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Abstract

In this paper, statistical analysis of watermarking schemes based on correlation detection is presented. Statistical

properties of watermark sequences generated by piecewise-linear Markov maps are exploited, resulting in superior

watermark detection reliability. Correlation/spectral properties of such sequences are easily controllable, a fact that

affects the watermarking system performance. A family of chaotic maps, namely the skew tent map family, is proposed

for use in watermarking schemes.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The design of robust techniques for copyright protection and content verification of multimedia data became an

urgent necessity in the last years. This demand has been lately addressed by the emergence of a variety of watermarking

methods. Such methods target towards hiding an imperceptible and undetectable signal in the original data, which

conveys copyright information about the owner or authorized user. For a review of existing schemes and a detailed

discussion on the main requirements of a watermarking scheme, the interested reader may consult [1].

So far, performance evaluation of the existing watermarking methods has been mostly experimental without any

theoretical justification of their efficiency. Only few approaches have attempted to statistically analyze the performance

of image watermarking schemes in terms of detection reliability by addressing the problem in a communication

framework [2–4]. In these papers, the statistical properties of watermarking schemes based on pseudorandom water-

mark signals and correlation detectors, among others, are derived. In [3], the authors investigate the performance of

white and lowpass-filtered pseudorandom watermarks concluding that the former are ideal when no distortions are

inflicted on the image, whereas the latter provide additional robustness against lowpass distortions. An overview of

chaotic watermarking techniques can be found in [5]. However, up to now, their performance has been evaluated solely

within an experimental framework. The system is modeled in a communication framework considering the host signal

as interference and converting the addressed problem to detection of the underlying watermark signal.

2. Watermarking system model

The watermark generation functional block aims at constructing a sequence w, w½i� 2 R, of N samples using

an appropriate function g, w ¼ GðK;NÞ, where K denotes the watermark key that corresponds to the host signal
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owner/copyright holder. Watermark embedding aims at inserting the watermark signal w in the host signal f in a way

that ensures imperceptibility and robustness under intentional or unintentional attacks. For the model under study,

additive watermark embedding is assumed: f w ¼ f þ pw, where f w is the watermarked signal and p is a constant that

controls the watermark embedding power, which will be called hereafter watermark embedding factor. Obviously p is

closely related to the watermark perceptibility. Watermark embedding can be performed in any transform domain. In

the following, we will assume without loss of generality, spatial domain embedding. However, readers should bear in

mind that a similar analysis can be conducted for other embedding domains.

Watermark detection can be formulated as a binary hypothesis test, the two hypotheses being the following:

H0: The test signal f t contains the watermark wd, i.e., f t ¼ f o þ pwd, f o being the host signal.

H1: The test signal f t does not contain the watermark wd, i.e., f t ¼ f o.

The two events mentioned above can be summarized in the following formula:

f t ¼ f o þ pwe ð1Þ

where the watermark wd is indeed embedded in the signal if p 6¼ 0 and we ¼ wd (event H0), and it is not embedded in

the signal if p ¼ 0 (no watermark is present, denoted hereafter as event H1a) or we 6¼ wd (wrong watermark presence,

denoted hereafter as event H1b).

A test statistic that is often employed in examining whether the signal f t contains a watermark wd or not, is the

correlation between the signal under investigation and the watermark:

c ¼ 1

N

XN	1

n¼0

ft½n�wd½n� ¼
1

N

XN	1

n¼0

ðfo½n�wd½n� þ pwe½n�wd½n�Þ ð2Þ

In order to decide on the valid hypothesis, c is compared against a suitably selected threshold T . For a given threshold

the system performance can be measured in terms of the probability of false alarm PfaðT Þ, (i.e., the probability to detect

a watermark in a signal that is not watermarked or is watermarked with a different watermark) and the probability of

false rejection PfrðT Þ (i.e., the probability to erroneously neglect the watermark existence in the signal). The plot of Pfa
versus Pfr is called the receiver operating characteristics (ROC) curve of the corresponding watermarking system. This

curve conveys all the necessary system performance information.

For the watermark sequences that will be studied in this paper, i.e., the sequences generated by piecewise linear

Markov maps, the correlation output is normally distributed (see Section 3). Thus, it can be fully determined in terms of

its mean lcjH0
, lcjH1

, and variance r2
cjH0

, r2
cjH1

, which can be derived in a straightforward manner:

lc ¼ E½c� ¼ 1

N

XN	1

n¼0

E½fo½n��E½wd½n�� þ
1

N

XN	1

n¼0

pE½we½n�wd½n�� ð3Þ

r2
c ¼ E½c2� 	 E½c�2

¼ 1

N 2

XN	1

n¼0

ðE½f 2
o ½n��E½w2

d½n��
"

þ p2E½w2
d½n�w2

e ½n�� þ 2pE½fo½n��E½we½n�w2
d½n��Þ

þ
XN	1

n¼0

XN	1

m¼0;m 6¼n

ðE½fo½n�fo½m��E½wd½n�wd½m�� þ pE½fo½n��E½wd½n�we½m�wd½m��

þ pE½fo½m��E½we½n�wd½m�wd½n�� þ p2E½we½n�we½m�wd½n�wd½m��Þ
#
	 l2

c ð4Þ

Note that these expressions can be used to represent lc, r
2
c for both events H0 ðwd ¼ weÞ and H1 (wd 6¼ we or p ¼ 0). The

obvious statistical independence between the host signal f o and both watermarks we, wd has been exploited in order to

derive the previous formulas.

By examining (3) and (4), one can easily conclude that several moments need to be evaluated if lc, r2
c are to be

computed. To proceed in such an evaluation, an assumption about the statistical properties of the host signal has to be

adopted. Let us denote by Rg½k� the statistic of the form:

Rg½k1; k2; . . . ; kr� ¼ E½g½n�g½nþ k1�g½nþ k2� � � � g½nþ kr�� ð5Þ
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which will be called hereafter, rth order correlation statistic of a wide-sense stationary signal g. In our case, the host

signal will be assumed to be wide-sense stationary. Furthermore, a first order exponential autocorrelation function

model will be assumed [4]:

Rfo ½k� ¼ l2
fo
þ r2

fo
bk ; k P 0; jbj6 1 ð6Þ

where b is the parameter of the autocorrelation function and r2
fo
is the host signal variance.

3. Employing chaotic sequences in watermarking schemes

Sequences generated by chaotic maps constitute an efficient alternative to pseudorandom watermarking sequences.

A chaotic discrete-time signal x½n� can be generated by a chaotic system with a single state variable. The notation

f nðx½0�Þ is used to denote the nth application of the map f ð�Þ.
Let pnð�Þ denote the probability density function of the nth iterate x½n�. A linear operator can be defined such

that:

pnð�Þ ¼ Pf fpn	1ð�Þg ¼ Pn
f fp0ð�Þg ð7Þ

This operator, which is referred to as the Frobenius–Perron (FP) operator [6], describes the time evolution of the

density pnð�Þ for a particular map. Although, in general, the densities at distinct iterates n will differ, there can be certain

choices of p0ð�Þ such that the densities of subsequent iterates does not change, i.e.,

pð�Þ ¼ Pn
f fpð�Þg; 8n ð8Þ

Such a density pð�Þ, is referred to as the invariant density of the map f ð�Þ, and constitutes a fixed point of the FP

operator. The invariant density plays an important role in the computation of time-averaged statistics of time series

from nonlinear dynamics.

A rich class of 1-D chaotic systems that are particularly amenable to analysis are the eventually expanding,

piecewise-linear Markov maps. The statistics of Markov maps can be determined in closed form. For a detailed def-

inition of the matrices and vectors involved in statistics calculations that will be used in the sequel, one may consult [7],

where, a strategy for computing these statistics, was developed. By using the FP matrix, the higher order correlation

statistics of Markov maps can be derived.

From the preceding discussion one can conclude that a chaotic sequence x is fully described by the map f ð�Þ and the

initial condition x½0�. By imposing certain constraints on the map or the initial condition, sequences of infinite period

can be obtained. Thus, if we consider two finite sequences x, y generated by the iterative application of the same map on

two distinct initial conditions x½0�, y½0�, respectively, that belong to the same chaotic orbit, there will be an integer k > 0

such that:

x½0� ¼ f kðy½0�Þ or y½0� ¼ f kðx½0�Þ ð9Þ

The corresponding samples x½n�, y½n� are associated through the following expression for a suitably selected k > 0:

y½n� ¼ f nðy½0�Þ ¼ f nðf kðx½0�ÞÞ ¼ x½nþ k� or x½n� ¼ y½nþ k� ð10Þ

Constant k will be called from now on sequence shift. Having described how a chaotic sequence x can be generated in

the interval [0,1], the corresponding chaotic watermark sequence is given by:

w ¼ x	 d1 ð11Þ

where d is a constant that controls the range of the watermark sequence, and 1 is the unit vector. By substituting (11) in

(3) and (4) and considering that wd½n� ¼ we½nþ k�, according to (10), it is straightforward to derive the mean value and

the variance of the correlation c . The constant value d is usually chosen to be the mean value of the chaotic sequence x
in order to have a DC free watermark which, according to [4], results in better system performance. Moreover, by

subtracting the test signal mean value prior to detection, we can decrease the variance of the correlation, thus obtaining

better system performance. By using a DC free watermark and subtracting the test signal mean value prior to detection

the mean value and the variance of the correlation c are given by:

lc ¼ pðRx½k� 	 l2
xÞ ð12Þ
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r2
c ¼

p2

N 2

XN	1

m¼0

ðN 	 mÞð2	 dðmÞÞfl2
xð2Rx½m� þ Rx½mþ k� þ Rx½k 	 m�Þ 	 lxðRx½k;m� þ Rx½m;mþ k� þ Rx½k; k 	 m�

þ Rx½k;mþ k�Þ þ Rx½m; k;mþ k�g þ 1

N 2

XN	1

m¼0

ðN 	 mÞð2	 dðmÞÞðRx½m� 	 l2
xÞRfo ½m� 	 p2ðRx½k� 	 2l2

xÞ
2 ð13Þ

where dðmÞ is the Dirac delta function, lx is the mean value of the chaotic sequence and R½k� is given by (5).

Expressions (12) and (13) are sufficiently broad to include all events that occur in the watermarking model described

in Section 2, provided that piecewise linear Markov maps are used to generate the watermark sequence. That is, the case

of watermark absence (event H1a) is represented by setting the watermark embedding factor p equal to zero. The case of

watermark presence is represented by positive watermark embedding factor and k ¼ 0 in the case of right watermark

presence (event H0) or k > 0 in the case of wrong watermark presence (event H1b). The correlation statistics needed for

evaluating expressions (12) and (13) can be derived in closed form or evaluated numerically [7].

Although samples of Markov chaotic watermarks are correlated for small k > 0, since they posses exponential

autocorrelation function and wd is a shifted version of we, the Central Limit Theorem for random variables with small

dependency [8] may be used in order to establish that the correlation c in Eq. (2) attains a Gaussian distribution, even in

the case of wrong watermark presence (assuming that N is sufficiently large). Furthermore, under the worst case as-

sumption (event H1b), both lc and r2
c , given by (12) and (13) respectively, converge to constant values for large k. In

such a case, PfajH1b
substitutes PfajH1

since it is the worst case and it can be estimated using the limit values ðk ! 1Þ of lc

and r2
c . Pfr values are estimated using the values of lc and r2

c for k ¼ 0 (event H0).

Moreover, if we examine in detail the mean value of the correlation given by (12) we can notice that the mean value

converges to zero for event H1. Additionally, for event H0 the mean value of the detector is equal to the variance of the

watermark multiplied by the embedding power. This addresses the fact that the mean value of the correlation depends

only on the power and the variance of the watermark and not on the watermark generator (chaotic or pseudorandom),

or the spectral properties of the watermark signal.

The aforementioned remark leads us to the conclusion that, for watermark signals of the same power and the same

variance, the watermarking system performance is affected only by the variance of the correlation detector. That is, the

lower the variance of the correlation for events H0 and H1, the better the watermarking system performance. Therefore,

the objective is to construct watermarks that result in small correlation variance. According to (13), this can be achieved

by utilizing watermark signals with suitable first, second and third order correlation statistics.

When event H1a holds it can be easily observed that the correlation variance depends only on the watermark

autocorrelation function Rx½m�. The autocorrelation function of a signal is directly associated with its power spectral

density (psd) which is given by:

SxðxÞ ¼
X1
k¼	1

Rx½k�e	jxk ¼ Rx½0� þ
X1
k¼1

Rx½k�ðe	jxk þ ejxkÞ ð14Þ

Therefore, the spectral properties of the watermark signal determine the variance of the correlation for the event H1a.

Moreover, if we consider the exponential autocorrelation function of Markov chaotic sequences given by (6), it can be

easily derived that the correlation variance given by (13) depends on the sum over the samples of the autocorrelation

function in the interval ½0;N 	 1�, which is minimized for b ! 	1, and maximized for b ! 1. Using (14) one can

observe that the two cases correspond to the most highpass and most lowpass signals that can be generated having

exponential autocorrelation function. Considering the above discussion, one can conclude that highpass watermarks

perform better than lowpass ones, when no attacks on the watermarked signal are considered, since the correlation

variance is reduced.

4. The skew tent map

In this section, analysis techniques presented so far are being exemplified using the skew tent map which is a

piecewise linear Markov map. The skew tent map can be expressed as:

s : ½0; 1� ! ½0; 1�

sðxÞ ¼
ð1=aÞx; 06 x6 a;

ð1=ða 	 1ÞÞxþ ð1=ð1	 aÞÞ; a < x6 1;

�
a 2 ð0; 1Þ ð15Þ
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A trajectory t½k� of the dynamical system is obtained by iterating this map i.e.,

t½k� ¼ sðt½k 	 1�Þ ¼ skðt½0�Þ ð16Þ

The invariant density of the skew tent map is uniform. Following the methodology described in [7], the statistical

properties of sequences produced using the skew tent map can be derived. The analytical expressions for the first,

second and third order correlation statistics required for evaluating the performance of watermarking schemes based on

the skew tent map can be easily evaluated [7]. The nonzero eigenvalues of the FP matrix P3 are:

e ¼

e1
e2
e3
e4

2
6664

3
7775 ¼

1	 3a þ 3a2

	1þ 2a

4a3 	 6a2 þ 4a 	 1

1

2
6664

3
7775 ð17Þ

and the first order correlation statistic (autocorrelation function) is given by:

Rt½k� ¼
1

4
þ 1

12
ek2 ¼

1

4
þ 1

12
ð2a 	 1Þk ð18Þ

It can be observed that the autocorrelation function depends only on the parameter a of the skew tent map. Thus, by

controlling the parameter a we can generate sequences having any desirable exponential autocorrelation function.

Using (14) and (18), the power spectral density of the skew tent map sequences can be shown to be:

StðxÞ ¼ 1	 e22
12ð1þ e22 	 2e2 cosxÞ ð19Þ

Thus, by varying the parameter a either highpass ða < 0:5Þ, or lowpass ða > 0:5Þ sequences can be produced. For

a ¼ 0:5 the symmetric tent map is obtained. Sequences generated by the symmetric tent map posses white spectrum,

since the autocorrelation function becomes the Dirac delta function. The control over the spectral properties is very

useful in watermarking applications, since the spectral characteristics of the watermark sequence are directly related to

watermark robustness against common types of attack, such as filtering and compression.

Using the analytical expressions for the correlation statistics of skew tent sequences, one can derive the mean value

and the variance of the correlation detector for this map:

lc ¼
0; p ¼ 0ðH1aÞ
p=12; k ¼ 0; p 6¼ 0ðH0Þ

�
ð20Þ

r2
c ¼

r2
fo

12N 2

N 	 2be2 	 Nb2e22 þ 2ðbe2ÞNþ1

ð1	 be2Þ2
; p ¼ 0ðH1aÞ

p2

180N 2

N 	 2e1 	 Ne21 þ 2eNþ1
1

ð1	 e1Þ2
þ

r2
fo

12N 2

N 	 2be2 	 Nb2e22 þ 2ðbe2ÞNþ1

ð1	 be2Þ2
; k ¼ 0; p 6¼ 0ðH0Þ

8>>><
>>>:

ð21Þ

where b is the parameter of the host signal autocorrelation function given by (6).

5. Experimental results

In order to experimentally verify the theoretical performance analysis of a watermarking system based on corre-

lation detection, the system is fed with a host signal that is compliant with the autocorrelation model in (6). More

specifically, the system is fed with a uniformly distributed zero mean random white signal of 45 000 samples that has

been pre-filtered with an IIR filter having system function HðzÞ ¼ ð1	 bÞ=ð1	 bz	1Þ. Such prefiltering generates a

signal exhibiting an autocorrelation function of the form Rf ½k� ¼ ð1	 bÞr2
fb

j=ð1þ bÞ, which is equivalent to the model

in (6) for lfo ¼ 0 and filtered signal variance ð1	 bÞr2
f =ð1þ bÞ. In the filtered signal a constant value is added that

serves as the mean value of the final host signal. The host signal was generated having standard deviation 30, mean

value 100 and autocorrelation parameter (see (6)) equal to 0.95.

The spectrum of tent chaotic watermarks is highpass for small values of the map parameter a, becomes white

for a ¼ 0:5 and tends to lowpass as a ! 1. A watermark embedding factor p that resulted in watermarked signals
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with SNR ¼ 30 dB has been used in all cases. Experiments were conducted using a total of 10 000 keys for each

class of signals. In subsequent analysis, ROC curve evaluation is performed under the worst case assumption for Pfa
evaluation corresponding to the signal being watermarked by a watermark, different than the one used in detection

(event H1b).

The influence of the map parameter a on the watermarking system performance was also considered. The ROC

curves for lowpass ða ¼ 0:7Þ, white ða ¼ 0:5Þ and highpass ða ¼ 0:3Þ skew tent chaotic watermarks were theoretically

and experimentally evaluated. The superior performance of the highpass tent chaotic watermarks can be easily observed

in Fig. 1. The performance of the watermarking system is considerably inferior for white tent watermarks whereas the

worst performance is observed when lowpass watermarks are used. However, it is obvious that in case of lowpass

attacks, such as filtering or compression, the lowpass watermark will be more robust. In order to take advantage of the

superior correlation properties of highpass watermarks even in the case of lowpass attacks one can perform embedding

in another domain and not in the spatial one. For example, if a highpass watermark is embedded in the low frequencies

of the DFT domain, as it has been proposed in many watermarking algorithms, the watermark becomes robust to

lowpass attacks while retaining its correlation properties.

6. Conclusions

In this paper, chaotic watermarks generated by Markov maps are introduced and their watermarking related sta-

tistical properties are investigated. Furthermore, statistical analysis of the employed correlation detector is undertaken

leading to a number of important observations concerning the watermarking system detection reliability. Highpass

chaotic watermarks prove to perform better than white ones whereas lowpass watermarks have the worst performance

when no distortion is inflicted on the watermarked signal.

Fig. 1. ROC for watermarking schemes based on highpass, lowpass and white skew tent chaotic watermarks.
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