
Review Article

Automated Analysis of FISH and
Immunohistochemistry Images: A Review

Zenonas Theodosiou,1 Ioannis N. Kasampalidis,1 George Livanos,2 Michalis Zervakis,2

Ioannis Pitas,1* and Kleoniki Lyroudia3
1Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

2Department of Electronic and Computer Engineering, Technical University of Crete, University Campus,
Kounoupidiana, 73100 Chania, Greece

3Department of Endodontology, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Received 14 December 2006; Accepted 13 March 2007

Fluorescent in-situ hybridization (FISH) and immunohisto-
chemistry (IHC) constitute a pair of complimentary techni-
ques for detecting gene amplification and overexpression,
respectively. The advantages of IHC include relatively cheap
materials and high sample durability, while FISH is the more
accurate and reproducible method. Evaluation of FISH and
IHC images is still largely performed manually, with auto-
mated or semiautomated techniques increasing in popular-
ity. Here, we provide a comprehensive review of a number
of (semi-) automated FISH and IHC image processing sys-
tems, focusing on the algorithmic aspects of each tech-

nique. Our review verifies the increasingly important role of
such methods in FISH and IHC; however, manual interven-
tion is still necessary in order to resolve particularly challen-
ging or ambiguous cases. In addition, large-scale validation
is required in order for these systems to enter standard clini-
cal practice. q 2007 International Society for Analytical Cytology
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A variety of methods are available for the detection of
gene status in tissue samples, with fluorescence in situ
hybridization (FISH) and immunohistochemistry (IHC)
being two of the most prominent ones for detecting gene
amplification and overexpression, respectively. Both tech-
niques permit the study of small amounts of formalin-
fixed, paraffin-embedded tissue and the interpretation of
the findings on a cell-by-cell basis. FISH allows selective
staining of various DNA sequences with fluorescent mar-
kers, and thereby the detection, analysis, and quantifica-
tion of specific numerical and structural abnormalities
within nuclei. This procedure has proven to be as accu-
rate as Southern blot analysis, while allowing the measure-
ment of the fraction of amplified cells and the intercellular
heterogeneity within a given cell population (1,2). On the
other hand, IHC uses specific antibodies to stain proteins
in situ, which allows the identification of many cell types
that could be visualized by classical microscopy.

FISH is a direct in situ technique that is relatively rapid
and sensitive. No cell culture is needed to apply this
method and results are easier to interpret than karyotype.
The FISH technique has the advantages of a more objec-
tive scoring system and the presence of a built-in internal

control consisting of the two Her-2/neu gene signals pres-
ent in all nonneoplastic cells of the specimen. Disadvan-
tages of FISH testing include the high cost of each test,
long time needed for slide scoring, requirement for a fluo-
rescence microscope, inability to preserve the acquired
sample for storage and review, and, occasional difficulty in
identifying the invasive tumor cells (3). On the other
hand, advantages of IHC testing include its wide availabil-
ity, relatively low cost, easy and long preservation of
stained slides, and use of an ordinary light microscope.
Disadvantages of IHC include the impact of preanalytic
issues including storage, duration and nature of system
control samples, and most importantly, the difficulties in
applying a subjective slide scoring system (3).
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Evaluation of gene status from FISH images is based on
the manual counting of gene signals in interphase nuclei,
which become visible as colored dots. As an example, the
FDA approved PathVision Her2 FISH kit (Vysis, Downers
Grove, USA) uses DNA probes that when applied to a tu-
mor tissue sample target the Her-2/neu gene and attach
themselves to its target sequence in a process called hybri-
dization. The probes carry special fluorescent markers
that emit a reddish light under a fluorescent microscope,

as shown in Figure 1. Similarly, probes for centromere 17
(CEP-17), the chromosome on which the gene Her-2/neu
is located, are visible as green spots. Additionally, the sec-
tions are counterstained with 40-6-Diamidino-2-phenylin-
dole (DAPI), providing a blue background for the nucleus
body. According to PathVysion Her-2/Neu DNA Probe Kit
(PathVysion Kit), evaluation of FISH images involves enu-
meration of 20 interphase nuclei from tumor cells per tar-
get are reported as the ratio of average Her-2/neu copy
number to that of CEP-17, where a ratio of Her-2/neu to
CEP-17 copy number greater than 2 denotes amplification,
while results at or near the cut-off point (1.8–2.2) should
be interpreted with caution.
On the other hand, IHC testing reveals the amount of

protein product in the cell by using antibody staining,
which is usually manifested in brown color. In most cases,
samples have also been prestained with hematoxylin-
eosine which facilitates tissue examination. The effect of
this staining is the coloring of the nucleus as blue and the
rest of the tissue as pink, as shown in Figure 2. The per-
centage of tumor cells that have completely stained mem-
branes and the intensity of this staining are used by a pa-
thologist to score and classify the result as positive or neg-
ative (3). As an example, Ross et al. (3) have established a
standardized immunohistochemical procedure and scor-
ing system for evaluating the status of the breast tissue
samples stained for Her-2/neu, in which cells containing
less than 20,000 receptors would show no staining and
are given a score of 0, cells containing less than �100,000
receptors would show partial membrane staining with
less than 10% of the cells showing complete membrane
staining and are given a score of 11, cells containing
�500,000 receptors would show light to moderate com-
plete membrane staining in more than 10% of the cells
and are given a score of 21, while cells containing
�2,300,000 receptors would show strong, complete
membrane staining in more than 10% of the cells and are
given a score of 31.
In practice, current analysis of both FISH and IHC

images is performed in a semiautomated way, with the aid
of image processing software. A study by Klijanienko et al.
(4) has shown strong correlation of detection results using

FIG. 1. Example of FISH image from breast tissue sample with FISH
probes targeting the Her-2/neu gene and the chromosome 17 centromere.
(A) The copies of Her-2/neu gene are represented in red channel. (B) The
centromeres of 17 chromosomes are represented in green channel. (C)
Nuclei are represented in blue channel. Reprinted from Theodosiou et al.,
Fish Image Analysis System for Breast Cancer Studies, European Confer-
ence on Emergent Aspects in Clinical Data Analysis (EACDA, 2005), Pisa,
Italy, September 28-30, 2005.

FIG. 2. Micrograph of an inflamed dental pulp tissue immunohisto-
chemically stained with S100B; the white arrow shows a positive neural
element. Figure provided by Dr. Dourou, Aristotle University of Thessaloniki.
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visual-only and semiautomated methods for evaluating the
status of Her-2/neu in breast carcinomas samples.

ANALYSIS OF FISH IMAGES

We have examined a plurality of FISH image analysis
methods, the most notable of which are presented here.
Fernandez et al. (5) employed the histogram of images
which showed two nonoverlapping peaks, one corre-
sponding to the counterstain intensity range 100 and 150
and another one corresponding to the FISH signal inten-
sity range between 175 and 255. Thus, using a simple
threshold, segmentation of the FISH signals, referred to as
spots or dots, was obtained. Two different parameters,
surface, defined as the area in pixels of the binary image
and grey mean, defined as the mean of the grey levels
present in the segmented region, were used to quantify
the amount of positive signal of the hybridization. This
serves as an indirect measure of the number of copies of
the Her-2/neu gene. Their results show that the number
of copies discriminated with the naked eye in Type 2 cells
is extremely close to that obtained by the automated
method.

Netten et al. (6,7) developed an automated method for
counting dots per cell nucleus in slides of lymphocytes
from cultured blood. The system contains all the compo-
nents common to image processing and image analysis:
automated focusing, image acquisition, segmentation,
measurement, and classification. Image acquisition is fol-
lowed by an image processing algorithm that actually
counts the number of dots. The algorithm is divided into
four steps: (1) find a region that contains a nucleus, (2)
find the nucleus in the region, (3) find spots in the nu-
cleus, and (4) count spots and update the spot histogram
for the entire microscope slide.

The region of interest is identified as follows: the origi-
nal image is sub-sampled by a factor of eight and the
reduced image is prefiltered to suppress noise. Gray-level
opening is performed to remove the dots and correct the
shades. The resulting image is segmented by an automati-
cally chosen constant threshold, which is suitable for
images that contain only a few objects and have a large
background area. The region of interest is defined by an
enclosing rectangle for each object.

For each ROI, the authors processed the original image
at full resolution to define a mask for the nucleus. Then,
gray-value opening is applied to remove the dots and the
ISODATA threshold algorithm (8) is used to segment the
ROI into object and background. The resulting object
mask is then further processed using binary morphologi-
cal operations to remove small objects and to separate
slightly overlapping nuclei (9). After segmentation, size,
shape, and intensity features were measured for each
object (10). The features were used to select single nuclei
and to reject touching nuclei, debris, etc.

To detect the FISH signals, the authors segmented again
the original images within the mask of the nucleus by
employing three different techniques based on the top-hat
transform. At the beginning, the top-hat transform is
applied on a 5 3 5 window within the mask of the nu-

cleus on the original image, removing the DAPI counter
stain. The dots are found by applying a constant threshold
on the top-hat transform, where the constant is defined by

uth ¼ lbkg þ k3rbkg ð1Þ

where lbkg,rbkg are the mean and standard deviation of
the background inside the mask of the nucleus and the
mean and standard deviation were estimated using the
pixels below 90% intensity of the top-hat image. Determi-
nation of parameter k was based on a limited number of
nuclei used as a training set. After applying the top-hat
threshold, most spots were detected but some appeared
merged. Therefore, a nonlinear Laplacian filter was
applied within the mask of the top-hat threshold and, by
using a threshold determined by half the minimum inten-
sity of the Laplacian image, the touching dots were split.
Since the definition of a proper threshold level for the

top-hat threshold is a difficult task, the authors also
employed a variable threshold level. Pixels with intensity
equal to a threshold level are assigned to a dot, if they are
connected to this dot. In case they are not connected to
an existing dot, a new dot is created. The threshold level
useed starts at the maximum intensity of the image Imax

and runs down until it is just above the background level
useed 5 lbkg 1 k 3 rbkg.
To test the performance of the system, the authors com-

pared the results with manual counting. The number of
dots detected by the system is usually larger than the num-
ber of dots detected manually and has a higher variance.
Moreover, some errors occurred during the analysis like:
false dots, missed dots, split dots, overlapping dots, out of
focus, and debris. Results suggest that the slide quality has
an influence on the system performance, while debris,
high autofluorescence, and low probe intensity can make
results unreliable.
A system for automatic detection and scoring of FISH

signals in interphase nuclei was developed by Solorzano
et al. (11). The system performs sequentially the following
set of actions: (1) performing all the stage movements and
filter stages required to scan the area under study, (2) fo-
cusing the microscope on every field of view, (3) acquir-
ing the counter-stained and FISH labeled images, and (4)
analyzing the images in order to define the position of the
nuclei and the number of FISH signals inside of them.
Once the images are focused, three images, the DNA

counterstained image and both FISH signal images, are
acquired. Before the images are analyzed, a preprocessing
step involving shading correction, background subtrac-
tion, autofluorescence correction, and color-shift compen-
sation (12) are used. After correction, images are segmen-
ted to extract the required information. Nuclei are seg-
mented by automatically thresholding the histograms of
the DNA counterstained images using the ISODATA algo-
rithm. After the distance transform is applied, clusters of
nuclei are divided into their individual components using
the morphological watershed algorithm (13). FISH signals
are extracted by means of the top-hat transform (14) fol-
lowed by a recursive reconstruction algorithm (15) which
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removes secondary peaks and refines the contours of the
real FISH signals. By evaluating the system, the authors
mentioned that the results are comparable to the ones
obtained by human experts. Moreover, the use of the in-
ternal, nucleus by nucleus, control, provided by the simul-
taneous use of two probes, improves system sensitivity.

Kozubek et al. (16) developed a completely automated
system that acquires and analyses 2D and 3D FISH images.
The 3D images were used to study the spatial chromatin
arrangement in cell nuclei. During the 3D acquisition, all
z-positions for each stained section were acquired. The
system provides online analysis, right after acquisition,
where it is decided whether to store the acquired image
or not as well as offline analysis, which is performed on
the stored images at a later time.

During the online analysis, the quality of the freshly
acquired image is checked by computing the intensity his-
togram and applying the bilevel histogram analysis (17).
There are two peaks in the intensity histogram: one corre-
sponding to the background and the other corresponding
to the objects. The two maxima are determined and the
optimal threshold is computed as the local minimum
between the two maxima. For the 2D analysis, the system
first segments the nuclei using thresholding, where the
authors compute the optimal threshold using the bilevel
histogram analysis. Although a constant threshold is found
sufficient for nuclei segmentation, the obtained binary
image needs some improvement. To improve the binary
image, they use morphological features, including nucleus
size, presence of holes, nucleus roundness, and smooth-
ness of boundaries. An output of the segmentation proce-

dure is shown in Figure 3A. Then, the system detects the
hybridized spots within each segmented nucleus based on
a watershed-type technique called ‘‘gradual thresholding.’’
The algorithm performs thresholding gradually from the
highest threshold to the lowest one. The highest threshold
is defined as the maximum stain intensity within the given
nucleus. The lowest threshold is defined as the mean
background intensity. For each step (threshold), thresh-
olding-based segmentation is performed, and the result is
compared with the segmentation result of the previous
step. If a new object appears, it is considered to be a
potential hybridization dot, unless it lies too close to an al-
ready existing dot. In this case, the two neighboring local
maxima are considered as intensity fluctuations of one
real hybridization dot.
Two alternative methods can be used for 3D image anal-

ysis. In the first, 2D analysis can be performed on the max-
imum image, which is defined as the image where each
pixel’s intensity is the maximum of the intensity of all the
sections in that given lateral position. In the other method
for analyzing the 3D images, all z-slices are analyzed using
the 2D analysis and the information about the nuclei and
the dots are stored. The corresponding nuclei and dots
are found by comparing the output of each slice, by ensur-
ing that the maximum intensity of each spot is always at
the position of focus. As the authors mentioned, further
improvements and optimizations of the proposed system
can refine the evaluation of 3D images. However, the cor-
responding statistics are sufficient for a number of clinical
and research tasks: routine diagnostics, follow-up of ther-
apy, studies of chromatin structure, and many other differ-
ent aspects of cell research.
Gue et al. (19) developed software, dubbed 3D FISH, to

automate the spot segmentation and distance measure-
ments in images from 3D FISH experiments. In their
approach, all image processing is performed on voxels
and a 3D color image is considered as a set of a potentially
unlimited number of 3D gray-level images, each corre-
sponding to a different color channel and probe.
The first step in image processing is the application of

the median filter in order to remove the background
noise. Then the 3D top-hat filter was employed to
enhance the spots against the background. This second
step of the algorithm is performed on all the different
stacks, except for the DAPI channel. Spot detection is
based on the consideration that pixels, whose intensity
value is greater than the 99.95%, are determined as the
central pixels of each spot. A local threshold was com-
puted corresponding to the sum of the mean and the
standard deviation of the intensity of the pixels belonging
to three lines in the three directions (x, y, z) passing
through the detected center of the spot. The seed is
extended by a 3D connectivity to adjacent pixels whose
value is greater than this local threshold to form an object.
If the final object is touching one border of the image in
the x-y plane, then it is removed. A different approach
was employed for the DAPI channel. A median filter with
a neighborhood of radius equal to 4 pixels is applied and
then the ISODATA algorithm (8) is used for thresholding

FIG. 3. Nuclei segmentation. (A) Image taken from Kozubek et al. (16).
Detection of nuclei within the counterstain image, the final result
obtained after the segmentation procedure. Reprinted from Kozubek
et al. (16), with permission from Wiley-Liss, Inc., a subsidiary of John
Wiley & Sons, Inc. (B). The segmentation after using the algorithm with
enhanced 3D watershed segmentation followed by model-based merging.
The labeled detected nuclei are presented with red color. Reprinted from
Chawla et al. (24), with permission from Elsevier.
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the stack. At the end of both spot detection and DAPI
processing, mathematical morphology procedures were
applied to remove small objects, fill holes, and make
shape look more compact. For validation, the authors per-
formed a pilot 3D FISH study, producing 98% sensibility
and 99% specificity for segmentation.

Kajtar et al. (20) applied a commercially available auto-
mated microscope slide scanning system (Metafer4, Meta-
systems, Germany) to detect the t(9;22)(q34;q11) in inter-
phase nuclei of peripheral blood leukocytes. The auto-
mated analysis is separated in two steps: FISH signal
detection and cell nucleus segmentation. The top-hat
transform is used as the first step in signal spot detection.
FISH signal recognition was accomplished using optimal
values for the following parameters: the spot measure-
ment area, minimum relative spot intensity, and minimum
distance between two adjacent signals in the same color
channel. These values were established by interactive
training of the system. Nuclei segmentation was based on
a fast contour following algorithm, where overlapping
nuclei forming large clusters, small debris, and incom-
plete nuclei from the margins of the image field were
removed. As in the spot detection procedure, optimal
values for the maximum and minimum nuclear area, max-
imum concavity depth, and maximum aspect ratio were
used to discriminate a single nucleus from the other
objects. The data were analyzed manually by three inde-
pendent investigators and then the results were com-
pared with the automated ones. Although the false posi-
tive and false negative rates based on individual cells are
not lower than that of manual analysis, interobserver vari-
ability is avoided using automated analysis, leading to
increased statistical accuracy.

Lerner et al. (18,21–23) developed an approach for
automatic FISH image analysis consisting of several ingre-
dients, where the main advantage of their approach is its
independence from auto-focusing mechanisms. In their
method, the three color channels of the RGB (red-green-
blue) image are analyzed separately. Emphasis is also
placed on feature selection, using independent families of
features, e.g., size, shape, intensity, color, and features pro-
jected on the data principal axes. Classification is based
on hierarchical NNs (neural networks) partitioning of the
feature space sequentially (21) as well as Bayesian meth-
ods (23).

Preprocessing of FISH images is performed in the RGB
color space, while the HSI color space is used for multi-
spectral image processing. Color segmentation using
global thresholding is performed separately on each of
the three different channels of RGB image. Following
thresholding, the authors implement morphological
operations in order to reduce the noise and to smooth
the boundaries of the nuclei. After segmentation several
features including eccentricity, area and spectral features,
such as maximum and average hue, are extracted for
each of the candidate signals. The authors try to classify
the patterns (signals) into four classes: real red, artifact
red, real green, and artifact green, following three classifi-
cation strategies. In the first strategy, called the mono-

lithic, patterns are classified into four classes using a sin-
gle neural network. In the second, termed the independ-
ent strategy, patterns are classified into red and green
classes using the ‘‘color network’’ and independently by a
second network, the ‘‘real network,’’ into real dots and
artifacts. Classification of a pattern into one of the four
classes is achieved by a common decision of both net-
works. In the third strategy, called the combined strategy,
patterns are first classified into red and green classes
using the color network. Then, based on the results of
this network, they are classified by two other networks,
the real-red network and the real-green network, into real
and artifact red or green. In a later study (18), the same
authors utilized the naive Bayesian classifier instead of
neural network, to avoid dependency on a large number
of parameters and neural network architecture settings,
since the probability densities are the only parameters of
the naive Bayesian classifier. Densities were evaluated by
three methods: single Gaussian estimation which is para-
metric method, Gaussian mixture model assuming spheri-
cal covariance matrices, which is semiparametric
method, and kernel density estimation, which is nonpara-
metric method.
The evaluation of the three NN strategies and naive

Bayesian classifier based on a database of 400 in-focus and
out-focus images indicates high accuracy. The different
maximum likelihood and maximum posterior solutions by
the finite samples produce the slight difference in the per-
formance of the Bayesian neural network and neural net-
work. Although the naive Bayesian classifier is very sim-
ple, it is inferior compared with the other techniques. The
inferiority of the naive Bayesian classifier is attributed to
the conditional dependence of the features and to the
additional inherent feature extraction stage of the NN clas-
sifiers.
Chawla et al. (24) developed an automated system for

analyzing FISH signals from brain hippocampal and corti-
cal sections. The authors employed several algorithms for
automated 3D cell nuclei segmentation and FISH quantifi-
cation. These algorithms have been organized and com-
bined under a graphical user interface (GUI), referred to
as ‘‘3D-catFISH.’’ Confocal images are first obtained in mul-
tiple spectral channels and loaded onto the computer.
The nuclear channel represents the counterstained nuclei
and is first segmented using the 3D watershed algorithm,
followed by a model-based region merging of the nuclei.
Any of the cell types such as glia, which are to be
excluded from the analysis are then removed by an
agglomerative clustering algorithm. Intranuclear and cyto-
plasmic FISH signals are then detected and quantified
using the other fluorescence channels. Finally, the meas-
urements of nuclear segmentation, intranuclear and cyto-
plasmic FISH are integrated and associated spatially and a
detailed tabular representation is generated.
During nuclei segmentation, the authors confronted the

problem of the tight packing of cell layers which often
results in the appearance of overlapping objects in the
image stacks. The authors developed a combined image
transform dubbed ‘‘gradient-weighted distance transform,’’
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which combines object separation hints from geometric
and intensity cues in the images. An output of the pro-
posed method is shown in Figure 3B. To correct for over-
segmentation, it is necessary to detect and break the false
watershed surfaces and thereby merge cell objects. This
was accomplished via a model-based object merging
method, where the object model was denoted by a vector,
which includes various measurements such as volume,
texture, convexity, circularity, and shape. Finally,
unwanted glial/nonneuronal cells that normally appeared
on the processing image were removed by a clustering
algorithm using intensity, texture, and homogeneity fea-
tures. The classification of FISH signals was performed by
a computationally efficient algorithm, which identifies
whether identifiable FISH products are present in the cell
nucleus or in the cytoplasm. First the algorithm segments
cell nuclei in the 3D image stack, then nonneuronal cells
are removed. FISH signals are then quantified and cells are
classified based on the presence of intranuclear or extra-
nuclear/cytoplasmic FISH signals. It is reported that the
validation results show 96.5% concordance with the
human expert consensus.

O’Sullivan et al. (25) developed a method to assess the
length of telomere in FISH images from cultured cells and
human tissues of the gastrointestinal tract. The authors
used the Optimas image analysis software (Media Cyber-
netics, Silver Spring, MD) to perform image analysis. The
segmentation of the DNA image plane was based on the
watershed algorithm and the identified nuclei were manu-
ally distinguished to either epithelial or stromal groups.
Three methods were used to analyze the green (telomere)
and in some cases the red (centromere) fluorescence in-
tensity within each nucleus.

The first method, dubbed background corrected fluo-
rescence, is based on the comparison of the difference
between the intensity of the brightest and the dimmest
pixels in each nucleus. The mean intensity of the dimmest
20% pixels, which is considered representative of nuclear
background, is subtracted from the average of the bright-
est 5, 10, or 20% of red or green pixels in every nucleus.
The resulting integer is the absolute telomere intensity. In
the second method, which involves spot-finding, the telo-
mere (green) or centromere (red) spots are identified
using the watershed algorithm. The average intensity of all
nonspot pixels within a specific nucleus is assumed as the
background green or red fluorescence and using this
value, the background corrected green or red spot pixel
intensities are produced by subtracting that value from
each pixel within a spot. In the third method, dubbed the
background curve subtraction, authors create the histo-
gram of pixel intensities for each nucleus, where the peak
of the nuclear background fluorescence is considered as
the mode of the green (or red) histogram. The mode is
fine-tuned by fitting a second-order polynomial to the his-
togram in the region of the mode. Then a modification of
the SFIT algorithm (26) is employed by reflecting the in-
tensity histogram on the left side of the fitted mode and
subtracted it from the histogram distribution on the right
side of the mode. Finally, the authors calculate the inte-

grated total integrated pixel intensity and average pixel in-
tensity of the subtracted histogram.
The comparison of the three methods conclude that

the spot-finding method is the more computationally
demanding and has the greater variability, while back-
ground corrected fluorescence performs better on tissue
sections. As the authors report, the measurements
extracted with the proposed analysis methods are accu-
rate, reproducible, and clinically applicable.
Based on the potential of further development of sys-

tems for the automated case-based reading of FISH
images, Raimondo et al. (27), proposed a multistage algo-
rithm for the automated classification of FISH images
from breast carcinomas. The proposed algorithm can
combine results from multiple images taken from a tissue
slice to correctly classify the case. Despite the fact that
the main content of FISH image red and green channels
consists of spots, many FISH images frequently contain
noisy areas consisting of large stains. For this reason, the
authors started the spot detection with a top-hat filtering.
Then a binary threshold was applied to the two output
channels. Even the best threshold choice is not enough
to isolate all true spots from false ones using only the red
or green channel intensity. Thus, a spot template is com-
puted for each channel. To measure the similarity
between every candidate spot and the spot template, a
cross correlation is used. Finally, for every detected spot,
a channel intensity contrast measure is used to discard
spots whose shape is very similar to the template one,
but have a low channel intensity contrast with respect to
their surrounding pixels, making them appear invisible
to the human eye. The output of the spot detection algo-
rithm is shown in Figure 4A.
Cell nuclei segmentation is performed on the FISH

image blue channel. For many images, cell nuclei contain
inhomogeneous blue channel intensities. To reduce the
gray-level between dark regions and more illuminated
ones, a nonlinearity correction step is performed. Then
the algorithm by Otsu is employed to determine the
threshold for initial nuclei segmentation. The binary image
resulting from thresholding sometimes contains holes
even at a single nucleus body region. This kind of holes
has to be filled to enable correct nuclei segmentation. On
the other hand, holes present in internuclei zones of over-
lapping nuclei should not be filled. To separate the two
types of holes, the percentage P of the perimeter pixels of
a circle centered on every hole centroid is calculated. Af-
ter some experiments, the value for P varied in the range
of 40–90% for holes of the first type and second type,
respectively. The last step of the nuclei segmentation algo-
rithm involves the marked watershed transform, which is
employed to detect borders in overlapping nuclei clusters.
In this step, the distance transform is first applied to the
binary image obtained from the previous step. To reduce
the number of spurious local maxima on the distance
transform output, h-dome maxima is calculated. Figure 4B
shows the result of the nuclei segmentation algorithm.
The authors used ROC curves to evaluate the perform-

ance of the proposed method, both for the spot detection
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and nuclei segmentation on some FISH cases. Moreover,
the overall algorithm performance for case-based classifi-
cation on these cases showed the ability of the proposed
system to distinguish between all positive and negative
cases.

ANALYSIS OF IHC IMAGES

Aperion Technologies (28) have developed an open
source software for IHC image analysis. The software
includes three algorithms for four. The first algorithm,
dubbed positive pixel count, calculates the area and the
intensity of staining and assigns slides to four categories,
negative, weak, medium, and strong. The algorithm only
works on binary images, where the HSI color model is
used to divide the color space into two classes, positive
and negative. Thresholds are used to further divide the
positive color class into three intensity ranges, which
results in four total categories of staining. The intensity is
calculated as the average of RGB pixel values and each
pixel is assigned to one of the four categories. Thus, the
total pixel count for each category is calculated.

The second algorithm, dubbed the nuclear algorithm, is
used to count and measure nuclei in brown-positive and
blue-negative IHC stained slides, where the most typical
application for this algorithms is determination of the per-
centage of positive nuclei. The algorithm can also calcu-
late the average size and staining intensity of each slide.

Positive (brown) and negative (blue) regions are segmen-
ted based on color and morphological operators are used
to further identify individual nuclei. The detection of
object boundaries can be achieved using thresholding. For
manual thresholding, a maximum and minimum intensity
are selected to limit the range of valid intensities, while
for automatic thresholding, amplitude and edge statistics
are used to determine the range of intensity values that
belong to the stained nuclei. Nuclei are discriminated by
size and shape (roundness, compactness, and elongation),
ignoring connective tissue and other objects.
The third algorithm, dubbed the membrane algorithm,

is used to quantify the intensity and completeness (per-
centage) of membrane staining in IHC-stained slides, such
as Her-2/neu. An important advantage of the algorithm is
the ability to connect membranes that are not completely
stained, in order to be able to score and classify the stain-
ing effect in every cell. The segmentation of cell mem-
branes and nuclei is based on the watershed transform.
Cells with size less than a threshold are not included in
the final result. As a result, every cell contains one nucleus
and is surrounded by a membrane. The average intensity
and completeness of membrane staining is calculated for
each cell and the cells are sorted based on the complete-
ness of staining. The value of completeness that separates
the top 10% of the cells was named as the completeness
of staining.
The correct selection of thresholds is the most impor-

tant part of the first and second algorithm. In the case of
the first algorithm, the selection process is not fixed and
remains undefined due to the nature of the problem. The
lack of scoring-classification system is also a serious pro-
blem for the first algorithm. The membrane algorithm
offers the ability to determine the completeness of mem-
brane staining for each and every tumor cell. This is very
important in order to interpret the result, as the scoring/
classification system for the IHC effect evaluation highly
depends on the percentage of membrane staining.
Weaver and Au (29) employed grayscale thresholding

and size to segment nuclei from IHC slides stained from
the proliferating cell nuclear antigen (PCNA) or bromo-
deoxyuridine (BrdUrd) labeling indices in human solid
tumors using chromogen diaminobenzidine (DAB) and
counterstained with hematoxylin. The nuclei were recog-
nized as the pixels with low gray-level values (brown or
blue), while the background and cytoplasm as the pixels
with high gray level values. Thresholding for size was also
applied, rejecting segmented nuclei outside a certain
range. The color of staining, a basic element to score the
immunohistochemical result, was utilized by transforming
images from RGB format to the HSI (hue, saturation, inten-
sity) model. Brown staining was distinguished from the
blue counterstain using hue thresholds. To identify the
extent of staining a minimum percent brown number
(MPB) was defined. This value was the number of pixels
labeled as brown in the entire recognized membrane
boundary. The brown color is made up of magenta, yel-
low, and red hues while the blue color of only blue hues.
As a result, hues representing brown staining are located

FIG. 4. Multistage algorithm for the automated classification of FISH
images. (A) Output of the spot detection algorithm. (B) Final output of
segmentation algorithm. Reprinted from Raimondo et al. (27), with per-
mission from IEEE.
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at the two ends of the hue spectrum and are separated by
blue hues. Distinguishing the brown and blue colors
requires two thresholds HT1 and HT2, where HT1 sepa-
rates the magenta from the blue hues and HT2 separates
the yellow and red hues from the blue hues. Pixels with
values greater than HT2 or less than HT1 are considered
brown, whereas pixels with values between HT1 and HT2
are considered blue. A typical value for HT2 is 120, while
MPB and HT1 can be found by a trial and error procedure
by first setting HT1 to identify the brown stain and then
setting MPB to correctly classify the cells as labeled or
not. The trial and error procedure terminates when the
identified cells agree with those identified by visual
inspection. Automatic selection can be performed using
the Otsu threshold-selection algorithm (29), which sepa-
rates the histogram into two regions and defines one
threshold, which divides only a portion of the hue histo-
gram into two classes. The results of this study indicate
that the accuracy of data results have improved using auto-
matic thresholding in image analysis. However, the key
point for successful selection of threshold is the high con-
trast between objects and background. Errors due to auto-
matic thresholding alter the size and shape of objects but
do not affect the number of determined objects.

Kim et al. (30) used an automatic video-color-image
analysis system to study the immunostaining features of
the androgen receptor (AR) in large samples of prostatic
nuclei. Initially, the color images are converted to grays-
cale. Each grayscale image is binarized automatically by
applying an adaptive thresholding algorithm. The segmen-
tation results depend largely on the selected window size,
where 80 pixels is a typical value, four times larger than a
typical nucleus. A small window size will render the seg-
mentation procedure faster but, in this case, the method
will not recognize large nuclei. Nuclear masks are gener-
ated using the logical OR operation of three binary
images, and their boundaries are smoothed by opening
and closing with a 5 3 5 structuring element. Any remain-
ing artifacts are eliminated by size and shape criteria. To
measure the relative concentration of AR in immunoposi-
tive cells, the mean optical density (MOD) value is calcu-
lated by:

MOD ¼ � 1

N

XN

i¼1

log
Ii
Io

8>:
9>; ð2Þ

where N is the total number of pixels in a nuclear mask, Ii
is the intensity level of pixel i, and Io is the intensity level
of the background measured in each field of view. The
amount of MOD contributed by hematoxylin in the AR-
stained section is corrected for by subtracting the average
MOD of nuclei in the adjacent section. This corrected
MOD is used as a measure of relative concentration of AR
in immunopositive cells. An example of the nuclei seg-
mentation procedure is presented in Figure 5. As reported
by Kim et al., the detection of AR based on MOD in
castrated mice is lower than in testosterone-stimulated

mice, which indicates an initial success in qualitatively
assessing the status of AR.
Another technique for IHC analysis was introduced by

Smith et al. (31). The goal of this method is to quantify the
expression level of a beta-gal antigen in neural tissue
stained with immunofluorescent methods by determining
the brightness-area-product (BAP). Using commercially
developed software, a region of interest is selected from
the test image and BAP is calculated, as the product of the
number of pixels in a range with the difference between
the mean and minimum brightness in the same region. An
input and output threshold is defined for this region as
the level of pixel brightness, above which background is
unlikely to be found. To determine this threshold, the
authors determine the range of brightness values occu-
pied by no primary control images and define the upper
limit of this range, above which any pixel of greater bright-
ness intensity is likely to represent signal attributable to
the epitope of interest, where the epitope is defined as
the part of a macromolecule that is recognized by the
immune system, specifically by antibodies, B cells, or cyto-
toxic T cells. Pixels of equal or greater brightness are then
accepted. Threshold selection is based on histogram
export of image pixel brightness.
By setting the minimum brightness equal to zero, the

authors calculate the integrated optical density (IOD)

FIG. 5. Red, green, and blue parts of a color image of a sample field of
view with AR immunostaining and hematoxylin counterstaining (A) were
segmented using an adaptive thresholding algorithm and added to pro-
duce a set of binary masks for nuclear areas. Immunonegative nuclei
(arrows) were removed using a linear discriminant analysis of their hue,
saturation, and intensity values. MOD values were calculated and assigned
to the nuclear mask as pixel intensity (B). Reprinted from Kim et al. (30),
with permission from Wiley-Liss, John Wiley & Sons, Inc.
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which is used to cut the unlikely background. This
describes the integrated brightness of the total area
exceeding the minimum threshold for brightness of inter-
est. BAP data was exported into a statistical software pack-
age for further analysis. The authors performed nonpara-
metric ANOVA (distribution-free-Wallis test) followed by
Dunn’s test, for multiple comparisons, by using the Stata 7
intercooledTM software. The evaluation of this method
suggests that it can be used to compare the staining in
identical regions but cannot be used to count the amount
of antigen present in an area. Moreover, the authors
noticed versatility with regard to epitope distribution, as
shown in Figure 6. Comparing the results with human ob-
servation, the BAP technique can be used as a simple intu-
itive measure of image brightness.

Kaczmarek et al. (32) employed very simple and objec-
tive quantitative techniques for IHC interpretation based
on computer-assisted microscopy. The authors employ
two approaches for segmentation of immunohistochemi-
cal reactions. The first approach is based on grayscale
thresholding, where color images are first converted to
grayscale and are enhanced with the median filter. The
interval of grey shades, corresponding to the reaction, is
defined and the area occupied by the reaction is
extracted. Thresholding is applied and converts the fore-
ground pixels into black color and the background pixels
into white color. Focusing on the binary image, the area of

positive reaction is calculated by counting the number of
black pixels and the effect of the reaction by counting the
percentage of black pixels in the image.
The second approach is based on spatial visualization of

color reaction, using software designed and programmed
by Nieruchalska et al. (33). At the beginning, the images
are converted from the RGB to the HSB (hue, saturation,
brightness) color space and are processed as 3D images in
that space by introducing the intensity of color reaction as
the third dimension. To measure the color reaction, spatial
images are linearly converted to 256 colors. Pixels in red
and yellow colors correspond to brown shades and are
used to assess the area, volume, and intensity of color
reaction. The spatial representation of the reaction is con-

FIG. 6. Image taken from Smith et al. (31). (A,B) exemplify use of BAP
in the setting of an alternative epitope distribution. In this case, 50-bromo-
20-deoxyuridine (BrDU), a nuclear associated antigen which is more abun-
dant in A than B by manual counting, is more abundant to a comparable
extent as measured by BAP. Reprinted from Smith et al. (31), with permis-
sion from Elsevier.

FIG. 7. (A) Micrographs of caspace-3. (B) Spatial visualization. (C) Seg-
mented markers. Reprinted from Kaczmarek et al. (32), with permission
from Akademia Medycznej w Białymstoku.
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sidered as a set of connected prisms and pyramids to
determine total volume the reaction. The reaction of the
total area is derived from the orthogonal projection of the
prisms and pyramids onto the plane and then the reaction
intensity is derived from the volume/area ratio. Example
of the proposed method applied on micrographs of
caspace-3 is shown in Figure 7. The main advantage of this
method is faster image analysis, up to 50 images per hour,
including visual control of each image. The analysis can be
more objective by using the same filters of colors, bright-
ness, and saturation for a specific sequence of images.

Another approach is introduced by Matkowskyj et al.
(34), in a study focused on determining the absolute
amount of chromogen present by calculating the cumula-
tive signal strength of IHC images. This was done by calcu-
lating the energy of images captured in Photoshop and
processing the image file using Matlab. This study was
focused on the gastrin-releasing peptide receptor, which
is aberrantly expressed by human colon cancers. Human
colon cancers variably express this receptor as a function
of tumor differentiation, so this tissue type represents a
good model for demonstrating the enhanced power of dig-
ital quantitative IHC. It is assumed that all information
from the primary antibody-exposed slide contained in the
experimental image file, excluding the information from
the slide not exposed to primary antibody, but otherwise
treated identically, is of importance. In this manner all the
numerical data encoded within the file describing each
pixel are used.

At first, the area of interest is selected for the control
and the experimental image. The data contained within
each RGB image file are stored as an m 3 n 3 3 matrix,
thus the ‘‘norm’’ function can be used to determine the
singular value of the matrix, which represents the magni-
tude (mathematical energy) of the image file. The energy
of an image is defined as:

E¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN1

n1¼1

XN2

n2¼1

ðfREDðn1;n2ÞÞ2
vuut þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN1

n1¼1

XN2

n2¼1

ðfGREENðn1;n2ÞÞ2
vuut

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN1

n1¼1

XN2

n2¼1

ðfBLUEðn1;n2ÞÞ2
vuut ð3Þ

where n1, n2 represents the pixel position in the N1 3 N2

image and fRED, fGREEN, and fBLUE are the intensities of the
red, green, and blue channels, respectively.

In general, algorithms based on pixel counting cannot
determine the absolute amount of chromogen present,
while algorithms based on color thresholding followed by
an enumeration of the number of pixels present within a
color/brightness range presuppose that the only informa-
tion worth evaluating exists within a predefined spectral
range. According to this algorithm, the cumulative energy
of the control image is calculated and subtracted from that
of the experimental image. To calculate the chromogen-
specific energy, the energy of the region contained in the

control image is subtracted from the homologous region
of the experimental image:

Echromogen ¼ Eexperimental � Econtrol ð4Þ

Visual scoring of AR status of nuclei as positive or negative
does not take into account the large variation in immuno-
staining intensity within a specimen or between speci-
mens.
This method reduces the observer bias during the eva-

luation of specific cell regions. As mentioned, it can calcu-
late the amount of chromogen precisely, by determining
the energy resident in a number of tissue regions contain-
ing only cytoplasm. Therefore, it can be used to evaluate
the nonhomogeneous tissue specimens. Another advan-
tage is that the method is not restricted to evaluation of
DAB-based IHC and it can quantify chromogen regardless
of the type of secondary antibody detection system.
Nabi et al. (35) introduced an alternative method using

image analysis to measure AR staining intensities by a pat-
tern oriented approach: receptogram analysis. A recepto-
gram is a composite of the univariate distribution of nu-
clear contents and their bivariate contour plots. In a
receptogram, the IOD is plotted on the abscissa as a mea-
sure of the relative receptor content of individual nuclei
and the percentage of nuclei expressing the different
amounts of receptor were plotted on the ordinate. Based
on contour slopes, the nuclear contents are classified into
subtypes and each is correlated with response to treat-
ment. Receptograms are classified into four categories,
depending on the receptor immunostaining IOD distribu-
tion pattern. The first type includes receptograms with
unimodal AR positive distributions, the second, with a bi-
modal distribution, the third, with multimodal AR positive
distributions, and fourth, with a highly skewed distribu-
tion. The authors compare their results with the most
common system used in the USA to grade the appearance
of prostate cancer tissue (Gleason grade) and found no
correlation. Thus, the method needs further studies
before final conclusions can be drawn.

DISCUSSION

A high-level review of several methods of FISH and IHC
image analysis from various tissue samples and research
groups has been presented here. Analysis of FISH images
is separated in two individual parts: spot detection and
nuclei segmentation. Nuclei segmentation is performed in
most of the algorithms; however, there exist examples
where this step is not required. Regarding image process-
ing algorithmic details, most methods employ an initial
image quality enhancement step, mainly for shading cor-
rection and noise removal. This step is usually based on
some type of morphological filter. Gray-level thresholding
based on histogram analysis is also quite commonly
encountered, both for nuclei segmentation and spot
detection. The top-hat transform proved particularly use-
ful for spot detection, while the distance and watershed
transforms were prevalent for nuclei segmentation. Color
information was also frequently utilized, either in the RGB
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or HSI color spaces. There exist other approaches that
were not extensively reviewed here since they do not
focus on the image processing aspects of FISH image anal-
ysis. These include Narath et al. (36), who performed
automatic telomere length measurement in interphase
nuclei using the fluorescence-based automatic microscope
(FLAME) and Wang et al. (37) who experimented with
normalization of multicolor FISH (M-FISH) images to
improve color karyotyping.

For IHC image analysis, most algorithms use color infor-
mation from the HSI space, applying thresholding to iden-
tify staining, which is usually brown. Nuclei and cell seg-
mentation is not as essential as in FISH; however, it is
applied in some methods utilizing either the watershed
transform or color information. Intensity and area of stain-
ing are also used to determine the extent of staining in
most of the algorithms. This can be either in the form of
image energy, or optical density, or the brightness area
product.

The current status of most of these methods is at a point
where large clinical studies are required to validate their
effectiveness. This is especially critical, since most of the
methods reviewed here report some deviations from the
ground truth, as determined by the medical experts. The
advantages of these trials are twofold, providing further
hindsight for improving the algorithms as well as bringing
in the medical experts as active participants of the devel-
opment process.

As a conclusion, this review has highlighted the increas-
ingly important role of automated image analysis methods
in FISH and IHC, two very important diagnostic methods
in medical practice. Manual intervention is still necessary
to resolve particularly challenging or ambiguous cases, as
well as to provide high-level supervision of the automati-
cally-produced diagnostic results. It is envisioned that,
with further algorithmic improvement of the automated
methods, the role of manual intervention will decrease,
thus increasing the diagnostic throughput and accuracy of
FISH and IHC techniques. In addition, large-scale clinical
trials will aid this procedure as well as lend more credibil-
ity to automated analysis methods.
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