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Abstract

In this paper, a novel class of multiclass classifiers inspired by the optimization of Fisher's
discriminant ratio and the Support Vector Machine (SVM) formulation, is introduced. The optimiza-
tion problem of the so-called Minimum Within-Class Variance Multiclass Classifiers (MWCVMC)
is formulated and solved in arbitrary Hilbert spaces, defined by Mercer’s kernels, in order to find
multiclass decision hyperplanes/surfaces. Afterwards, MWCVMCs are solved using indefinite kernels
and dissimilarity measures via pseudo-Euclidean embedding. The power of the proposed approach
is firstly demonstrated in the facial expression recognition of the seven basic facial expressions
(i.e., anger, disgust, fear, happiness, sadness and surprise plus the neutral state) problem in the
presence of partial facial occlusion by using a pseudo-Euclidean embedding of Hausdorff distances
and the MWCVMC. The experiments indicated a recognition accuracy rate achieved up to 99%. The
MWCVMC classifiers are also applied to face recognition and other classification problems using
Mercer’'s kernels.

Index Terms

Fisher’s Linear Discriminant Analysis, Multiclass Classifiers, Support Vector Machines, Mercer’s
kernels, pseudo-Euclidean embedding, Facial Expression Recognition, Face Recognition.

I. INTRODUCTION

The best studied techniques for binary pattern classification include Fisher's Linear Discriminant
analysis (FLDA) [1], its nonlinear counterpart, the so-called Kernel-Fisher’s Discriminant Analysis
(KFDA) [2], [3] and Support Vector Machines (SVMs) [4]. A combination of SVMs and FLDA has
been performed in [5], where a two class classifier has been constructed, inspired by the optimization
of the Fisher’s discriminant ratio and the SVMs separability constraints. More precisely, motivated
by the fact that the Fisher’s discriminant optimization problem for two classes is a constraint least-
squares optimization problem [2], [5], [6], the problem of minimizing the within-class variance has
been reformulated, so that it can be solved by constructing the optimal separating hyperplane for both
separable and nonseparable cases. The classifier, proposed in [5], has been applied successfully in
order to weight the local similarity value of the elastic graphs nodes according to their corresponding
discriminant power for frontal face verification. It has been also shown there that it outperforms the
typical maximum margin SVMs in the specific problem.

In [5], the proposed classifier has been developed only for two class problems. Moreover, only
the linear case has been considered and only when the number of training vectors is larger than the
feature dimensionality (i.e., when the within-class scatter matrix of the samples is not singular). An
effort to extend the two class classifiers of [5] in order to solve multiclass classification problems
has been performed in [7]. The limitation of the multiclass classifier constructed in [7] is that its
optimization problem has not been formally defined in Hilbert spaces, but has been considered only
for cases in which the within-class scatter matrix of the data is invertible. The classifiers proposed
in [7] have been shown to outperform the typical maximum margin SVMs in the recognition of the
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six basic facial expressions by large margins.

A lot of research has been conducted regarding facial expression recognition in the past fifteen
years [8]. The facial expressions under examination were defined by psychologists as a set of six
basic facial expressions (anger, disgust, fear, happiness, sadness, and surprise) [9]. The interested
reader may refer to [7], [10], [11] and in the references therein, regarding the various technologies
developed for facial expression recognition. In the system proposed in [7], the Candide grid [12] is
manually placed on the neutral image and afterwards tracked until the fully expressive video frame
is reached. The vectors of the Candide node deformations are the features that have been used for
facial expression recognition. The system requires the detection of the neutral facial expression prior
to tracking and recognition. Highly related methods with the one proposed in [7] have been also
proposed in [13] and [14].

In this paper, a general multiclass solution of the optimization problem proposed in [5], [7] is
presented. The problem is solved in arbitrary Hilbert spaces built using Mercer's kernels, without
having to assume the invertibility of the within-class scatter matrix neither in the input nor in the
Hilbert space. In this way, a new class of multiclass decision hyperplanes/surfaces is defined. In order
to build our classifiers in arbitrary dimensional Hilbert spaces we use a method similar to the one
proposed in [3]. In [3] a framework for solving the Fisher’s discriminant optimization problem (the
KFDA optimization problem) using kernels has been proposed. That is, in [3] it has been shown
that by using KPCA it is feasible to solve KFDA using kernels and that under KPCA the nonlinear
Fisher discriminant analysis optimization problem with kernels is transformed into an equivalent
linear (without kernels) optimization problem that produces the so-called Complete Kernel Fisher
Discriminant Analysis (CKFDA). Since the approach proposed in this paper requires the solution of
a quite different optimization problem than the one in [3] (i.e., the optimization problem in [3] is
solved via eigenanalysis and our problem is a quadratic optimization problem), we explicitly prove
that the framework in [3] can be safely applied in our case for providing solutions to proposed
classifiers. Moreover, we provide some insights of the relationship between the proposed multiclass
classifiers and the classifiers proposed in [3].

Afterwards, the problem is solved using indefinite kernels and/or dissimilarity measures with the
help of pseudo-Euclidean embedding. The extension of the proposed classifiers using dissimilarity
measures for facial expression recognition problems is motivated by the following. In [7] facial
expression recognition has been performed by classifying the displacements of the grid nodes between
the neutral and the expressive grid. In that case the knowledge of the neutral state is required a-priori.
In order to be able to recognize the neutral state, as well as, the other expressions we had to deal
with directly comparing grids (and not grid displacements). The grids consist of a set of points and
some of the most widely used measures for comparing point sets that are also robust to a series of
manipulations (i.e., partial occlusion etc) is the family of Hausdorff distances (which are dissimilarity
measures). Thus, we had to successfully combine the multiclass classifiers (which are naturally defined
in Euclidean spaces) with pseudo-Euclidean spaces defined by dissimilarity measures. By using the
proposed classifier in pseudo-Euclidean spaces, combined with Haussdorf distances, the recognition
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of the six basic facial expressions plus the neutral state is achieved.

The use of dissimilarity measures and indefinite kernels has gained significant attention in the
research community due to their good performance in various pattern recognition applications [15],
[16], [17], [18]. In [15], various classifiers, like two-class FLDA and maximum margin SVMs, have
been designed in various pseudo-Euclidean spaces. For more details on the geometry of Euclidean and
pseudo-Euclidean spaces the interested reader may refer to [19], [20], [21], [22], [23]. In [16], [18]
indefinite kernels have been used for feature extraction to boost the performance of face recognition.
The geometric interpretation of maximum margin SVMs with indefinite kernels has been given in
[17].

In summary, the contributions of this paper are:

« the presentation of the Minimum Within-Class Variance Multiclass Classifiers (MWCVMC) in
their general form for multiclass classification problems using the multiclass SVM formulation
in [4], [24], the exploration of the relationship with SVMs and with Fisher Linear Discriminant
analysis;

« the generalization of MWCVMC in arbitrary Hilbert spaces, using Mercer’s kernels in order to
define a novel class of non-linear decision surfaces;

« the solution of MWCVMC using indefinite kernels and pseudo-Euclidean embedding..

Finally, the power of the proposed classifiers is demonstrated in various classification problems. In
order to show the potentials of the proposed MWCVMCs we apply:

« Mercer's kernels, like polynomial kernels, for face recognition and for various other classification
problems using multiclass datasets from UCI repository [25]

« dissimilarity measures with pseudo-Euclidean embedding for the recognition of seven basic facial
expressions.

The rest of this paper is organized as follows. The problem is stated in Section Il. The novel class
of multiclass classifiers in Hilbert spaces is developed in Section lll. The proposed classifier in
pseudo-Euclidean spaces are described in Section IV. The application of the novel classifiers in
facial expression, face recognition and other classification problems is demonstrated in Section V.
Conclusions are drawn in Section VI.

Il. PROBLEM STATEMENT

Let & be a training data set with finite number of elemelts= {x;,7 € {1,...,N}}, whose
elements belong to two different clasgésandi/,, containing training data samples (feature vectors)
x; € RM and class labelg; € {1, —1}. The simplest way to separate these classes is by finding a
separating hyperplane:

wlix+b=0 (1)

wherew € RM is the normal vector of the hyperplane aind R is the corresponding scalar term of
the hyperplane, also known as bias term [5]. The decision whether a test satnglengs to one of
the different classel; or U, is taken by using the linear decision functigg ,(x) = sign(w”x+b),
also known as canonical decision hyperplane [4].
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A. Fisher’s Linear Discriminant Analysis

The best known pattern classification algorithm for separating these classes is the one that finds
a decision hyperplane that maximizes the Fisher’s discriminant ratio, also known as Fisher’s Linear
Discriminant Analysis (FLDA):

s
max DWW )

wbh wl'S,w’

where the matrix§,, is the within-class scatter matrix defined as:

Sw =Y (x—mp)(x—m)" + ) (x—my)(x —my)” (3)

xeldq XU
m; and my are the mean sample vectors for the clag¢eandis,, respectively. The matri$, is
the between-class scatter matrix defined in the two class case as:

S, :Nl(m—ml)(m—ml)T+N2(m—mg)(m—mg)T (4)

= N1 No(m; — my)(m; — ma)T (5)

where N1 and N, are the cardinalities of the classks andi/,, respectively andn is the overall
mean vector of the séf. The solution of the optimization problem (2) can be found in [1]. It can

be proven that the corresponding separating hyperplane is the optimal Bayesian solution, when the
samples of each class follow Gaussian distributions with same covariance matrices [1].

B. Support Vector Machines

In the SVM case, the optimal separating hyperplane is the one which separates the training data
with maximum margin [4]. The SVM optimization problem is defined as:

1
min ~w’ w (6)
w,b
subject to the separability constraints:
yi(wlx; +b)>1, i=1,...,N. @)

C. Minimum Within-Class Variance Two-Class Classifier

In [5], inspired by the maximization of the Fisher's discriminant ratio (2) and the SVM separa-
bility constraints, the Minimum Within-Class Variance Two-Class Classifier (MWCVTCC) has been
introduced. The MWCTCC optimization problem is defined as:

miileSwW, wlS,w >0, (8)
subject to the separability constraints (7). Thus, the within-class variance of the training samples is
minimized when projected to the direction subject to the constraint that the samples are separable
along this projection. More details about the motivations of the optimization problem (8) can be found
in [5].
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If training errors are allowed, the optimum decision hyperplane is found by usingothormu-
lation [4], [5] and solving the following optimization problem:

N
min w'S,w +C Y &, w'S,w >0 9)
w.b, i=1
subject to the separability constraints:
yi(wlix;+0)>1-&,6>0, i=1,...,N (10)
where¢ = [1,...,&n] IS the vector of the non-negative slack variables ghis a given constant

that defines the cost of the errors after the classification. Larger valu€soofrrespond to higher
penalty assigned to errors. The linearly separable case (8) can be found when clibesing.
The solution of the minimization of (9), subject to the constraints (10), is given by the saddle point

of the Lagrangian:
N N N

L(w,b,ar,§) =w S,w+ CZ&‘ - Zai[yi(WTXi +b) —1+&] - Zrifi, (11)

i=1 i=1 i=1
wherea = [a1,...,ay]" andr = [r1,...,7y]" are the vectors of the Lagrangian multipliers for the
constraints (10). The Karush-Kuhn-Tucker (KKT) conditions [26] imply that for the optimal choice

of w,a,r,b, &, the following hold:
VwLl|lw=w, =0<&S,w,= % Zf\il A oYiX;
%—%\b:bo =0saly=0
% t=t, =0&1r,=0C—a;, (12)
Tio>0,0<a;0 <0, &02>0,15060=0
Yi(Wixi+bo) =1+ &0 = 0,a50{yi(Wlx; +bo) — 1+ &0} =0

where the subscript denotes the optimal case agpd= {y1,...,yn} is the vector denoting the class

labels. If the matrixS,, is invertible, i.e. the feature vector dimensionality is less or equal to the
number of samples minus twd/{ < N —2), the optimal normal vectow of the hyperplane is given
by (12):

1 1,
SuWo = 5 ; Ui oYiXi & Wo = 5 Sy, ; Qi oYiXi- (13)
By replacing (13) to (11) and using the KKT conditions (12), the constraint optimization problem
(9) is reformulated to the Wolf dual problem:
max f(a) = 1%a— %aTQa subject to (14)
0<ag; <C,i=1,...,N, aTy:O

wherely is a N dimensional vector of ones an@]; ; = 3y;y;x! S, 'x;. It is worth noting here that,
for the typical maximum margin SVM problem [4], the matX has element$Q]; ; = yiijiij.

The corresponding decision function is given by:

N
1
g(x) = sign(wa +b) = sign(§ E ai,oyixiTS;le + by). (15)
i=1
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The optimal threshold, can be found by exploiting the fact that for all support vectayswith
0 < a;, < C, their corresponding slack variables are zero, according to the KKT condition (12).
Thus, for any support vectot; with i € S = {i : 0 < a; < C'}, the following equation holds:

N
1 _
il D uiox] % + o) = 1. (16)
j=1
Averaging over these patterns yields a numerically stable solution:
1, 1o
b, = N Z(5 Z yjajyax;‘rS;lXi — Yi)- a7)
ieS T j=1

As can be seen, the described MWCVTCC [5] have been proposed for two class problems and
define only linear classifiers. Actually, in [5] non-linear decision surfaces have been defined, but there
were not the generalization of MWCVTCC in Hilbert spaces. These surfaces will be discussed in
Section IlI-B.

D. Multi-class SVM

Many methods have been proposed for the extension of binary SVMs to multiclass problems [4],
[24], [27], [28]. The multiclass SVMs classifiers in [4], [24], [27], [28] are the most elegant multiclass
SVM algorithms closely aligned with the principle of always trying to solve problems directly. That
principle entails the modification of the SVM objective in such a way that will simultaneously allow
the computation of a multiclass classifier learning with kernels [4]. Nevertheless, the theory that
will be presented in the next sections can be extended using other multiclass SVM classifiers in a
straightforward manner. The interested reader can refer to [4], [24], [27], [29] and the references
therein for the formulation and solution of multi-class SVM optimization problems.

Let the training datasét to be separated t& disjoint classe$/, ...,Ux. The training data are
(x1,01),...,(xn,In) andl; € {1,..., K} are the class labels of the training vectors. The multi-class
SVM problem solves only one optimization problem [27]. It construgtglassification rules, where
the k—th function w} ¢(x;) + by, separates the training vectors of the clasom the rest of the
vectors, by minimizing the objective function:

K N
. 1 T k
min - wi wi + C < 18
mn ) wiwtC) D g as)
0 k=1 J=1 k£l
subject to the constraints:
WZXJ' + by, > wix; + b +2— ¢k (29)

>0, j=1,....N, ke{l,..., K}

where(C is the term that penalizes the training errors. The vebter [b; ... bk|T is the bias vector

and¢ = [¢],... ¢k ... ¢B1T is the slack variable vector. Then, the decision function is:
f(x) = argmax(w} x + by). (20)
k=1,....K

For the solution of the optimization problem (18), subject to the constraints (19), someone can refer
to [4], [24], [27].
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E. Relationship Between The Minimum Within Class Variance Classifiers and Support Vector Ma-
chines

In this subsection we will explore the relationship between MWCVTCC and maximum margin
SVMs. Let that we define the following optimization problem:

1
min —w’ S,w (21)
w,b 2
under the separability constraints:
yi(wT(xi —m)+b)>1, (22)

which is the MWCVTCC (under some minor calculations i.e., subtracting the mean vector from all
vectors).

Let that the matrixS,, is non-singular. We consider the transformed vectorgo the vectors
pi = S;%(xi —m) and by lettingw = Sé)g, the above optimization problem is reformulated to a
maximum margin classifiefg, b) such that:

1
min 588 (23)
subject to the separability constraints:
yi(gTpi +b) > 1. (24)

The above analysis shows that MWCVTCCs are equivalent to maximum margin classifiers when the
within class scatter matrix is the identity matrix.

K
K
o

K
o
K
8

(a) (b)

Fig. 1. The geometrical interpretation of minimum within class variance two class classifiers a) the optimization problem
(21) subject to the constraints (22) finds the optimum hyperptafie + b such that the variances + 3 is minimized

subject to data separability b) the equivalent optimization problem (23) subject to the constraints (24) is to find a maximum
margin SVM hyperplane in a space whe8g = I (i.e., maximize2r subject to separability).

The geometric interpretation of the optimization problem (21) subject to the constraints (22) and of
the equivalent optimization problem (23) subject to (24) is pictorially described in Figures 1 a) and
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b). The optimum hyperplane in the case of the optimization of (21) subject to (22) is demonstrated
in Figure 1 a. The optimum hyperplane in this case is the one with normal vector sucl} that
is minimized. The equivalent is a maximum margin hyperplane (maxithixén a normalized space
whereS,, = I, as described in Figure 1 b).

Another attempt to relate further MWCVTCCs, maximum margin SVM classifiers and the recently
introduced Ellipsoidal kernel machines [30] is through the following. From VC dimension theory for
a set of binary classifiers it" with minimum marginp and under the assumption that the data are

enclosed in a hypersphere with radidsthen the VC dimensioi is:
2

hsphere = min{CeiI(];), M} +1 (25)
ceil is the ceiling operator. The VC dimension is directly related to the generalization error [4], [31],
[30]. The theory of SVMs has emerged from the above equation. That is, in SVM theory the family
of classifiers obtained by the constraint optimization problem (6) maximize the margin, while the
constraints (7) ensure empirical error minimization. As can be seen by the generalization error theory
[4], [30] the VC dimension depends not only on the margin but also on the diameter of the enclosing
hypersphere. The geometric area of a hypersphefMnwith radius R and centem is defined as
(x —m)T(x —m) < R? or equivalently(x — m)” A(x —m) < 1 with A being aM x M diagonal
matrix with diagonal elementa; ; = #.

Let us now consider the enclosing hyperellipse with semi-major axis equ&l the minimum
enclosing hyperellipse is defined @§ = {x : (x —m)”S~!(x—m) < 1} whereS is the covariance
matrix of the hyperellipse. From the above observation, it is easy to show that for the VC dimension
of a classifier defined in a hyperellipse it is valid that:

th < hSphere . (26)

The above can be easily proven by observing that the area defined by the hyperellipse is inside the
hypersphere [30]. Suppose the two parallel hyperplanes that define the classifier can-giuattisr

for a known margin in the hyperellipse. Then, the exapbints can be shattered having the same
margin in the hypersphere.

As has been shown by the above analysis, the so-called ellipsoidal classifiers in [30] have VC
dimension less of equal to the dimension of maximum margin classifiers. The ellipsoidal classi-
fiers minimize the functionaiv’ Sw (instead of the functionaw’w for SVMs andw?’S,,w for
MWCVTCCSs). Thus, the ellipsoidal classifiers [30] are equivalent to maximum margin classifiers
subject to the transformatiop; = S~z (x; — m). In MWCVTCCs we usés;é instead ofS~z. The
above is a first attempt to relate intuitively the proposed classifiers with maximum margin classifiers
and the ellispoidal classifiers in [30].

1. M INIMUM WITHIN-CLASS VARIANCE MULTICLASS CLASSIFIERS USINGMERCER S
KERNELS

In this Section we describe the way the two class MWCVTCC (described in Section [I-C) can
be extended to multi-class classifications problems using the multi-class SVM formulation presented
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in [4], [24], [27]. The procedure followed in order to generalize in arbitrary Hilbert spaces the
optimization problem (9) subject to the constraints (10), using a non-linear fungtiem as to define
decision surfaces, is also presented. The training gat@re initial mapped to an arbitrary Hilbert
space under the map: R — H. In this section, only the case in which the mappiigsatisfies

the Mercer’s condition [4] (or conditionality positive kernels) will be taken into consideration. It is
not necessary to know the explicit form of the functipnsince all the algorithms that will be defined
from now onwards require only the close form of the dot productsijrthe so calleckernel trick

h(x,y) = 6(x)" é(y) (27)
whereh is called thekernel function The typical kernels used in literature are the polynomial and
the Radial Basis Functions (RBF) ones:

h(x,y) = ¢(x)"6(y) = (x"y + 1) (28)

=T (x=y)

hxy) =ox)d(y)=c =

whered is a positive integer that is the degree of the polynomial amslthe spread of the Gaussian
kernel.

A. Solution of the optimization problem using Mercer's Kernels

The constrained optimization problem (9) subject to (10) is extended in Hilbert spaces using the
multiclass SVM formulation in Section 1I-D. This novel multi-class classifier is the generalization of
the two class problem defined in (9) in arbitrary Hilbert spaces. The within-class scatter matrix of
the training vectors is defined in th€-class case as:

K
Sp =YY (6(xi) — mP)(g(x;) —my)T (29)

k‘:1 xieZ/lk
P i »_ 1
wherem;’ is the mean vector of the clagg i.e, m;’ = >, o, ().

The modified constraint optimization problem is formulated as:
K

N
min Z %wfsﬁjwk +C Z Z I3 (30)

wib,§ k=1 =1 k£l
subject to the separability constraints in

wi (¢(x;)—m®)+by, > wi (p(x;)—m®)+bp+2—¢f ,&F >0, j=1,...,N, ke{l,.... K}

(31)
and inspired by the above constraints we propose a variant where we subtract the mean of each class
from the vectors. In this case we have to solve the optimization problem (30) subject to:

wi (¢(xj)—m])+by, > wi (¢(x;)—mp)+bp+2—Ef .65 >0, j=1,...,N, ke{l,.... K}
(32)

The following discussion holds for the linear case as well, whén) = x and is interesting since it provides solutions
in linear cases when the number of samples is smaller than the dimensionality, i.e. the within-class scatter matrix is singular.
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11

The solution of the constraint optimization problem (30) subject to the constraints (31) can be
given by finding the saddle point of the Lagrangian:
Li(wg, b, &, 8) = 25:1 SWESHWy + Czi]\il Z}I::I &~
= i ofl(wi, = wi)T(6(x;) — m®) + by, — by —2+€f]- (33)
— il i Al
wherea = [ad,....aF ... af] and B = [B],...,5F,...,BK] are the Lagrangian multipliers for
the constraints (31) with:
al =0, =2 gh=0,i=1,....N (34)

and constraints:
of >0, 65>0 i=1,....N, ke{l,...,K}\L. (35)
For the second optimization problem of the variant MWCVMCs (i.e, (30) under the constraints
(32)) the corresponding Lagrangian is:
Lo(wi, b, & 0, B) = 5 Y4y Wi Shwi +C 300, 3o, &F -
=2 Y af W (66a) — mP) = wi (¢(xi) —mf) + b, — by — 2+ €] -

— N S BRek.
(36)

The Lagrangian equations (33) and (36) has to be maximized with respeetrtd3 and minimized
with respect tow and&. In order to produce a more compact equation form let us define the following

variables: «
1, ifly=k
A=) af, cfz{ o (37)
1 0, if I; 75 k.
One of the KKT conditions for the Lagrangian (33) requires:
N
VWkLl‘Wk:Wk,o =0« Sg))wk,o = Z(CfAi,O - aﬁo)(¢(xi) - m(}) (38)
=1

where m® = %Zf\;lqﬁ(xi) is the mean vector of the projected samples, and for the second

Lagrangian (36):
N
kaL2|Wk=Wk,o =0« Siwk,o = Z(CfAi,O - a'ﬁo)(gb(xi) - mg) (39)
i=1
where the subscript denotes the optimal parameter choise. Since the Hilbert sigaseof arbitrary
dimension, the matrix82 is almost always singular. Thus, the optimal normal vestqr, cannot
be directly found from (38) or from (39), since the mat®{ cannot be inverted. A solution of
the optimization problem (30) subject to the separability constraints (31) (and of (30) subject to
(32) ) will be provided without having to assume that the within-class scatter matrix of the data is
invertible, neither in the input spac®?, nor in the Hilbert spacé{. The existence of a solution
to this optimization problem will be justified by proving that we can find a mapping that makes the

solution feasible. This mapping is the Kernel PCA (KPg &ansform [32].

2This is particularly important for the small sample size problem in which the within-class scatter matrix is singular. In
the linear case i.e¢(x) = x the KPCA degenerates to the typical PCA transform.
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Let the total scatter matri${ in the Hilbert spacé{ be defined as:
N

87 =) (¢(xi) — m®)(g(x;) — m®)T. (40)

=1

The matrixS{ is bounded, compact, positive and a self-adjoint operator in the Hilbert $pathus,
according to the Hilbert-Schmidt Theorem [26] its eigenvectors system is an orthonormal basis of
H. Let B® and B? be the complementary spaces spanned by the orthonormal eigenvecgjs of
that correspond to non-zero and zero eigenvalues, respectively. An arbitrary weet6t, can be
uniquely represented as = ¢ + ¢ with ¢ € B® and ¢ € Bf. Let us define the linear mapping
L?:H — B? as:

w=p+C(— . (41)

The following proposition demonstrates that the optimization of the (30), subject to the constraints
(31), can be performed in the spaB&, instead of¥, without any information loss.

Proposition 1. Under the mappind.® the optimization problem (30) subject to the constraints
(31) is equivalent to:

K N
. 1
min Y ceiSuer+CY Y (42)
pubs D =1 k#l,
subject to the constraints:
el (d(x;) —m®) + by, > @ (9(x) —m®) + by +2 — & (43)

&>0, j=1,....,N, ke{l,...,KNi.

The corresponding optimization problem for the MWCVMCs variant is to optimize (42) subject to
the constraints:

el (8(xj) —m) + by, > @i (6(x;) —my) + by +2 - & (44)
>0, j=1,...,N, ke{l,...,KN\;.O

A proof of this Proposition can be found in Appendix I.

The optimal decision surfaces of the optimization problem (30) subject to the constraints (31) and
of (30) subject to (32) can be found in the reduced sp&tespanned by the non-zero eigenvectors
of S?. The number of the non-zero eigenvectorsSr?f ism < N — 1, Thus, the dimensionality
of B® is m < N — 1. Therefore, according to the functional analysis theory [33], the spices
isomorphic to thg N — 1)-dimensional Euclidean spad®“—!. The isomorphic mapping is:

©=Pn, neRN, (45)

whereP is the matrix having as columns the eigenvector$fthat correspond to non-null eigen-
values. Equation (45) is an one-to-one mapping fiBfi! onto 5.
Under this mapping, the optimization problem is reformulated to:

K 1 _ N
min Z 577%5107% +C Z Z ff, (46)

YIRS k=1 J=1 kAL,
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13

whereS,, is the within-class scatter matrix of the projected vectors at the non-null KPCA space given
by S., = PTS2P, subject to the constraints:

nl (X — ) + by, > i (%5 —m) + b, +2— & (47)
h>0, j=1,...,N, ke{l,... K}

and for the variant the constraints are:

(% — 1iy,) + by, > 0 (%5 — ) + by, +2 - € 48)
>0, j=1,.,N, ke{l,..., KN}

wherex; = PT¢(x;) andm; = PTm? are the projected vectors to the non-null KPCA space.
More details on the calculation of the projections to the KPCA space can be found in [3], [32].
Under mapping (45), the optimal decision surfaceHnfor the optimization problem (42), subject
to (43), can be found by solving the optimization problem (46) subject to (4R"Nn'. However,
the matrixS,, may still be singular, since its rank is equal 3 — K. If this is the case, i.&,,
is singular, it containsgk’ null dimensions. Thus, in order to satisfy the invertibility 8f, along
with the null eigenvectors dP, K more eigenvectors are discarded, which correspond to the lowest
non-zero eigenvalues. An alternative way here is to perform eigenanalysis on the singularSpatrix
and remove the eigenvectors that correspond to null eigenvalues (the latter case requires a second
eigenanalysis).

The Lagrangian of the optimization problem (46) subject to the constraints (47) is given by:

L3, b, &, a,8) = lec(:l %n;{éwnk + CZL Zszl &~
~ 2 bl —m) T (R - ) by, — b -2+ - (49)
— i Y B
The search of the saddle point of the Lagrangian (49) is reformulated to the maximization of the
Wolf dual problem:

N K

1 1 1 - NS/~ ~

W(a) = 22 Zaf + 3 Z(_§CjJAiAj + afa? - iafaf)(xi —m)S, (% — m) (50)
i=1 k=1 WG,k

which is a quadratic function in terms ef with the linear constraints:

N

N
doab =) A, k=1,... K. (51)
=1

i=1
The above optimization problem can be solved using optimization software packages [27] or the
MATLAB [34] function quadprog . The corresponding decision hyperplane is:
N
f(x) = argmax(wil (¢(x)—m®)+by) = argmax[y _(cf Aio—al,)(¢(x;)—m®) PSP (¢(x) —m®)+by),
k=1,...K k=1,..K ‘5
(52)

as detailed in Appendix II.
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For the variant (i.e., (46) subject to (48)) the corresponding Lagrangian multiplier is:

L4(nkub>£7a7/8) = Zi(:l %nggwnk + 027{\;1 Zf:l é‘f_
DD Y of [l (% —y,) — nf (% — i) + b, — b —2+&F]—  (83)

N K k ¢k
- Zi:l Zk:l ﬁz gz :
and as can be seen in Appendix Ill. The Wolf dual problem is the maximization of:
K N N
W(a) =2 Z of + Z Z Z Wi j kXiSy X (54)
ik k=1 i=1 j=1
wherew; ;1. is defined in Appendix Ill. The corresponding decision function for the variant is:
N
T o k k NTp&—1pT o
1(x) = argmax(wy (@(x)—my; )+be) = 2rgma;{<[2(c,- Aio—ai,)(¢(xi)—my )" PSP (¢(x)—my )by o]
=1,... =1,... .
EARRS] EARRE] =1
(55)
Training
Projected
training w1
o . data X;
Training data __gf 10pey | P;ZZ“ —————» MWCVMC f—p W2
Training data W
X
Fig. 2. Diagram of the MWCVMC training procedure.
Testing
Projected
testing
vector x

Testing vector __y)| Project l » MWCVMC |——p class
X

vector

!

KPCA

Training data

Fig. 3. Diagram of the MWCVMC testing procedure.

Summarizing, in the training phase the samples are first projected using KPCA. Afterwards, the
optimization problem (46) subject to (47) (or the variant (46) subject to (48)) is solved. The training
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phase is schematically described in Figure 2. When a test sample arrives, it is firstly projected using
KPCA and afterwards is classified using (52) or (55). The test step is schematically described in
Figure 3.

B. Alternative Multiclass Desicion Surfaces in [5] and [18]

The decision surfaces proposed in [5] and [7] have been inspired by the solution of the linear
case where the term!'S;'x; is employed in the dual optimization problem (14). Assuming that
the original within-class scatter matrix of the data is not singular, this term has been expressed as an
inner product of the forms;éXi)T(S;%Xj) (if Sy, is invertible then it is a positive definite matrix).
Then, in [5], instead of projecting; using¢ (as described previously), the transformed ves@%xi
is projected in the Hilbert space (also usigyand the matrixQJ; ; = %yz‘y‘jh(s;%xz‘,s;%x]‘) is
used for the solution of the dual optimization problem. Of course, the decision surface provided in
[5] does not constitute the solution of the optimization problem of MWCVTCC in Hilbert spaces.

Following this strategy, the nonlinear multi-class decision surfaces proposed in [7] has been formu-
lated. The fact that the term/'S;,'x; can be written in terms of dot products @szxi)T(S;%xj)
is taken under consideration. Then, kernels are applied in (50) as:

N K
1 1 I ) 1 —é 75
W(a) = 222@? + 3 Z(_§Cj AjA; + afaél — iafa?)h(sw X, Sw’Xj). (56)
=1 k=1 1,5,k
The corresponding decision function is:

1 N

f(g) = argmax = [3(FA; — al)h(Suxi, Su?x) + by, (57)
k=1,...K & "=

The above decision surfaces are not the ones derived from the generalized MWCVMC optimization
problem (30), subject to the constraints (19), which is described in Section Ill.It has been shown, in
[7], that these surfaces outperform maximum margin SVM in facial expression recognition. Moreover,
in [5], that the above surfaces outperform maximum margin SVMs in a two class problems for face
verification. As we have already mentioned, we have generalized the methods and concepts presented
in [5], [7] using arbitrary Mercer’s kernel in multiclass problems (the two class problem is a special
case of the treated problem).

C. Relationship with Complete Kernel Fisher Discriminant Analysis

In this section, the relationship of the proposed decision hyperplanes/surfaces with the ones derived
through CKFD [3] is analyzed. Only the linear case will be considered, in our discussion, since the
non-linear case is a direct generalization of the linear one using Mercer’s kernels.

As it has been by the Proposition 1 in order to solve the linear or the generalized non-linear
constraint optimization problems of MWCVMCs, the problem can be solve®#Nm! using PCA
(KPCA using a linear kernel becomes PCA) and solve an equivalent linear optimization problem
there.
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In the linear case (i.e., use linear kermgk,y) = x’y), in order to move fronitV ! to RV K
we have removeds< columns from the matri¥> (the PCA matrix) which are the eigenvector that
corresponds to the lowest non-zero eigenvalueS; off these columns are not removed frdP then
S, = PTS,P containsK eigenvectorsp,, that correspond to a null eigenvalues. ket € R be
v = Ppy, then, under the projection toy, all the training samples are separated without an error,
sincevg’ska =0 and vfstvk > 0. That is,v;, is a solution of the optimization problem (9) and
since the data are projected to the one dimensional space it is very easy to find thresholds in order to
to perfectly separate the projected vectors. This can be easily proven by observing that all samples
after projecting to one of the directionsg, fall in center of each class [35].

Figure 4 describes pictorially the effect of the vecterg K total vectors) for the cases,
wlS,w =0 andwlS,w > 0.

Fig. 4. lllustration of the effect of the projection to a vecter with w”'S,w = 0. If w7 S;w > 0 is valid for the
vectorw then all the training vectors of the different classes are projected to one vector different for each class, while if
wTS;w = 0 all the training vectors are projected to the same point.

It is interesting to notice that the vectorg are the same ones given by the irregular discriminant
projection defined in [3], [36]. That is, the vectowg are the solution of the optimization problem:
max trWIS,W] (W = [w1,...,wk] ||wi|| = 1) subject tow} S, w; = 0, (58)

which is also a maximization point of the Fisher’s discriminant ratio:

. tr[WTSbW]
TW) = 4 wWTs, Wi (59)
that makes/(U) — +o0, (U = [vy,...,vk]). Summarizing, we can tell that we remove the

dimensions of the spac®”~! due to the fact that the interesting vectoss with wawwk =

0 that provide fully class separability can be found by eigenanalysis only and not by solving a
quadratic optimization problem. Hence, in the new sgate* all the solutionsy,, of the MWCVMC
optimization problem satisfy)’'S,,n;, > 0.
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IV. MINIMUM WITHIN-CLASS VARIANCE MULTICLASS CLASSIFIERS INPSEUDO-EUCLIDEAN
SPACES

In the previous section only conditionally positive kernels have been considered [17]. In this section,
the use of not-conditional positive kernels (i.e., indefinite kernels and dissimilarity measure) along
with the MWCVMC will be presented. In [15], [37] a unified theory for (dis)similarity measures and
kernels has been developed. In terms of kernels,thsimilarity measure between the two vectors
x; andx; using a functionp can be written as:

d(xi,%;) = [lo(xi) — d(x))[|> = d(x:) T p(x:) — d(x:) T d(x)) — d(x;)T b(xi) + D) T b(x;)

(60)
= h(x4,%;) — 2h(xi,x5) + h(x;,X;).
Let us define the similarity (or dissimilarity) matri® ¢ RV*V as:
[D}i,j = d(XZ‘, Xj). (61)
The centered matriB is defined as:
B = —%JDJ (62)

whereJ = Iy, n —+1n1% € RV is the centering matrix v v is the N x N identity matrix and
1y is the N-dimensional vector of ones. It can be proven that the m®&ris positive semidefinite,
if and only if the kernelh is conditionally positive [37]. Many kernels exist, which have been used
very successfully in pattern recognition applications like face recognition [16], [17], [18] that do not
necessarily define positive semidefinite matriBeslypical examples of these kernels are the sigmoid
kernels:

h(x;,x;) = tanh(k(x! x;) + 0) (63)

with x > 0 andf < 0, as well as the fractional polynomial models [16], [18]:
hixi, x;) = (x]%; + 1) (64)

with 0 < d < 1. In the following, the MWCVMC using non-conditionally positive kernels will be
defined for the general case where only the dissimilarity meaguseknown and the explicit form
of the kernel functiom: remains unknown. In the trivial case that the kernel function is known, the
dissimilarity can be built using.. In this case, data representation is not strictly performed with
vectors but possibly by other means as well (e.g. sets). A dissimilarity measure that can quantify the
similarity between object representatiods’ and obeys the following properties, should be available:

« reflectivity: d(A;, 4;) =0

o positivity: d(A;, A;) > 0if A; # A;

o symmetry:d(A;, A;) = d(A;, A;),

whered(A;, A;) is a dissimilarity measure between the two object representatipnd; .

3The objectA; can be a set/vetor but is not necessary to be explicitly defined as its definition is not of particular interest
here. The only thing that should be defined is the dissimilarity measure.
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A. Embedding function to pseudo-Euclidean spaces

The dissimilarity matrixD is used to define an embedding functi@he R**~, wherek < N is
the dimensionality of the embedding. Therefore, tth column of G, denoted byg;, corresponds
to the features of the objecd; in the pseudo-Euclidean space. In order to find the embed@ing
the matrixB is defined as in (62). The matrik projects the data so that the embeddedhas zero
mean. The eigendecomposition of the mafBxwill give us the desired embedding. The matix
is positive semi-definite (i.e., it has real and non-negative eigenvalues), if and only if the distance
matrix D is Euclidean matrix [15]. Therefore, for a non-EuclideBn B has negative eigenvalues.
For more details on pseudo-Euclidean embedding and dissimilarity based pattern recognition, the
interested reader may refer to [15], [23], [38], [20]. Let the maBBixasp positive andg negative
eigenvalues. Then, the matfR can be written as:

B = QAQT = QA A2QT = GTMG, (65)

whereA is a diagonal matrix with the diagonal consisting of thegositive and; negative eigenvalues,
which are presented in the following order: first, positive eigenvalues with decreasing values, then
negative ones with decreasing magnitude and finally zero values. The rjatisxan orthogonal

Ipo

matrix of the corresponding eigenvectors. The maiixis equal to wherel,,

_Iqu
andI,., are the identityp x p andg¢ x ¢ matrices, and: = p + ¢. The matrixG is the embedding

of the facial image database in the pseudo-Euclidean sphee R [15]:
G = A2 Q] (66)

where A, contains only the non null diagonal elementsAofQ;, is the matrix with the corresponding
eigenvectors.

Actually, the pseudo Euclidean-spaf”% consists of two Euclidean spaces, where the inner
product is positive definite for the first one and negative definite for the second one. Using the
previous remark, for the sake of completeness, a brief description of the procedure followed, when
going back from the embeddin@ to the dissimilarity matrixD, will be provided. The inner products
in the pseudo-Euclidean space are defined as:

p p+q
(8y)=> giwi— > givi=g My. (67)
i=1 j=p+1
The norm of a non-zero vectg in a pseudo-Euclidean space is defined as:
Igll” = (g.8) = &' Mg, (68)

which can be positive, negative or zero (contrary to the positive or zero norm value in an Euclidean
space). The dissimilarity matril® can now be retrieved from the embeddiGg using the notion of
the inner products as:

Dli; =llgi—gll*= (g —g,8 — &) = (8 — g;)"M(gi — g;)

69
= d(.Ai,.Aj) =b1? +1b” — 2B (69)
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whereb is a vector with the diagonal elements of the malBix

Prior to proceeding to the description of the MWCVMC in pseudo-Euclidean spaces someone

should notice that the matri& has uncorrelated features with zero mean veator - SN gi=o0.
That is, if S; is the total scatter matrix, then:

S =) (gi—m)(gi—m) " M=GG'M=|A|M=A. (70)
Therefore,G can be considered to be the result of a mapping of a kernel-PCA (KPCA) projection
procedure [32] using indefinite kernels [15], [17]. Thus, if a vectorial object representation is available
(i.e., the representation od; is a vector) andd is defined as in (60) using conditionally positive
kernels, then this embedding is the KPCA projection that has been used in section Il prior to the
optimization of the MWCVMC in Hilbert spaces.

Each object4; is supposed to belong to one of theobject classe§it;, Us, . .. , Uk }. For notation
compactness, the séf, will be used for referring both to the set of the object representations of
the k-th object class and to the various feature vectors that are produced during the embedding and
correspond to the objects of tlketh object class. The mean vector for the class denoted asn,..

Then, the within-class scatter for the vectggsis defined as:

K
Sw=Y_ Y (g —1h)(g— 1) M. (71)

r=1 g,

As seen previously, the dimensions that correspond to the null eigenvalddshafe not been
taken into consideration for the definition of the embeddBgnd the matrixS,,, since they offer
no information for the optimization of the MWCVMCs (as described in the previous section). Now
we should take care of the dimensions of the embedding that correspond to negative eigenvalues. The
problem of these dimensions is that they lead to Hessian matrices that are not positive semidefinite.
Hence the optimization problems are not convex and generally NP-complete. Two alternatives exist
regarding the dimensions of the embedd{@ghat correspond to negative eigenvalues:

« to remove the dimensions that correspond to negative eigenvalues. In this case the embedding

G degenerates to:
G, =A;Q7 (72)

whereG,, € RPN, This step is preferred when the negative eigenvalues are few in number and
very small in magnitude, in comparison to the magnitude of the positive eigenvalues (i.e., the
dissimilarity measure is almost Euclidean). Such embedding has been successfully used for face
recognition when using KPCA with fractional polynomial kernels [16], [18].

« To use only the magnitude of the negative eigenvalues. This step is preferred when the magnitude
of the negative eigenvalues is not small, or when there are many dimensions that correspond to
negative eigenvalues in the embedding. In this case the new embedding is:

G =A;Qf (73)
where A; is a diagonal matrix having as diagonal elements the magnitude of the diagonal

elements ofA;, in descending magnitude order. The mat@ contains the corresponding
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eigenvectors. For the dimensionalityof the new embedding, it is valid that< £ < N. This
step is preferred for the definition of the Hessian matrix of the quadratic optimization problem
of SVMs in pseudo-Euclidean spaces [15], [17].

In both cases, the new embeddi@y is purely Euclidean. Without loss of generality, the embedding
G; will be considered for the description of the MWCVMC. Let the veagbrbe thei-th column
of the matrix G;. The mean vector for the classis denoted byrh,. and the mean of all classes
by rh (which, in the case under examination, is a zero vector). Since there are no dimensions that
correspond to negative eigenvalues, the within-class scatter matrix of the embé&ddiaglefined
as:

K

s, =>" Y (gl — i) (gl — i) (74)

r=1glel,
The dimensionality of the embedding lis< k& < N, while the rank ofS!, is less than, or equal to
N — K. Thus, there is not a guarantee that the within-class scatter n$atrixill be invertible. Two
alternatives exist regarding the solution of this problem:

« to avoid initially eigenvectors corresponding to the smallest eigenvaluBs when defining the
pseudo-Euclidean space (i.es< N — K);
« perform eigenanalysis 18!, and remove the null eigenvectors.

Without loss of generality, let us follow the first approach, by choosiggV — K. The MWCVMC
is defined in the pseudo-Euclidean space as:

K N
: L 7l k
wrili)ns Z 5 Wk S,wr +C Z Z & (75)
10 k=1 j=1 k#l;
subject to the constraints:
wi (gl —1h) + b, > wi (g} —1h) + by +2 — & (76)

>0, j=1,...,N, ke{l,..., KN\l
for the MWCVMCs the variant is:

wi (g) — i) + by, > wi (g —thy) + by +2— & (77)
>0 j=1,...,N, ke{l,...,KN\l.
The corresponding hyperplanés,b;),--- , (wg,bx) are found by solving the optimization prob-

lem (75) subject to the constraints (76) as in Appendix Il, and for the variant solving (75) subject to
(77) as presented in Appendix Ill.

B. Classifying Novel Object Representations using pseudo-Euclidean embedding and MWCVMC

Let {By,---,B,} be a set ofn objects. The matriD,, € RV is created:D,]; ; = d(B;, A;)
which represents the similarity between thdest object and all the training object representations.
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The matrixB,, € R*Y of inner products relating all new data to all data from the training set can
be found as follows:
1
B, = —§(DnJ —UDJ), (78)
where J is the centering matrix andJ = %1,11% e RN The embedding of the test object
representation§,, € R*" that is used for classification is:

G, = A, *QIBI. (79)

The columns of the matridxG,, are the features used for classification. Iggt, < R! be thei-th
column of the matrixG,,. For more details about the embedding of novel data in pseudo-Euclidean
spaces, the interested reader may refer to [15]. After the embedding, the classificaiptoafne

of the K-object classes is performed by using the decision function:

f(B) = argkn%ax#wg(gi,n —1h) + by), (80)

=1,...,

or for the variant
f(By) = arg max (Wi (gin — thx) + br), (81)

Ly

wherew;, andb, have been found during training.

V. EXPERIMENTAL RESULTS

Three set of experiments have been conducted in order to test the proposed methods:

« Multiclass classification experiments using Hausdorff distances for the facial grids in order to
recognize the seven basic facial expressions (i.e., test the MWCVMCs in pseudo-Euclidean
spaces).

« Multiclass classification experiments using polynomial Mercer’s kernels for face recognition (i.e.,
test the MWCVMCs in Hilbert spaces).

« Multiclass classification experiments with various Mercer kernels using datasets from UCI repos-
itory [25].

Moreover, we compare the two MWCVMCs variants presented in Section Il (i.e., the one that
optimized (30) subject to the constraints (31) and the one that optimizes the same functional subject
to (32)). Since, these two MWCVMCs variants minimize the same functional and have about the
same separability constraints with a small difference (i.e., in the first we subtract the total mean
vector, like a normalization, while in the second we subtract the mean of the class to be classified),
we anticipate small performance difference between them.

A. Multiclass Classification Experiments in Face Expression Recognition

1) Database descriptionThe database used for the experiments was created using the Cohn-
Kanade database. This database is annotated with FAUs. These combinations of FAUs were translated
into facial expressions according to [39], in order to define the corresponding ground truth for the
facial expressions. The facial expressions under examination are the six basic ones (anger, disgust,
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fear, happiness, sadness and surprise) plus the neutral state. All the available subjects were taken
under consideration to form the database for the experiments.

The geometrical information vector taken under consideration is the deformed Candide grid pro-
duced by the grid tracking system as described in [40]. In Figure 5, a sample of an image for every
facial expression for one poser from this database and the corresponding deformed grid, is shown.
The deformed grids were afterwards normalized in order to have the same scale and orientation.

Happiness ~~ Sadness

Neutal

‘WW

“ﬂy“

'ﬂV

‘JA

)

mu\

v}

Fig. 5. The facial expression image and the corresponding grid for a poser of the Cohn-Kanade database.

Facial expression recognition was also studied in the presence of partial facial occlusion. A pair
of black glasses and a mouth mask, as well as left and right face area masks were created using a
graphics computer program, to be superimposed on the eyes or mouth regions respectively to simulate
partial occlusion. The glasses were similar to black sun glasses, while the mouth mask was similar to
a medical mask that covers the nose, cheeks, mouth and chin. The Candide nodes corresponding to
the occluded facial area were discarded. Figure 6 presents one expresser from Cohn-Kanade database
posing for the 6 basic facial expressions. On each image, the Candide grid has been superimposed
and deformed to correspond to the depicted facial expression, as it is used for the facial expression
classification using shape information. The first and last row show the facial part that is taken under
consideration when mouth and eyes occlusion is present. The equivalent subset of the Candide grid
used for classification is also depicted. In Figure 7 one expresser is depicted from the Cohn-Kanade
database for the 6 basic facial expressions under partial occlusion.

2) Hausdorff distancein order to calculate the distance between two grids, the Hausdorff distance
has been used. More specifically, given two finite point séts: {a;,...,a,} andB = {by,...,b,}

(in our case this set of points is the set of Candide nodes), the Hausdorff distance is defined as:

H(A,B) = max{d(A, B),d(B, A)}, (82)
where
d(A,B) =supinf ||[a—Db || (83)
acAbeB
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Fig. 6. A poser example from the Cohn-Kanade database, depicting the grid taken under consideration in the original
image (second row) and when mouth and eyes occlusion is present (first and last row, respectively).

Fig. 7. A poser example from the Cohn-Kanade database, depicting the original images (second row) and eyes and mouth
occlusion (first and last row, respectively).

|| - || represents some underlying norm defined in the space of the two point sets, which is generally
required to be arl, norm, usually thel, or Euclidean norm.

In the proposed method, a robust alternative of the Hausdorff distance, the so-called mean Hausdorff
distance [41] is used in order to measure the similarity between facial grids. The mean Hausdorff
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distanced,; (A, B) from A to B is defined as:

dyu(A,B) = min la—b]| (84)

1
N(A) 326;4
where N (A) is the number of points ipd. The mean Hausdorff distance is used to create a feature
space, using pseudo-Euclidean embedding, as described in Section 1V, so as to define later a multiclass
SVM classifier in this space. It should be noted here that in the setup used in this paper, where the
same grid (the Candide grid) is tracked in all cases over facial video frames, the correspondences
between the grid nodes, b;,i = 1,...,p (p = ¢) in the two grid sets are known. Thus, the sum of
Euclideans) , ||a; — b;|| would suffice. However, the use of Hausdorff distance makes the proposed
system applicable to other scenarios, e.g. when different grids are used or when part of the grid is not
available p # ¢ e.g. due to image cropping). This may occur when a tracking algorithm is applied
and some nodes are lost or considered unreliable. Thus, the general Hausdorff distance is adopted.
Another measure that we are currently investigating is the angle of the Candide points between the
neutral and the expressed grids. Using the angle of points in a sequence of grids the dynamics of
facial expression could be described. But this approach has the same disadvantage as the one proposed
in [7], in which deformation vectors have been used for facial expression recognition, and require
the initial detection of the neutral state (the neutral state is not required in the proposed procedure).

3) Experimental protocol:The most frequently used approach for testing the generalization per-
formance of a classifier is the leave-one cross-validation approach [42]. It was devised in order to
make maximal use of the available data and produce averaged classification accuracy results. The
term leave-one out cross-validation does not correspond to the classical leave-one-out definition, as
a variant of leave-one-out was used (i.e., leave 20% of the samples out) for the formation of the
test dataset in our experiments. However, the procedure followed will be called leave-one-out from
now on for notation simplicity without loss of generalization. More specifically, all image sequences
contained in the database are divided into 7 facial expression classes. Five sets containing 20% of the
data for each class, chosen randomly, were created. One set containing 20% of the samples for each
class is used as the test set, while the remaining sets form the training set. After the classification
procedure is performed, the samples forming the test set are incorporated into the current training set,
and a new set of samples (20% of the samples for each class) is extracted to form the new test set.
The remaining samples create the new training set. This procedure is repeated five times. A diagram
of the leave-one-out cross-validation method can be seen in Figure 8. The average classification
accuracy is defined as the mean value of the percentages of the correctly classified facial expressions
over all data presentations. The accuracy achieved for each facial expression is averaged over all

facial expressions and does not provide any information with respect to a particular expression. The
confusion matrices [7] have been computed to handle this problem. The confusion matrix is a
n X n matrix containing information about the actual class ldhel. (in its columns) and the label
obtained through classificatidab.; (in its rows). The diagonal entries of the confusion matrix are
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Training test Test set
——— — S
Anger Anger 20% Anger 20% ... | Anger 20% Anger 20%
DngUST Disgust 20% | Disgust 20% | | Disgust 20% Disgust 20%
Fear Fear 20% Fear 20% .. | Fear20% Fear 20%
Happiness |Happiness 20%[Happiness 20% .., |Happiness 20% Happiness 20%
Sadness Sadness 20% | Sadness 20% | ... | Sadness 20% Sadness 20%
Surprise Surprise 20% | Surprise20% | ... | Surprise20% Surprise 20%
Neutral Neutral 20% | Neutral 20% | - | Neutral 20% Neutral 20%
T

Fig. 8. Diagram of leave-one-out method used in classification assessment for facial expression and FAUs recognition.

the percentages that correspond to the cases when facial expressions are correctly classified, while
the off-diagonal entries correspond to misclassifications. The abbreviationgi, fe, ha, sa, su

andne represent anger, disgust, fear, happiness, sadness, surprise and neutral, respectively. We have
experimented with various numbers of theparameter (fronC = 10=% until C = 10° in log scale)

and the best setup has been when usihg 100 for all tested classifiers. Only the best accuracies
achieved for any method used are taken under consideration to make the final conclusions.

4) Experiments regarding the entire Candide grithe confusion matrix obtained when maximum
margin SVMs were used taking under consideration the deformed Candide grids, is presented in Table
la. The accuracy achieved was equal to 85.2%. As can be seen from the confusion matrix, fear seems
to be the most ambiguous facial expression having the lowest correct classification ration (71.2%). The
overall facial expression recognition accuracy rates achieved for different number of dimensions of
the pseudo-Euclidean space of the Hausdorff distances taken under consideration when maxim margin
SVMs, MWCVMCs and MWCVMCs variant were used are depicted in Figure 9a. The highest overall
accuracy rate achieved was equal to 99% (achieved by MWCVMC and the variant). The confusion
matrix calculated in this case is presented in Table Ib. As can be seen from the confusion matrix,
almost all previous misclassifications are now eliminated. The only misclassification remaining is the
one between fear and happiness, which was actually the most usual misclassification appearing when
the maximum margin SVMs were used.

A comparison of the recognition rates achieved for each facial expression with the state of the
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TABLE |

CONFUSION MATRICES WHEN USING A MAXIMUM MARGIN SVMs AND B) MWCVMCSs.

5 -
\faber” [ an | di

Laby % fe | ha | sa su ne tabgen\'?Pct” | an | di [ fe | ha [ sa | su | ne
an 91 14.3 0 0 10.8 0 4.8 an 100 0 0 0 0 0 0
di 6 85.7 7.3 0 0 0 0 di 0 100 0 0 0 0 0
fe 0 0 71.2 0 0 7.1 2.4 fe 0 0 93 0 0 0 0
ha 0 0 8.8 91 4.6 0 0 ha 0 0 7 100 0 0 0
sa 0 0 55 0 80 0 24 sa 0 0 0 0 100 0 0
su 3 0 0 0 0 92.9 5.8 su 0 0 0 0 0 100 0
ne 0 0 7.2 9 4.6 0 84.6 ne 0 0 0 0 0 0 100
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Recognition accuracies obtained for facial expression recognition using maximum margin SVMs and MWCVMC
in the pseudo-Euclidean space when a) all the grid nodes were used b) eyes occlusion is present (mouth nodes discarded)
and ¢) mouth occlusion is present (eyes nodes discarded).
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art [42]-[45], when six facial expression were examined (the neutral state was not taken under
consideration) is depicted in Figure 10, where the recognition rate of each of the six basic facial

expressions is depicted. As can be seen, our recognition rates are the highest for each facial expression.
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The second best reported results are the ones in [45], wheT&aotal recognition rate has been
reported. Moreover, the proposed method has been tested for the recognition of the neutral state,
unlike the methods in [43], [44], [45], that have been tested only for the recognition of the six
expression. That is, the error that will be introduced by the inclusion of the neutral state to the other
expressions remains unknown. The method in [42] has been tested for the recognition of neutral state
and has achievet.59% (our method had00% performance for the neutral state). To the best of the

authors knowledge these are the best results achieved in Cohn-Kanade database for the recognition
of the seven facial expressions.

£
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0 | | | |
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Facial expression

Fig. 10. Comparison of the recognition rate for every of the six basic facial expression of various state-of-the-art facial
expression recognition methods.

5) Experiments in the presence of eyes occlusibhe recognition accuracy rate achieved when
eyes occlusion was present and the maximum margin SVMs were used was equal to 83.5%. Thus,
the introduction of eyes occlusion results in a 1.7% recognition accuracy rate drop. The equivalent
recognition accuracy rate achieved when MWCVMC (or MWCVMC variant) were used was equal
to 96.3% (2.7% drop in recognition accuracy due to eyes occlusion). The recognition accuracy rates
achieved for different number of dimensions of the pseudo-Euclidean space of the Hausdorff distances
taken under consideration when maximum margin SVMs and the two MWCVMC were used are
depicted in Figure 9b.
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6) Experiments in the presence of mouth occlusidhe recognition accuracy rate achieved when
mouth occlusion was present and the maximum margin SVMs were used was equal to 79.8%. Thus,
eyes occlusion results in a 5.4% recognition accuracy rate drop. The equivalent recognition accuracy
rate achieved when MWCVMC (or MWCVMC variant) were used was equal to 93.7% (5.3% accuracy
drop due to eyes occlusion presence). The recognition accuracy rates achieved for different number
of dimensions of the pseudo-Euclidean space of the Hausdorff distances taken under consideration
when maximum margin SVMs and MWCVMC were used are depicted in Figure 9c.

B. Multiclass Classification Experiments in Face Recognition

The face recognition problem has been performed in order to assess the proposed method us-
ing Mercer’s kernels. Experiments were performed using the ORL (Olivetti Research Laboratory)
database. This database includes ten different images of 40 distinct subjects. For some of them, the
images were taken at different times and there are variations in facial expression (open/closed eyes,
smiling/nonsmiling) and facial details (glasses/no glasses). The original face images were all sized
92x 112 pixels. The gray scale was linearly normalized to lie within the rdrge 1]. The experiments
were performed with five training images and five test images per person for a total of 200 training
images and 200 test images. There was no overlap between the training and test sets. Since the
recognition performance is affected by the selection of the training images, the reported results were
obtained by training 5 non-overlapping repetitions with different training examples (random selection
of five images from ten ones per subject, out of a total of selections) and selecting the average error
over all the results. In Figure 11 the mean error rates for the proposed approach and the maximum
margin SVM are depicted. The tested kernels have been the polynomial kernels with degrees from 1
to 4. The best error rate of the proposed method has been measured at about 1.5% for the proposed
methods (both MWCVMC variants gave the same mean recognition rate in this experiment) was an
average of 5 simulations. However, individual experiments had given error rates as low as 0%. The
SVM classifier in this problem achieved a best error rate at aBut

For completeness, we should note here that the proposed MWCVMCs classifiers are similar to
the classifiers tested for face recognition in the ORL database using a KPCA plus SVM scheme.
That is, the method for finding the MWCVMCS classifier is comprised of an initial KPCA step, and
afterwards a minimum within class variance multiclass system is trained. The method of the KPCA
plus SVM classifier in [46] has shown superior results in face recognition in comparison to the other
tested methods. Actually, the successful application of a KPCA plus SVM scheme has motivated
the application of MWCVMCs for face recognition in ORL database. We have experimented with a
KPCA plus SVM approach as in [46] and the best mean recognition rate haBéenAs can be
seen our method outperforms KPCA plus SVMs in ORL database.

C. Experimental Results in Other Databases

Apart from facial expression and face recognition we have applied the proposed classifier to other
problems. To do so we have used benchmark data sets from the University of California at Irvine
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Fig. 11. Mean face recognition error rates in ORL database.

(UCI) Repository database [25]. More precisely, we have used the Balance-scale, Glass, Iris and Wine
database. We have used a similar testing protocol as the one used in facial expression recognition
experiments but in this time we have consideréth for training and the remaining0% for testing.
This procedure has been repeated five times. The average classification accuracy is defined as the
mean value of the percentages of the correctly classified samples over all data presentations. We have
tested various kernels (i.e., polynomial and RBF kernels) but we will report only the best results for
all the tested kernels and for all the tested approachesCThalues that we have tested had been
from C' = 1079 to C' = 10° in log scale. For case of RBF kernels in order to choose the parameter
(spread) we have used a simple euristic method. That is, on the training set, we calculate the average
of the distance from each instance to its nearest neighbor and cajhthige used in the experiments
v = {0,270, 470}

The balance-scale is separated into three classes with a total of 625 four dimensional vectors. For
this dataset the linear kernel (i.&(x;,x2) = xlTxQ) has given the best results that have b&er%
for typical SVMs,92.9% for the MWCVMCs and93.5% for the second variant of MWCVMCs (in
this case the within class scatter matrix was invertible). The second dataset has been the Glass dataset
that is separated into 6 classes giving a total of 214 9-dimensional vectors. For this dataset the best
kernel has been an RBF kernel with variance- v, for SVMs and an RBF with variance = 2+,
for the MWCVMCs. The best mean error rate for SVMs has bget%, for MWCVMCs and for the
second variant has beé8% and64%, respectively. The third dataset has been Iris which is separated
into 3 classes of a total of50 four dimensional vectors. The best kernel for this dataset has been
an RBF with variancey = 24, for all the tested classifiers. The best results have 96€iv% for
SVMs and96.73% for both MWCVMCs and for the second variant. The final dataset has been the
Wine dataset which is separated irt@lasses containing a total of 178 13-dimensional vectors. The
RBF kernel has given the best results for all the tested classifiersywitR2+,. In this dataset SVMs
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have givend3.3%, the MWCVMCs have achieve®.67% and the variant of MWCVMC97.1%.
The best results are summarized in Table Il. As can be seen the proposed classifiers outperform
maximum margin classifiers in all cases.

TABLE 1l

MEAN ERRORRATES A) BALANCE-SCALE B) GLASS C) IRIS AND D) WINE.

Method Kernel | Mean Error Rate % Method Kernel | Mean Error Rate %
SVMs linear 87.7 SVMs RBF 58.4
MWCVMCs linear 92.9 MWCVMCs RBF 63.01
MWCVMCs Variant | linear 935 MWCVMCs Variant | RBF 64
(a)Balance-Scale (b) Glass
Method Kernel | Mean Error Rate% Method Kernel | Mean Error Rate%
SVMs RBF 96 SVMs RBF 93.3
MWCVMCs RBF 96.7 MWCVMCs RBF 96.67
MWCVMCs Variant | RBF 96.7 MWCVMCs Variant | RBF 97.1
(c) Iris (d) Wine

VI. CONCLUSIONS

In this paper novel multiclass decision hyperplanes/surfaces have been proposed based on the
minimization of within-class variance in Hilbert spaces subject to separability constraints. We have
provided robust solutions for the optimization problem. We have related the proposed classifiers with
SVMs and we have provided insights why the proposed surfaces can outperform maximum margin
classifiers. Moreover, we have tried to related the proposed classifiers with Fisher Kernel Discriminant
Analysis. We have extended the proposed classifiers in pseudo-Euclidean spaces (i.e., defining the
proposed classifiers with indefinite kernels). We have shown the usefulness of this extension by
applying the proposed classifiers in a space defined by Hausdorff distances and we have applied
the method for the classification of seven facial expressions, where state-of-art facial expression
recognition rates have been achieved. We have applied the proposed classifiers to other classification
problems where it is shown that they outperform typical maximum margin classifiers. Further, research
on the topic includes the explicitly measurement of the VC dimension of the proposed classifiers and
find surfaces with VC dimension strictly less than the one of maximum margin classifiers. Another
subject for research on the topic is the robust calculation of the enclosing hyperellipse of every of
the classes. This can be achieved by the robust calculation of the covariance and the mean of each
of the classes. Moreover, the proposed classifiers can be applied in a straightforward manner to other
multiclass SVM approaches apart the one described in this paper [29], [47]. Furthermore, it would
be an interesting topic to make the training procedure of the classifiers an online one. This requires
the use of both iterative KPCA and SVM algorithms. Thus, another possible research topic would
be the combination of algorithms such as [48], [49] for iterative KPCA and such as [50] for online
SVM training in order to make online minimum within class variance classifiers. Finally, it would
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be a very interesting topic to compare the proposed classifiers to recently introduced SVM variants
that consider class statistics, as well [30], [51], [52].

APPENDIX I
PROOF OFPROPOSITION

Proposition 2. If for some¢ € H, ¢T'S?¢ = 0, then under the projectiog for all training vectors
o(x:), p(x;) with ¢(x;) # ¢(x;), the following holds¢” ¢(x;) = ¢T¢(x;). In other words, under
the projection¢ all the training vectors(x;) fall in the same point. Thus; = ¢% ¢(x;) is a constant
Vx; eU.

Let the matrixX® = [¢(x1) ... #(xy)] that has as columns the projected training vectors. The total
scatter matrixS{® can be written as:

N
SP = (6(xi) —m®)(p(x;) —m®)" = (X? - X*Gy)(X® - X*Gy)" (85)
i=1
where Gy is a matrix with elements equal &y ~!. Let Iy be the identity N x N matrix. The
following holds:

(TSP =0e ¢M(X? - XPGy)(X? - XPGN)T¢ =0

86
1(In — GN)X2T¢2 =0 & ¢To(x) = ¢To(xj) = ¢"m® W (89)

Let B® and B¢ be the complementary spaces spanned by the orthonormal eigenvecsfrsheit
correspond to non-zero eigenvalues and to zero eigenvalues, respectively.cLBf and ¢ € B?.
Thus, w''S2w = ¢7S2p ¥ w € H. A proof of the above proposition can be found in [3]. The
normal vectorw; of the decision surface can be written ag = ¢, + ¢, With ¢, € B® and
¢y € BY.

Taking under consideration that;, = ¢, + {;,, the Lagrangian of the optimization problem (30)
subject to the separability constraints (19) can be written as:

Li(wi,b,&,a,8) =33, wiShwi+C X%, YL, ¢ -
— > S o [(wi, — wi) T (¢(xi) —m®) + by, — b — 2+ €F]—
= Yk e
= lele ®rLSuer + CZi\Ll Zszl &~
= S af (e, + ¢, — ek — ST (B(xi) —m®) + by, — b — 2+ €F]—

— N S Bk
87)

Taking under consideration the Proposition 2, sincecfos € B, C{OS?CM =0, thenC£O¢(xZ—) is
a constant for allp(x;). That is,¢; ¢(x;) = ¢; m* and(,¢(x;) = ¢, m®. Thus,L; becomes:

Li(wi,b,&,a.8) =38 @IS0, +CN K eb-
SN SR bl — @) (d(xi) —m®) + by, — b — 2+ EF]—  (88)
— Y S Bhel.
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The optimum hyperplanes, can be written asvy , = ¢y, , + (i .- Then:

N

Ve, Ltlwemw., = Vo, Lilgp =, . =05 Sy, — > (¢ Aio — af,)(¢(xi) —m®) = 0. (89)
=1

It can be shown in a straightforward way that the gradient in (89) is the same as the gradient of the
optimization problem (42) subject to the constraints (43). Hence, the separability constraints (31) can
be safely replaced by the separability constraints (43). Thus, the(pgrof the vectorw, , does

not play any role in the separability constraints (since an arbitrary vegtgrcan be chosen, the
vector ¢y, , = 0 is selected) and the Proposition 1 has been proven. A similar approach can be used
for proving the equivalent proposition for the MWCVMCs variant.

APPENDIX I
WOLF DUAL PROBLEM FOR THE OPTIMIZATION OFLAGRANGIAN (49)

In order to find the optimum separating hyperplanes for the optimization problem (46) subject to
the constraints (47), we have to define the saddle point of the Langragian (49). At the saddle point,
the solution should satisfy the KKT conditions, fer=1, ..., K:

N
Vi, Lsln,—n,, =0 m =5, Y (cfAio — af,) (R — 1m) (90)
i=1
N
L
0 3|bk bko_0<:>za Z kAzo (91)
=1
L
83|§k Eko_O@ﬁ]Lﬂ'%o—C and O<a , < C. (92)
Substituting (90) back into (49) we obtain:
L3(nk7b7£7aa16) Zk,’ 1 Z’L 1 E] 1(C A - )( kA - Oé )((Xz ﬁ’l)Tsal()‘v{] — ﬁ’l))—
- Zk:l Zi:l @ [Zj:l(cj Aj — o o) (% — m)TSwl(ij —m))—
— N (kA — of) (R — m) TSN (%) — i) + by, — b — 2]—
— ke Doy ol + O3y S €F - L Sk B o

Adding the constraint (92), the terms gndisappear. Only the two terms & are considered:
Zakbl = Zbk Z ) and B, = Zafbk = Zbk(z ok). (94)
i,k k 7

But, from (91)
N N
ok =" ck4 (95)
=1 =1

so By = By and the two terms cancel each other, giving:

L3(T,k7b7€7aw@)zw(a): QZi,ka'If—Flszk(Q lC]AA ) kAa T2 kAa +%afa§_

_C?Ajozf+a a +ckA i —OékOtk)(( X )TSw (Xj —m))
(96)
July 29, 2008
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SinceY", cfAiak =3, c’?Ajaf we have:
D((&i —m)'S,! (%) — m))

—2204 + = Z ’?AiA CAA +aa —iaka]

7]7

but >, cF c; —cl’ —c ' so:

1 e \T&-1/= -
.7, k
which is a quadratic function in terms of alpha with linear constraints
SN b =N kA, k=1,...,K and (98)
(99)

0<af<C, i=1,...,N di=0, ke{l,...,K}\i.

The combination of (90) with the fact thag, , = Pquk,o (from the isomorphic mapping (45))

and the results of the Proposition 1, provides the following decision function

f(x) = argmaxk:l,...,K[W£o(¢(X) m?) + br.,o] = argmaxk:L...,K[(ﬁg,o((ﬁ(X) —m?) + bi.o]
([N (FAio — ol ) (6(x:) — m®)TPSPT (p(x) — m?) + by,
(100)

= argmaxy_p
or equivalently:
f60 = argmaxy g[Sy, o Aiolo(x) - m?)TPSIPT (600 —m®) 0
- Zi:yi;ﬁk ai’io(¢(xi) - mq))TPgalpT((b(x) - m(b) + bk,o]'

APPENDIX I
WOLF DUAL PROBLEM FOR THE OPTIMIZATION OFLAGRANGIAN (53)

At the saddle point, the solution should satisfy the KKT conditionsifex 1,... K:
Vn L — =0&
n,Laln.=n,, M o (102)
Nko = Sw Zi:l(ci Ai70 - ai,o)(xi - mk)

The other conditions are the same as (91) and (92).

By substituting (102) back into (53) we obtain:
— 1) 'S (% — i) -

Ly(n, b€, 0, 8) =34, Yie 1Z] 1(cFAi = af ) (A — o) (X
mlz‘)TSw ( j_mli))_

- Zk:l Zi:l ; [Zj:l(cj Aj— O‘j (% —
So! (& — 1)) + by, — by — 2]—

— YR (kA — of) (& — my)TS;
- 25:1 Zi\il aféf +C ZkK:1 Zfil & — Zi\il Zk;Kzl Brer. (103)

as in Appendix Il the terms ig disappear and (103) becomes:

Y Z;-V Aije(Xi — 1y, )TSE (% — mmy,)
af(diA;—alh).

(cA—a)(kA —a) (kA —a)and)\”k

whered; j , =
DRAFT
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In order to isolatex!S;'%; in equation (104) we expandedh, as in;, = N Yoz, X

N < 1o T :
> p—1 VkpXp Wherevy, , = g if X, € Uy, andyy, , = 0 if %, € Uy We expand the term as:

Zk 121 12; 1 05,6 (X mk)TS ( X; — 1my)

= Zk 1 Zz 1 PO 1945, (XS5} Xj — mksm_ulij + ﬁﬂ?fé;lrhk - iiTgfulﬁlk)
=

N (105)
= Zk 122 123 RN szl Vk,rhoOi,p.k =
— o VkrhoOp.gk + Yopet Somet VK pVkmOpm k) %7 Sy %;
while the other one is expanded as:
Do Yoy Yot Mg (& — i, )78 (% — i) =
= T, Zj‘vzl(iz‘TSfulij m;, 1S,1%, — XTS o Iy, + 1] iy, (106)
= Zszl Zivzl Z;V:l()‘i,j,k - 25:1 Vi, pApgik — Zf)\[:l Y1, pAip ket
+ 25:1 Yot Vl,;,p’/lm,m)iigfuli
Thus, the Wolf dual problem is:
K N N
Li(n, b, & o, B) = = zza YYD T wi kS, %, (107)
k=1 i=1 j=1
where
Wisdk = Oijk = Yoney VkipOipk = ot VipOpiik T Yomet Domeet VK pVhmOpam (108)

N N N N
ik T D=1 VippAogik F D pm1 VipNip ke = 2op=1 2am=1 YippVlm,m

After, solving the quadratic optimization problem (108) the decision function is:

f(x) = argman:l,...,K[Wg,o(Qs(X) —my) + byo) = argmaxkzL...,K[(ﬁf,o(éf)(X) —m}) + by o]

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

= al"gmaxk:L...,K[EﬁL(CfAi,o - O‘f,o)(ﬁf’(xi) - m%)TpgﬁlPT(Cf’(X) —my) + bk,o]-(log)
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