templates on each subtree
are similar to each other, while being dissimilar to the templates in the other
subtree. In practice, we artificially prohibit decision reversals at the higher
levels of the tree during the first few tries to ensure that searches can spread
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over a large tree section.

3. Offline Node Classifier Training and Tree Construction Algo-

rithm

In this section, we describe the offline construction of a shape tree and
the training of the classifiers (whose parameters are WL, WR, SL and SR) in
its internal nodes. We begin by deriving a training method that maximizes
the a posteriori probability that every template will be correctly classified
at a given node and a tree construction algorithm that determines how the
training set of each node is partitioned.

3.1. Offline Node Classifier Training

In order to derive a criterion for the training of the tree node’s classifier,
we consider an internal tree node q that must separate the templates Ti (Ti

in their binary matrix form) of its training set Tq ⊆ T (a subset of the
entire tree’s training set T ) into a left subtree set Lq and a right subtree
set Rq that have already been determined. In this section we describe the
training algorithm that accomplishes this task. The choice of the sets Lq and
Rq for every node will be dealt with in section 3.2, when we describe the
construction procedure of the shape tree.

Let us assume that X is a random vector, which represents all possible
inputs to a node q. When node q needs to classify an instance of X, it
computes its cq measure using (5) and, depending on the sign of this measure,
directs the input to either its left subtree or its right subtree. Since X is a
random vector, whose PDF is not known, we must make a hypothesis at this
node on which subtree is the correct one based on the observable evidence cq.
By invoking the Bayes rule, it is possible to link the a posteriori probability of
the hypothesis being correct with the observable evidence and form a training
criterion that includes the templates of the training set.

We begin to formulate the a posteriori criterion, by supposing that tem-
plate Ti is node q’s only left child in order to simplify the formulations. We
assume that Ti (Ti in matrix form) is an instance of the random vector Ai,
which represents all possible appearances that the template Ti might take.
Consider all the instances of X that produce a positive confidence (cq > 0),
when classified by node q. In order for the classification decision to be correct,
the instances of X must also be instances of Ai (we use X = Ai to denote
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this). Therefore, the a posteriori probability that the decision of node q is
correct is p(X = Ai|cq > 0). Using the Bayes rule we get that:

p(X = Ai|cq > 0) =
p(cq > 0|X = Ai)p(X = Ai)

p(cq > 0)
,

where p(X = Ai) is the prior of Ai occurring, p(cq > 0) is the bias of
the classifier to direct shapes to it’s left subtree and p(cq > 0|X = Ai)
is the probability that node q will correctly classify an instance known to
belong to Ai. If the priors of each Ai are unknown, we can assume that
p(X = Ai) = p(X = Aj) ∀i, j. P (cq > 0) is trivial (yet costly) to compute
and can be done by generating and classifying every possible binary shape
of the dimensions of the classifier.

We now focus on the approximation of p(cq > 0|X = Ai), the individual
probability that the classifier will direct an input shape to the correct subtree,
when we know which the correct subtree is. It is through this probability that
we can use the templates of the training set in order to train the classifier.
We assume that the correct subtree is the ”left” subtree, as the ”right” case
is an equivalent one.

In order to approximate p(cq > 0|X = Ai), we begin by assigning weights

to each element of Ai. The resulting weight matrix is denoted by Ãi. Let
Ψ be the distance transform of the template Ti. The elements of the weight
matrix Ãi are obtained by passing the elements of Ψ through the same
activation function Ãi(j, k) = e−αΨi(j,k) used in the AHP measure (3). These
weights represent the probability that a contour point is present at each
position in an instance of the random vector Ai. They take the highest
values directly on template Ti points. Their value drops exponentially as
the distance of the contour position from the nearest point of this template
increases. The form of the activation function applied to a template distance
transform and the resulting weight matrix are illustrated in Figure 4.

The idea, at this point, is to generate a large number ofAi instances using
Ãi, calculate the cq measure of the classifier for node q and then compute
the average cq. The greater this average is, the more likely it will be that an
instance of Ai will be correctly classified and, thus, the greater p(cq > 0|X =
Ai) will be. In order to generate the instances, we would also have to scale
the weights of Ãi such that e−αΨi(j,k) becomes a proper Probability Density
Function (integrates to a unit). However, this procedure is not necessary,
because, due to the simplicity of our classifier, we can equivalently use Ãi
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Figure 4: (a) The activation function on Ti’s distance transform. (b) The weight matrix
Ãi.

directly. Therefore, we approximate p(cq > 0|X = Ai) using the average c̃(q,i)
as defined by:

c̃(q,i) = g(Ãi,WL)− g(Ãi,WR) = (6)

MT
∑

x=1

NT
∑

y=1

Ãi(x, y)e
−αWL(x,y) −

MT
∑

x=1

NT
∑

y=1

Ãi(x, y)e
−αWR(x,y).

The approximation of p(cq > 0|X = Ai) is therefore given by:

p(cq > 0|X = Ai) ≈
1 + c̃(q,i)

2
(7)

Since both similarities lie in the range of (0, 1], their difference (c̃(q,i)) lies in
(−1, 1) and, therefore, the probability we approximate will never be greater
than 1 or lower than 0. Note that this approximation is not strictly mathe-
matically derived, but it is based on the intuition that, if we maximize the av-
erage node confidence on all inputs c̃(q,i), then we also maximize the true prob-
ability that a shape will be directed to the correct subtree p(cq > 0|X = Ai).
If c̃(q,i) = 0, then the probability approximation becomes 1/2, equivalent to
the random choice.

The probability that a single template Ti is correctly classified by the tree
is given by the product of the corresponding probabilities for each node on
the path Qi from the root to Ti’s leaf node.

PTi
=

∏

q∈Qi

p(X = Ai|cq?0)
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We use cq?0 to denote the proper relation of the node’s confidence to zero,
when its input is X = Ai. If the correct path for input shape X = Ai is the
left subtree, then cq should be greater than zero (cq > 0) and it should be less
or equal to zero (cq ≤ 0), if the correct path for X = Ai is the right subtree.
The question mark is disambiguated in equation (8). The probability that
all templates are correctly classified by the tree is therefore

Ptotal =
∏

Ti∈T

∏

q∈Qi

p(X = Ai|cq?0)

We can rewrite the above as

Ptotal =
∏

q∈Qi

∏

Ti∈T

p(X = Ai|cq?0)

and easily see that the total probability that the tree will correctly classify
every template is the product of the probabilities that each individual node
will correctly classify every template it is responsible for.

Now we isolate the probability that node q’s classification decisions will be
correct for every input instance ofX. Considering that the node is responsible
for classifying several templates in both its subtrees, we define the overall
probability that the node will make correct decisions as:

Pnode =
∏

Ai∈Lq

P (X = Ai|cq > 0)
∏

Aj∈Rq

P (X = Aj|cq ≤ 0). (8)

By using the Bayes rule on (8) we get that:

Pnode =

∏

Ai∈Lq
p(cq > 0|X = Ai)

∏

Aj∈Rq
p(cq ≤ 0|X = Aj)

∏

Ai∈Lq
p(X = Ai)

∏

Aj∈Rq
p(X = Aj)

p(cq > 0)|Lq|p(cq ≤ 0)|Rq|

(9)
Regardless whether the priors are known or not,

∏

Ai∈Lq
p(Ai)

∏

Aj∈Rq
p(Aj)

can be considered to be constant. The value of p(cq > 0)|Lq|p(cq ≤ 0)|Rq|

essentially represents how the entire template space is split between the two
subtrees. Since we also want the tree to be balanced (and therefore we
want |Lq| ≈ |Rq|) and since p(cq ≤ 0) = 1 − p(cq > 0), then the quantity in
question can be approximately written as (p(cq > 0)(1−p(cq > 0)))|Lq| whose
maximum is achieved when p(cq > 0) = 1−p(cq > 0) = 1

2
. This occurs when

the template space is split in half by the classifier. Therefore, it should not
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be taken into consideration when training the classifier, because it depends
on the contents of Lq and Rq (which will be discussed later) and it also leads

to favouring imbalanced trees. The probability P
(q)
training we will use to train

the classifier is therefore:

P
(q)
training =

∏

Ai∈Lq

p(cq > 0|X = Ai)
∏

Aj∈Rq

p(cq ≤ 0|X = Aj) (10)

We aim to maximize this probability through every template in the training

set. We use (7) to substitute p(c(q,i) > 0|X = Ai) with
1+c̃(q,i)

2
and apply the

chain rule to calculate the partial derivative of P
(q)
training for with respect to

WL(x, y) for a given Ai as:

∂P
(q)
training

∂c̃(q,i)

∂c̃(q,i)
∂WL(x, y)

= −
α

2
Ãi(x, y)e

−αWL(x,y)

j 6=i
∏

Aj∈Lq

p(cq > 0|X = Aj)
∏

Ak∈Rq

p(cq ≤ 0|X = Ak)

(11)
(the WR case is an equivalent one). Assuming that p(c(q,i) > 0|X = Ai) 6= 0,
we can multiply the previous expression with and divide it by p(c(q,i) > 0|X =
Ai) to get:

∂P
(q)
training

∂c̃(q,i)

∂c̃(q,i)
∂WL(x, y)

= −
α

2
Ãi(x, y)e

−αWL(x,y)
P

(q)
training

p(c(q,i) > 0|X = Ai)

Note that the term P
(q)
training remains the same for every member of the gra-

dient and can, therefore, be omitted from computation. According to (7),

we can substitute p(c(q,i) > 0|X = Ai) with
1+c̃(q,i)

2
and the direction of the

partial derivative for the template Ti that belongs to the node’s left subtree
is, therefore, approximated by:

∂P
(q)
training

∂c̃(q,i)

∂c̃(q,i)
∂WL(x, y)

= −
α

1 + c̃(q,i)
Ãi(x, y)e

−αWL(x,y) (12)

When the node has more than one template in its subtrees, the partial deriva-
tive is calculated by summing the partial derivatives from every template.
Templates belonging to the right subtree are included in the sum for the
derivative of WL with the opposite sign and vice versa. The final formulae
for the partial derivative with respect to the parameter matrices are:

∂P
(q)
training

∂WL(x, y)
= −

∑

Ti∈Lq

αÃi(x, y)e
−αWL(x,y)

1 + c̃(q,i)
+

∑

Tj∈Rq

αÃj(x, y)e
−αWL(x,y)

1 + c̃(q,j)
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(a) (b) (c)

Figure 5: (a) The two templates the node must separate. (b) The offline training result.
(c) The online training result.

∂P
(q)
training

∂WR(x, y)
=

∑

Ti∈Lq

αÃi(x, y)e
−αWR(x,y)

1 + c̃(q,i)
−

∑

Tj∈Rq

αÃj(x, y)e
−αWR(x,y)

1 + c̃(q,j)

Now that we have formulated the direction of the training criterion’s partial
derivative with respect to the node weight matrices WL and WR, we can use
gradient descent (or more sophisticated optimization methods) to maximize
(10). We start by initializing the weight matrix elements at the middle value
of their value’s range (which is 128 for an unsigned character variable, so we
set WL(i, j) = WR(i, j) = 128 in our experiments) and then we iteratively
follow the gradient. Every time that we reach a new maximum, we store
the WL and WR matrices that resulted in this new maximum. After the
iteration limit is reached, we report the matrices of the greatest maximum
encountered. The SL and SR matrices are trivial to compute. Results from
the offline training can be seen in Figure 5.

3.2. Tree Construction

As discussed in the previous section, the probabilistic criterion for the
training of a single node classifier is presented in (10). In order to construct
a shape tree offline we need to maximize the product of that criterion for
every internal node:

Ptree =
∏

q

P
(q)
training (13)

This can be accomplished in two ways: by applying optimization tech-
niques at every node, so that it properly classifies its training set and, also,
by structuring the tree in such a way that the classification is easier at ev-
ery node. We have already covered the training process through which node
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q separates Lq from Rq in the previous section. The remaining issue, i.e.
choosing Lq and Rq so that they are easily separable, is not as straightfor-
ward.

Consider a full binary tree with O levels. This means that there are 2O

templates in the leaves. Therefore, every node q must be able to separate the
templates in its left subtree Lq from the templates in its right subtree Rq and
do so with a probability expressed in (10) that is maximized through training
so as to reach the value of pq(Lq,Rq). This value depends on the separability
of the training set of every node and is a function of Lq and Rq. By changing
Lq and Rq we also change the maximum probability pq(Lq,Rq) with which
a node can be trained to properly classify its training set. In essence, we
wish to find an ordered arrangement of the templates, so that the Lq and
Rq sets of every node can lead to the global maximum of the criterion given
in (13). The problem is particularly difficult when considering the global
construction of the entire tree. In fact, this problem is NP-complete in its
general form, as can be proven by reducing the Hamiltonian Path problem
to this problem.

Since the optimal shape tree construction problem in its general form is an
NP-complete one, we will use a top-down shape tree construction algorithm.
The construction begins from the root of the tree, where the templates are
separated in two mostly equal halves, then recursively proceeds to construct
the left and right subtrees of each constructed node, by further dividing the
remaining templates in mostly equal halves. This approach, unfortunately,
does not guarantee the global maximization of our probabilistic criterion.
Each node construction process is iterative and consists of two phases: the
training phase and the reorganization phase. During the construction of
each node q, we aim to separate its training set Tq in two subsets, preferably

having equal cardinality. We denote the left and right subtree subsets L
(i)
q ,

R
(i)
q respectively, where i is the number of the training iteration. L

(0)
q and

R
(0)
q are initialized by arbitrarily splitting Tq in half.
In the training phase for node q, we use a gradient descent according to the

formulae in section 3.1 for the maximization of the a posteriori probability
criterion in order to train the classifier of node q. After the ith training
iteration, some templates in L

(i)
q will be correctly classified to the left subtree.

We name this subset Ľ
(i)
q . The rest of the templates in L

(i)
q will be incorrectly

classified to the right subtree. We call the latter subset L̂
(i)
q (the errors of

L
(i)
q ). Likewise for R

(i)
q , we will have the subsets Ř

(i)
q and R̂

(i)
q .
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Figure 6: The shape tree reorganization phase.

In the reorganization phase, since our goal is to separate the original
set in two subsets and we do not particularly care which subtree a certain
template node is classified to. Therefore, we could set L

(i+1)
q = Ľ

(i)
q ∪ R̂

(i)
q

and R
(i+1)
q = Ř

(i)
q ∪ L̂

(i)
q , so that the node now separates L

(i+1)
q from R

(i+1)
q

perfectly. However, we want a balanced tree. Therefore, we want |L
(i+1)
q | to

be as close to |R
(i+1)
q | as possible. Suppose that Ľ

(i)
q ∪ R̂

(i)
q is a larger set

than Ř
(i)
q ∪L̂

(i)
q (|Ľ

(i)
q ∪R̂

(i)
q | > |Ř

(i)
q ∪L̂

(i)
q |). We assign the

|Ľ
(i)
q ∪R̂

(i)
q |−|Ř

(i)
q ∪L̂

(i)
q |

2

template nodes in Ľ
(i)
q ∪ R̂

(i)
q that are classified to the left subtree with the

minimum probability, as given in (6), to the set M
(i)
q . We set L

(i+1)
q =

Ľ
(i)
q ∪R̂

(i)
q −M

(i)
q andR

(i+1)
q = Ř

(i)
q ∪L̂

(i)
q ∪M

(i)
q (the case is symmetrical, if the

inequality is reversed) and move on to the next iteration. The reorganization
process is illustrated in Figure 6.

An additional goal of the training is, therefore, to also minimize the car-
dinality of M

(i)
q , essentially minimizing the difference between the error num-

bers on both sides, since we will latter swap them. The smaller |M
(i)
q | is,

the more balanced the node will be after swapping each of its subsets’ er-
rors. If |M

(i)
q | ≤ 1, then we can achieve a perfect division of Tq as well as

perfect training. In order to minimize |M
(i)
q |, we modify the training phase
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to give a bonus β to the contribution of every template in the gradient, ac-
cording to the mistakes of each subset. Thus, the gradient (12) becomes
−β α

c(q,i)
Ãi(x, y)e

−αWL(x,y). Under normal circumstances, we assign β = 1.

When one subset has more errors in it, the templates of that subset are as-
signed a higher value for β and have a bigger impact to the gradient than
the templates of the other subset.

The construction starts from the root and proceeds by recursively re-
peating the process for the root’s left and right children. We proceed to
recursively train every node classifier to separate the templates directed to
it by its parent in two roughly equal subsets, until every template finds itself
in a leaf node.

4. Implementation and Complexity Issues

In this section we provide further details on the implementation of a real-
time system that performs shape matching in images using the proposed data
structure. We also provide estimates for the computational complexity of the
basic tree operations.

4.1. Fast Search and Template Matching in Images

Here we describe the implementation of the proposed matching data
structure into a general system for fast shape matching using a template
database in greyscale images. A binary search tree is constructed using the
input target templates. This can be either done offline, as described in sec-
tion 3, or by incrementally inserting all the templates in an initially empty
tree as described in [29]. Let the tree contain NT ×MT pixels.

4.1.1. Initial Precomputations

Given a greyscale NF ×MF image, we first perform edge detection using
a standard Sobel mask on the image. We chose the Sobel edge detector due
to its speed and the fact that the output is more simplified than other edge
detectors (for example the Canny edge detector), which is better for our
application, as edges that lie inside the detection objects have an adverse
effect on the matching process. The edge pixel (x, y) coordinates are then
inserted into a special data structure, which is a double binary search tree
for integer numbers that first stores the pixels using the x coordinate as its
key. Every node of the first coordinate tree contains another binary search
tree that uses the y coordinate as its key. After this double binary search
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Figure 7: A second coordinate tree.

Figure 8: A first coordinate tree, containing multiple second coordinate trees.

tree has been constructed, the nodes of all the y coordinate trees and the
x coordinate tree are threaded in their respective in-order traversal. The
form of the y coordinate trees can be seen in Figure 7, while the overall data
structure of the x coordinate tree is shown in Figure 8.

Then the distance transform matrix Φ of the image edges is computed.
Along with the distances, the edge gradients are stored in the gradient maps
Gx and Gy.

4.1.2. Planar search

The planar space of the search is handled as follows: A MT ×NT window
Q in the image, whose upper left corner has coordinates (xQ, yQ) is cropped
and tested. If the test result yields a similarity that exceeds a threshold,
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Figure 9: An example of the planar search strategy on a 16× 16 pixel block. The circles
represent the upper left corner of image windows that were tested. The number inside
each circle denotes the displacement of the new searches it recursively spawns in both
dimensions. The recursion begins at the circle with the number 4 inside it. Depending on
the matching result, each circle may or may not expand the search area.

we recursively test the four windows whose upper left corners lie in an ’X’
pattern centered on the original window’s corner with a step of 4 pixels in
both coordinate directions (x ± 4, y ± 4). The recursion continues with the
step halved and the threshold increased at every recursion level until the step
reaches 0, in which case the recursion stops after similarity computation. This
covers a 16×16 block of the image, since each dimension of the area covered
is 1 + 8 + 4 + 2 = 15 and we ignore the lower right corner of the block to
increase speed. An illustration of this search strategy is provided in Figure
9. After the recursion is finished, we proceed to the next 16× 16 block.

This guarantees that the search can reach at least a neighbouring pixel for
every pixel in the image, even though we completely ignore every 16th row
and column. We can further prune the search space by stopping a recursive
search whose matching results are sufficiently worse than the maximum result
in the recursion so far. In our implementation this means that if the current
matching result is less than 80% of the best matching result so far in the
recursion, then this recursion branch is terminated early.

4.1.3. Shape Tree search

In order to test a NT ×MT window Q whose upper left corner is the point
(xQ, yQ), we first find the edges contained in that window of the image. We
use the double binary search tree data structure described above to do that
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efficiently using the following algorithm:

• Start with an empty table of edge pixel coordinates.

• Search inside the x coordinate tree for the node, whose key u(0) is the
least possible key such that xQ ≤ u(0) ≤ xQ +NT .

– Search inside the above y coordinate tree node (thick dashed arrow
in Figure 8) for the node whose key v(u,0) is the least possible key
such that yQ ≤ v(u,0) ≤ yQ+MT . Add the pixel (u(0)−xQ, v

(u,0)−
yQ) to the table.

– Since all the trees are threaded, we can use the next pointer (dot-
ted arrow in Figure 7) to move from y coordinate node v(i) to the
next node v(u,i+1). Add the pixel (u(0)−x, v(u,i+1)−y) to the table.

– Continue until v(u,i+1) > y +NT .

• In a similar manner, we can move from the x coordinate tree node
u(u,i) to the next node u(i+1) (dashed arrow in Figure 8) and repeat the
process in the y coordinate tree of the new node.

• Continue until u(i+1) > x+MT .

When we finish, the table will contain all the edge pixels contained in the
window Q, translated into the relative coordinates of that window.

We input these edge pixels into our tree to find the template Ti that has
the best Activated Hausdorff Proximity (3) from the window to the template.
If Ψ is the distance transform of Ti and Φ is the distance transform of the
image window Q, then the proximity of the image to the window is computed
as:

σ = g(Q,Ψ) (14)

according to (4). The reverse proximity from the template to the window is
also measured as:

ρ = g(Ti,Φ) (15)

In order to get better matching results, oriented edge pixel information is
also taken into consideration. We not only want edge pixels to be near the
template contour points, but we also require that the gradient of the closest
edge in the image forms an angle with the gradient of the template contour
point that is either close to 0 or 180 (lighter object on a darker background or
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vice versa). Using Ti’s edge gradients (from the training stage) and the Gx,
Gy maps of the image, we refer to a pre-computed matrix with the cosine of
every possible angle that two integer gradient vectors of a greyscale image
can form. We give a bonus (for high values) or a penalty (for low values) to
the contribution of the template contour points to the correlation of Ti with
Q.

4.1.4. Shape matching

Finally, we can use σ and ρ to determine if a match is made in various
ways. Traditional Hausdorff metrics would suggest we use the min(σ, ρ)
value to check for a match as a consequence of (2). A more straightforward
approach is to demand that ρ exceeds a certain threshold, since there is very
little noise in the template and the directed distance from the template to
the image is more reliable than the other way around. It is also possible to
combine both measurements in various ways (e.g. sum, logical and, logical
or result) to come to a decision. The various stages of the search process are
illustrated in Figure 10.

(a) (b) (c)

(d) (e) (f)

Figure 10: The search process. (a) Original image. (b) Edgemap of original image. (c)
Distance transform of original image. (d) Spots where tree searches were performed (upper
left corner, darker spots indicate both trees were used). (e) Shape matches presented on
the edgemap. (f) Shapes matches presented in original image
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4.2. Tree operations analysis

We study the complexity of the shape tree operations as a function of
the number n = |T | of the NT × MT templates in the training set. This
analysis only concerns the search operation of the shape trees that takes
place in real time during the execution of the testing algorithm. The offline
training process is only performed once in the beginning to create the offline
shape tree. The similarity measure given in (4) uses matrices, because of
their elegance in mathematical expressions. In practice, we use Activated
Hausdorff Proximity as expressed in (3) and we view the tree’s input as a
point set X . Note that the number of points in that set is |X | ≤ MTNT .
For every point x ∈ X we refer to the proper weight matrix (WL or WR)
to measure the ”distance” d(x,Y). We then use a pre-computed array with
the values of e−αk for every integer k that we expect from the weight matrix.
This way, for every point x we can look up e−αd(x,Y) with only a total of 5
memory references. Since |X | is also bound by a constant, the computation
of a single node matching decision takes constant time.

4.2.1. Tree search

Since a constant time element of regular binary search trees (number
comparison) is replaced by with another constant time element (measuring
similarity through Activated Hausdorff Proximity), it follows from binary
search tree bibliography [13] that the search operation can be performed
in O(logn) time. If we allow a total of t tries, it is easy to see that the
complexity becomes O(t logn), but t is a user defined very small number
(t << n) that usually does not exceed 10 in our experiments.

4.2.2. Coordinate trees

Collecting all the edge pixels in an image window using the coordinate
trees takes O(logMF+

∑

x≤i≤x+MT
(logNF +

∑

y≤j≤y+NT
p(i, j))) time, where

p(i, j) = 1, if there is an edge pixel with the coordinates (i, j) and p(i, j) = 0
otherwise. This can be expanded to O(logMF + logNF

∑

x≤i≤x+MT
p(i, ∗) +

∑

x≤i≤x+MT

∑

y≤j≤y+NT
p(i, j)), where p(i, ∗) = 1, if there is an edge pixel

whose first coordinate is i regardless of its second coordinate and p(i, ∗) = 0
otherwise. Note that

∑

x≤i≤x+MT

∑

y≤j≤y+NT
p(i, j) is the total number of

edge pixels in Q, so the computational cost of collecting all the edge pixels
in Q cannot exceed the number of edge pixels in the window.
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5. Experimental Results

In this section the performance evaluation of the proposed data structure
on a classification task is presented. We first tested the learning and gen-
eralization capabilities of both offline and online constructed trees. Finally,
both types of shape trees have been tested using real data. We have chosen
to evaluate the proposed shape matching system in the task of pedestrian
detection [15], though the system is suitable for other applications as well,
such as hand gesture recognition, surveillance and symbol recognition.

We used Poser’s walking animation [18] to create the template database.
The animation contains 30 frames of a person walking. Each of these 30
frames of the animation was captured from 16 view angles at 22.5o intervals.
Some additional poses were manually composed. Each silhouette was scaled
to the height of 80, 75, 70, 65, 60 and 55 pixels and then morphologically
eroded [24]. We erode our templates because we find it is better for the
template silhouette to fall inside the real silhouette in the edge map rather
than outside of it, due to the way gradient orientation is propagated. Fi-
nally, edge detection was performed on the silhouettes. The resulting 3660
templates were split into two subsets of 1830 templates each, grouped in de-
scending order according to the templates’ height in pixels. A separate tree
was constructed for each subset.

Since we will be using our tree for the task of pedestrian detection to
evaluate real data performance, we also used these same templates to test
the performance of both online and offline trees at learning the template
data set. All experiments were conducted on a 2.4GHz Intel Core 2 Quad
processor. Taking advantage of the processor’s SIMD hardware commands
can speed up the distance transform and point set to matrix correlations by
a factor of 4 according to [9].

5.1. Classification Capabilities

In order to test the learning capabilities of the proposed shape trees, we
considered the two datasets described above, one including 1830 templates
whose heights are 70-80 pixels and another including 1830 templates whose
heights are 55-65. We trained an online tree and an offline tree for each of the
two datasets. Our first experiment aims to evaluate the self-relational and
generalization capabilities of both offline and online trees. Each test result is
labelled as either i-offline(j) or i-online(j) (depending on the type of tree),
where i is the maximum height (in pixels) of the tree’s templates and j is
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Table 1: 80 pixel height tree learning capabilities

Tree Learning ability Time (ms) Tree to best match Best matches found
(original data) ratio (noisy data) (noisy data)

80-offline(1) 1830/1830 0.1239 (0.000376) 0.9275 (0.0041) 202/1830
80-offline(2) 1830/1830 0.1622 (0.000963) 0.9506 (0.0020) 273/1830
80-offline(4) 1830/1830 0.2620 (0.002669) 0.9605 (0.0014) 374/1830

80-online(1) 1140/1830 0.1552 (0.007890) 0.9047 (0.0034) 82/1830
80-online(2) 1567/1830 0.1787 (0.001565) 0.9294 (0.0022) 177/1830
80-online(4) 1791/1830 0.2923 (0.009989) 0.9484 (0.0015) 235/1830
80-online(6) 1821/1830 0.3597 (0.006780) 0.9571 (0.0012) 282/1830
80-online(8) 1822/1830 0.4573 (0.016678) 0.9632 (0.0010) 321/1830
80-online(10) 1824/1830 0.5268 (0.012101) 0.9645 (0.0010) 326/1830
80-online(12) 1826/1830 0.6020 (0.015737) 0.9683 (0.0009) 384/1830
80-online(14) 1827/1830 0.7455 (0.037167) 0.9692 (0.0009) 407/1830
80-online(16) 1829/1830 0.8136 (0.049964) 0.9700 (0.0008) 401/1830
80-online(20) 1830/1830 0.8684 (0.026441) 0.9714 (0.0008) 398/1830

the total number of tries that are allowed. The results of this experiment are
presented in Tables 1 and 2 for each tree respectively. Non constant numbers
are presented as mean (standard deviation).

5.1.1. Learning ability

Learning performance was measured by searching for every template in
the training set using both trees. A search is considered successful if the
output template is exactly the same as the input template. The trees were
evaluated by the ratio of successful searches to the total number of searches.
As we can see in the second column of Tables 1 and 2, the offline tree can
indeed guarantee perfect training and it will always find a template it has
stored in the first try for both datasets. The online tree needed at least 20
tries on the first dataset and 14 tries on the second dataset to learn every
template, though both performed quite well with 4-6 tries.

5.1.2. Noise Robustness

Noise Robustness was tested by adding noise to a template and then
searching for it in the tree. Noise was added by moving each shape point in
a random location inside a 5× 5 square centered on it’s original location. In
order to evaluate the generalization ability we compare the performance of
the proposed tree structure against exhaustive search. The matching robust-
ness was measured by the ratio calculated by dividing the proximity of each
tree match with the maximum proximity of the best match found through ex-
haustive search. The results of these tests for offline and online trees for both
datasets are reported in the third column of Tables 1 and 2 respectively, as
the average ratio of each tree’s result to the best possible match. Results the
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Table 2: 65 pixel height tree learning capabilities

Tree Learning ability Time (ms) Tree to best match Best matches found
(original data) ratio (noisy data) (noisy data)

65-offline(1) 1830/1830 0.1022 (0.000322) 0.9318 (0.0028) 110/1830
65-offline(2) 1830/1830 0.1384 (0.000780) 0.9533 (0.0014) 147/1830
65-offline(4) 1830/1830 0.2046 (0.001858) 0.9607 (0.0010) 184/1830

65-online(1) 969/1830 0.1147 (0.000830) 0.9324 (0.0034) 81/1830
65-online(2) 1443/1830 0.1655 (0.003459) 0.9567 (0.0010) 144/1830
65-online(4) 1762/1830 0.2086 (0.002868) 0.9693 (0.0007) 252/1830
65-online(6) 1814/1830 0.2707 (0.003261) 0.9737 (0.0005) 262/1830
65-online(8) 1822/1830 0.3486 (0.061034) 0.9772 (0.0004) 319/1830
65-online(10) 1827/1830 0.4282 (0.009168) 0.9782 (0.0004) 350/1830
65-online(12) 1829/1830 0.4898 (0.015015) 0.9788 (0.0004) 336/1830
65-online(14) 1830/1830 0.5225 (0.011551) 0.9796 (0.0004) 373/1830

first dataset (Table 1) indicate that offline trees have better robustness than
the online trees for the same number of tries. As observed in these Tables,
an online tree requires about double the number of tries that an offline tree
needs in order to yield a similar robustness ratio. Online trees, however, are
not far behind and seem to catch up if given plenty of tries. On the second
dataset, however, the difference in the performance of both trees seems to be
within the statistical error margin.

We also investigated whether the trees can find the best possible match
that an exhaustive search would come up with. The last column of Ta-
bles 1 and 2 shows the number of searches whose result coincided with the
exhaustive algorithm’s output. The trees do not always return the best re-
sult and, as expected, the number of times they do find this best match
increases along with the number of tries. The trees do, however, find very
close matches most of the time, as indicated by the fourth column of Ta-
bles 1 and 2. Figure 11 shows the results of some sample template searches
that have varying similarity ratios to the similarity of the corresponding best
match found exhaustively. Some results are perfect, as in Fig 11(a), the
quality of the matching in the average case is best illustrated by 11(b) and
there are some results that are not very good, as seen in 11(d), but they are
uncommon.

5.2. Real Data

Finally, we have tested the performance of both offline and online shape
trees in a pedestrian detection system using a real pedestrian image database.
The pedestrian detection task involves feeding an input image or video se-
quence to the detection system which must then locate all pedestrians in the
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(a) (b)

(c) (d)

Figure 11: The original template, the noise-affected input and the final result for different
values of the tree/best match ratio. (a) 1.000000 (b) 0.965899 (c) 0.897539 (d) 0.856618

image or video frame. In ”smart” vehicles, such a system must work in real
time.

In the field of pedestrian detection, a multitude of methods have been
proposed in recent years. Histograms of Oriented image Gradients (HOG)
are used in [5]. An SVM approach using wavelet features is described in [21],
while statistical learning classifiers and SVMs are combined into a cascaded
classifier using Haar-like features in [34]. A scale-invariant implicit shape
model to initially detect and then top-down segmentation to confirm a pos-
sible result is used in [14] and [32]. A recent advancement in [30], selects
several image features for each pixel, then computes the covariance matri-
ces of these features over various image regions to use as object identifiers.
These covariance matrices are symmetric positive definite and therefore lie
on a Riemannian manifold. The classification occurs on the tangent space of
the weighted Karcher mean point that also lies on that manifold. A rejec-
tion cascade is constructed through the use of boosting that determines the
weighted mean point and the decision boundary for each classifier. Detailed
surveys on pedestrian detection are presented in [15] and [7].

The idea of using shape matching for the task of real-time pedestrian
detection has been explored in [9]. Recently, this method was improved in
[10], which proposes a B-tree like data structure and a probabilistic frame-
work for traversing it. Since we also propose a tree data structure for the
same task, we will use his work as our benchmark. As noted in the same
paper, pedestrian detection proves to be one of the most challenging tasks

28



to perform using shape matching techniques.
The state of the art approach, as described in [16], uses a tree of part-

template silhouettes to make an initial possible human segmentation in a
detection window. A feature vector similar to the HOG features in [5] is
formed out of selected blocks around the initial human silhouette estimation.
That feature vector is then fed through an appropriately trained SVM in
order to make the final decision of whether the detection window contains
a human or not. Note that the tree in this approach is static and a greedy
search algorithm is used, so this approach could potentially benefit from
our data structure in order to greatly expand the available part-template
silhouettes.

We used the pedestrian detection database containing images from the
University of Pennsylvania and Fudan University, which was also used in [33].
The image database contains 421 pedestrians in 170 images. Sample images
can be seen in Figure 12. All the images were scaled so that the pedestrians’
height in pixels falls into the 55-80 pixel range. Some pedestrians, whose
height after the scaling was too small for our system to detect were ignored
(21 pedestrians in total). We used the strategy described in section 4.1 to
search for possible matches in the database images. The point sets for each
tree search were undersampled by considering every third edge point in a
set. Note that since both the training and test sets are completely different
from the ones used in [10], the results are not immediately comparable. This
is, however, the closest comparative evaluation we could manage, since the
contour templates and image data set that were used in [10] are publicly
unavailable. Also note that the comparison is focused on the difference be-
tween our system with the state of the art in fast, tree-based shape matching,
not the state of the art pedestrian detection systems, which involve stronger
classifiers.

We built one offline and one online tree containing the templates, whose
heights range from 70-80 pixels. Likewise, we built another tree for the
templates, whose heights are in the 55-65 pixel range. We implemented one
system for each type of trees. The number of tries was set to 4 for the
offline trees and 8 for the online trees. We first used the tree which stored
the templates whose height is 55-65 pixels and, if the resulting match was
good enough, the tree with the templates whose height is 70-80 pixels was
used as well. Matches that were too close together spatially were merged to
the match having the highest matching criterion. A match was considered
successful if the corners of the detection bounding box were within 20 pixels
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Figure 12: Some output examples. White bounding boxes indicate detections, grey boxes
indicate a person successfully detected, black boxes indicate false negatives.
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of the respective corners of the ground truth bounding box (same as in [10]).
Multiple detections of the same ground truth pedestrian were only counted
once. Sample results can be seen in Figure 12.

Let NTP be the number of true positives, NFP the number of number of
false positives and NFN the number of false negatives. Recall and precision
were defined as NTP/(NTP +NFN) and NTP/(NTP +NFP ) respectively. The
performance results for both trees, the performance of the system reported
in [10], as well as the performance of our system in which the tree search
was replaced with an exhaustive template search are presented in Table 3.
The computational time figures for the system in [10] were inferred from the
frames per second rates reported. The computational time figures for our
systems were averaged. In our time measurements, we excluded the time it
takes for the image to be loaded from the disk but included the time it takes
to scale the image and compute its gradients, edges and distance transform,
as well as the actual search time. Note that it is possible for our systems’
computational times to more closely match those of [10] through the use of
multiple threads and hardware optimization.

By overviewing the results, we should once again note that direct com-
parison with [10] is impossible due to inevitable differences in training and
test sets. We attribute the apparent superior performance of our method to
two factors:

a) The ability of the proposed trees to manage more templates, due to
the low theoretical upper bounds for binary search tree operations.

b) The fact that we use the edge pixels themselves to guide us to the
best result and do not rely on measurements with shape exemplars, as such
features are less reliable in Hausdorff based metrics.

It is also evident that offline trees provide an improvement in performance
over the online trees (offline trees have slightly higher recall and precision)
in addition to being measurably faster. However, in contrast to what was
expected, the exhaustive algorithm found fewer template matches, since it
has worse recall and better precision than the trees. Since it is impossible for
the exhaustive search to find template matches with less σ, as defined in (14),
than the trees, the only remaining explanation for the fact that exhaustive
search finds less overall matches is that some template matches do not satisfy
the threshold for ρ, as defined in (15), and are, therefore, rejected. The
behaviour of the exhaustive search algorithm indicates overtraining and leads
us to believe that finding the best one way match is not the optimal approach
to shape matching. The decision making nature of the trees also provides
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Table 3: Performance comparison

System Recall Precision Time (seconds)
[10] 0.80 0.26 0.06 - 0.14

Offline(4) 0.885 0.69 0.15
Online(8) 0.8825 0.67 0.21
Exhaustive 0.8075 0.72 4.0833

matches that yield higher reverse similarity, thus performing better than the
exhaustive approach. Finally, we do not claim to have devised an extremely
high performance pedestrian detection classifier. We have provided a real
time system for the quick detection and localization of potential pedestrian
matches. A more powerful but slower classifier can be used to verify the
matches produced by our system for further improved results.

6. Conclusion

In this paper, a novel algorithm for shape matching based on the Haus-
dorff distance and a binary search tree data structure have been proposed.
By using a variation of a well known similarity measure in a manner that
allows us to make a decision on which subtree to direct a search at each node
of the proposed tree, we can store and search for templates in logarithmic
time. Through the use of probabilistic formulations, we came up with a way
to train a weak classifier inside each node so that it can correctly direct a
search to its proper subtree, thus ensuring that the output template is very
close to the best result we would find through exhaustive search.

Experimental results indicate that the proposed structure is capable of
storing and later finding the templates it must learn. The performance under
noise interference is also very good. While offline trained trees slightly out-
perform them, online constructed trees are still a viable solution for shape
matching tasks. Experiments on real data also suggest an improvement over
the previous state of the art real-time pedestrian detection system.
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