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Abstract

In this paper, a novel class of multiclass classifiers inspired by the optimization of Fisher’s

discriminant ratio and the Support Vector Machine (SVM) formulation, is introduced. The optimiza-

tion problem of the so-called Minimum Within-Class Variance Multiclass Classifiers (MWCVMC)

is formulated and solved in arbitrary Hilbert spaces, defined by Mercer’s kernels, in order to find

multiclass decision hyperplanes/surfaces. Afterwards, MWCVMCs are solved using indefinite kernels

and dissimilarity measures via pseudo-Euclidean embedding. The power of the proposed approach

is firstly demonstrated in the facial expression recognition of the seven basic facial expressions

(i.e., anger, disgust, fear, happiness, sadness and surprise plus the neutral state) problem in the

presence of partial facial occlusion by using a pseudo-Euclidean embedding of Hausdorff distances

and the MWCVMC. The experiments indicated a recognition accuracy rate achieved up to 99%. The

MWCVMC classifiers are also applied to face recognition and other classification problems using

Mercer’s kernels.

Index Terms

Fisher’s Linear Discriminant Analysis, Multiclass Classifiers, Support Vector Machines, Mercer’s

kernels, pseudo-Euclidean embedding, Facial Expression Recognition, Face Recognition.

I. I NTRODUCTION

The best studied techniques for binary pattern classification include Fisher’s Linear Discriminant

analysis (FLDA) [1], its nonlinear counterpart, the so-called Kernel-Fisher’s Discriminant Analysis

(KFDA) [2], [3] and Support Vector Machines (SVMs) [4]. A combination of SVMs and FLDA has

been performed in [5], where a two class classifier has been constructed, inspired by the optimization

of the Fisher’s discriminant ratio and the SVMs separability constraints. More precisely, motivated

by the fact that the Fisher’s discriminant optimization problem for two classes is a constraint least-

squares optimization problem [2], [5], [6], the problem of minimizing the within-class variance has

been reformulated, so that it can be solved by constructing the optimal separating hyperplane for both

separable and nonseparable cases. The classifier, proposed in [5], has been applied successfully in

order to weight the local similarity value of the elastic graphs nodes according to their corresponding

discriminant power for frontal face verification. It has been also shown there that it outperforms the

typical maximum margin SVMs in the specific problem.

In [5], the proposed classifier has been developed only for two class problems. Moreover, only

the linear case has been considered and only when the number of training vectors is larger than the

feature dimensionality (i.e., when the within-class scatter matrix of the samples is not singular). An

effort to extend the two class classifiers of [5] in order to solve multiclass classification problems

has been performed in [7]. The limitation of the multiclass classifier constructed in [7] is that its

optimization problem has not been formally defined in Hilbert spaces, but has been considered only

for cases in which the within-class scatter matrix of the data is invertible. The classifiers proposed

in [7] have been shown to outperform the typical maximum margin SVMs in the recognition of the
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six basic facial expressions by large margins.

A lot of research has been conducted regarding facial expression recognition in the past fifteen

years [8]. The facial expressions under examination were defined by psychologists as a set of six

basic facial expressions (anger, disgust, fear, happiness, sadness, and surprise) [9]. The interested

reader may refer to [7], [10], [11] and in the references therein, regarding the various technologies

developed for facial expression recognition. In the system proposed in [7], the Candide grid [12] is

manually placed on the neutral image and afterwards tracked until the fully expressive video frame

is reached. The vectors of the Candide node deformations are the features that have been used for

facial expression recognition. The system requires the detection of the neutral facial expression prior

to tracking and recognition. Highly related methods with the one proposed in [7] have been also

proposed in [13] and [14].

In this paper, a general multiclass solution of the optimization problem proposed in [5], [7] is

presented. The problem is solved in arbitrary Hilbert spaces built using Mercer’s kernels, without

having to assume the invertibility of the within-class scatter matrix neither in the input nor in the

Hilbert space. In this way, a new class of multiclass decision hyperplanes/surfaces is defined. In order

to build our classifiers in arbitrary dimensional Hilbert spaces we use a method similar to the one

proposed in [3]. In [3] a framework for solving the Fisher’s discriminant optimization problem (the

KFDA optimization problem) using kernels has been proposed. That is, in [3] it has been shown

that by using KPCA it is feasible to solve KFDA using kernels and that under KPCA the nonlinear

Fisher discriminant analysis optimization problem with kernels is transformed into an equivalent

linear (without kernels) optimization problem that produces the so-called Complete Kernel Fisher

Discriminant Analysis (CKFDA). Since the approach proposed in this paper requires the solution of

a quite different optimization problem than the one in [3] (i.e., the optimization problem in [3] is

solved via eigenanalysis and our problem is a quadratic optimization problem), we explicitly prove

that the framework in [3] can be safely applied in our case for providing solutions to proposed

classifiers. Moreover, we provide some insights of the relationship between the proposed multiclass

classifiers and the classifiers proposed in [3].

Afterwards, the problem is solved using indefinite kernels and/or dissimilarity measures with the

help of pseudo-Euclidean embedding. The extension of the proposed classifiers using dissimilarity

measures for facial expression recognition problems is motivated by the following. In [7] facial

expression recognition has been performed by classifying the displacements of the grid nodes between

the neutral and the expressive grid. In that case the knowledge of the neutral state is required a-priori.

In order to be able to recognize the neutral state, as well as, the other expressions we had to deal

with directly comparing grids (and not grid displacements). The grids consist of a set of points and

some of the most widely used measures for comparing point sets that are also robust to a series of

manipulations (i.e., partial occlusion etc) is the family of Hausdorff distances (which are dissimilarity

measures). Thus, we had to successfully combine the multiclass classifiers (which are naturally defined

in Euclidean spaces) with pseudo-Euclidean spaces defined by dissimilarity measures. By using the

proposed classifier in pseudo-Euclidean spaces, combined with Haussdorf distances, the recognition
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of the six basic facial expressions plus the neutral state is achieved.

The use of dissimilarity measures and indefinite kernels has gained significant attention in the

research community due to their good performance in various pattern recognition applications [15],

[16], [17], [18]. In [15], various classifiers, like two-class FLDA and maximum margin SVMs, have

been designed in various pseudo-Euclidean spaces. For more details on the geometry of Euclidean and

pseudo-Euclidean spaces the interested reader may refer to [19], [20], [21], [22], [23]. In [16], [18]

indefinite kernels have been used for feature extraction to boost the performance of face recognition.

The geometric interpretation of maximum margin SVMs with indefinite kernels has been given in

[17].

In summary, the contributions of this paper are:

• the presentation of the Minimum Within-Class Variance Multiclass Classifiers (MWCVMC) in

their general form for multiclass classification problems using the multiclass SVM formulation

in [4], [24], the exploration of the relationship with SVMs and with Fisher Linear Discriminant

analysis;

• the generalization of MWCVMC in arbitrary Hilbert spaces, using Mercer’s kernels in order to

define a novel class of non-linear decision surfaces;

• the solution of MWCVMC using indefinite kernels and pseudo-Euclidean embedding..

Finally, the power of the proposed classifiers is demonstrated in various classification problems. In

order to show the potentials of the proposed MWCVMCs we apply:

• Mercer’s kernels, like polynomial kernels, for face recognition and for various other classification

problems using multiclass datasets from UCI repository [25]

• dissimilarity measures with pseudo-Euclidean embedding for the recognition of seven basic facial

expressions.

The rest of this paper is organized as follows. The problem is stated in Section II. The novel class

of multiclass classifiers in Hilbert spaces is developed in Section III. The proposed classifier in

pseudo-Euclidean spaces are described in Section IV. The application of the novel classifiers in

facial expression, face recognition and other classification problems is demonstrated in Section V.

Conclusions are drawn in Section VI.

II. PROBLEM STATEMENT

Let U be a training data set with finite number of elementsU = {xi, i ∈ {1, . . . , N}}, whose

elements belong to two different classesU1 andU2, containing training data samples (feature vectors)

xi ∈ <M and class labelsyi ∈ {1,−1}. The simplest way to separate these classes is by finding a

separating hyperplane:

wTx + b = 0 (1)

wherew ∈ <M is the normal vector of the hyperplane andb ∈ < is the corresponding scalar term of

the hyperplane, also known as bias term [5]. The decision whether a test samplex belongs to one of

the different classesU1 or U2 is taken by using the linear decision functiongw,b(x) = sign(wTx+b),

also known as canonical decision hyperplane [4].
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A. Fisher’s Linear Discriminant Analysis

The best known pattern classification algorithm for separating these classes is the one that finds

a decision hyperplane that maximizes the Fisher’s discriminant ratio, also known as Fisher’s Linear

Discriminant Analysis (FLDA):

max
w,b

wTSbw
wTSww

, (2)

where the matrixSw is the within-class scatter matrix defined as:

Sw =
∑

x∈U1

(x−m1)(x−m1)T +
∑

x∈U2

(x−m2)(x−m2)T . (3)

m1 andm2 are the mean sample vectors for the classesU1 andU2, respectively. The matrixSb is

the between-class scatter matrix defined in the two class case as:

Sb = N1(m−m1)(m−m1)T + N2(m−m2)(m−m2)T (4)

= N1N2(m1 −m2)(m1 −m2)T (5)

whereN1 and N2 are the cardinalities of the classesU1 andU2, respectively andm is the overall

mean vector of the setU . The solution of the optimization problem (2) can be found in [1]. It can

be proven that the corresponding separating hyperplane is the optimal Bayesian solution, when the

samples of each class follow Gaussian distributions with same covariance matrices [1].

B. Support Vector Machines

In the SVM case, the optimal separating hyperplane is the one which separates the training data

with maximum margin [4]. The SVM optimization problem is defined as:

min
w,b

1
2
wTw (6)

subject to the separability constraints:

yi(wTxi + b) ≥ 1, i = 1, . . . , N. (7)

C. Minimum Within-Class Variance Two-Class Classifier

In [5], inspired by the maximization of the Fisher’s discriminant ratio (2) and the SVM separa-

bility constraints, the Minimum Within-Class Variance Two-Class Classifier (MWCVTCC) has been

introduced. The MWCTCC optimization problem is defined as:

min
w,b

wTSww, wTSww > 0, (8)

subject to the separability constraints (7). Thus, the within-class variance of the training samples is

minimized when projected to the directionw subject to the constraint that the samples are separable

along this projection. More details about the motivations of the optimization problem (8) can be found

in [5].
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If training errors are allowed, the optimum decision hyperplane is found by using thesoft formu-

lation [4], [5] and solving the following optimization problem:

min
w,b,ξ

wTSww + C
N∑

i=1

ξi, wTSww > 0 (9)

subject to the separability constraints:

yi(wTxi + b) ≥ 1− ξi , ξi ≥ 0, i = 1, . . . , N (10)

whereξ = [ξ1, . . . , ξN ] is the vector of the non-negative slack variables andC is a given constant

that defines the cost of the errors after the classification. Larger values ofC correspond to higher

penalty assigned to errors. The linearly separable case (8) can be found when choosingC →∞.

The solution of the minimization of (9), subject to the constraints (10), is given by the saddle point

of the Lagrangian:

L(w, b,a, r, ξ) = wTSww + C
N∑

i=1

ξi −
N∑

i=1

ai[yi(wTxi + b)− 1 + ξi]−
N∑

i=1

riξi, (11)

wherea = [a1, . . . , aN ]T andr = [r1, . . . , rN ]T are the vectors of the Lagrangian multipliers for the

constraints (10). The Karush-Kuhn-Tucker (KKT) conditions [26] imply that for the optimal choice

of w,a, r, b, ξ, the following hold:

∇wL|w=wo
= 0 ⇔ Swwo = 1

2

∑N
i=1 ai,oyixi

∂L
∂b |b=bo

= 0 ⇔ aT
o y = 0

∂L
∂ξi
|ξi=ξi,o

= 0 ⇔ ri,o = C − ai,o

ri,o ≥ 0, 0 ≤ ai,o ≤ C, ξi,o ≥ 0, ri,oξi,o = 0

yi(wT
o xi + bo)− 1 + ξi,o ≥ 0, ai,o{yi(wT

o xi + bo)− 1 + ξi,o} = 0

(12)

where the subscripto denotes the optimal case andy = {y1, . . . , yN} is the vector denoting the class

labels. If the matrixSw is invertible, i.e. the feature vector dimensionality is less or equal to the

number of samples minus two (M ≤ N −2), the optimal normal vectorw of the hyperplane is given

by (12):

Swwo =
1
2

N∑

i=1

ai,oyixi ⇔ wo =
1
2
S−1

w

N∑

i=1

ai,oyixi. (13)

By replacing (13) to (11) and using the KKT conditions (12), the constraint optimization problem

(9) is reformulated to the Wolf dual problem:

max
a

f(a) = 1T
Na− 1

2
aTQa subject to (14)

0 ≤ ai ≤ C, i = 1, . . . , N, aTy = 0

where1N is aN dimensional vector of ones and[Q]i,j = 1
2yiyjxT

i S−1
w xj . It is worth noting here that,

for the typical maximum margin SVM problem [4], the matrixQ has elements[Q]i,j = yiyjxT
i xj .

The corresponding decision function is given by:

g(x) = sign(wTx + b) = sign(
1
2

N∑

i=1

ai,oyixT
i S−1

w x + bo). (15)
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The optimal thresholdbo can be found by exploiting the fact that for all support vectorsxi with

0 < ai,o < C, their corresponding slack variables are zero, according to the KKT condition (12).

Thus, for any support vectorxi with i ∈ S = {i : 0 < ai < C}, the following equation holds:

yi(
1
2

N∑

j=1

yjaj,oxT
j S−1

w xi + bo) = 1. (16)

Averaging over these patterns yields a numerically stable solution:

bo =
1
N

∑

i∈S
(
1
2

N∑

j=1

yjaj,oxT
j S−1

w xi − yi). (17)

As can be seen, the described MWCVTCC [5] have been proposed for two class problems and

define only linear classifiers. Actually, in [5] non-linear decision surfaces have been defined, but there

were not the generalization of MWCVTCC in Hilbert spaces. These surfaces will be discussed in

Section III-B.

D. Multi-class SVM

Many methods have been proposed for the extension of binary SVMs to multiclass problems [4],

[24], [27], [28]. The multiclass SVMs classifiers in [4], [24], [27], [28] are the most elegant multiclass

SVM algorithms closely aligned with the principle of always trying to solve problems directly. That

principle entails the modification of the SVM objective in such a way that will simultaneously allow

the computation of a multiclass classifier learning with kernels [4]. Nevertheless, the theory that

will be presented in the next sections can be extended using other multiclass SVM classifiers in a

straightforward manner. The interested reader can refer to [4], [24], [27], [29] and the references

therein for the formulation and solution of multi-class SVM optimization problems.

Let the training datasetU to be separated toK disjoint classesU1, . . . ,UK . The training data are

(x1, l1), . . . , (xN , lN ) andlj ∈ {1, . . . ,K} are the class labels of the training vectors. The multi-class

SVM problem solves only one optimization problem [27]. It constructsK classification rules, where

the k−th function wT
k φ(xj) + bk separates the training vectors of the classk from the rest of the

vectors, by minimizing the objective function:

min
w,b,ξ

1
2

K∑

k=1

wT
k wk + C

N∑

j=1

∑

k 6=lj

ξk
j (18)

subject to the constraints:

wT
ljxj + blj ≥ wT

k xj + bk + 2− ξk
j (19)

ξk
j ≥ 0, j = 1, . . . , N, k ∈ {1, . . . , K}\lj

whereC is the term that penalizes the training errors. The vectorb = [b1 . . . bK ]T is the bias vector

andξ = [ξ1
1 , . . . , ξ

k
i , . . . , ξK

N ]T is the slack variable vector. Then, the decision function is:

f(x) = argmax
k=1,...,K

(wT
k x + bk). (20)

For the solution of the optimization problem (18), subject to the constraints (19), someone can refer

to [4], [24], [27].
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E. Relationship Between The Minimum Within Class Variance Classifiers and Support Vector Ma-

chines

In this subsection we will explore the relationship between MWCVTCC and maximum margin

SVMs. Let that we define the following optimization problem:

min
w,b

1
2
wTSww (21)

under the separability constraints:

yi(wT (xi −m) + b) ≥ 1, (22)

which is the MWCVTCC (under some minor calculations i.e., subtracting the mean vector from all

vectors).

Let that the matrixSw is non-singular. We consider the transformed vectorsxi to the vectors

pi = S
− 1

2
w (xi −m) and by lettingw = S

1
2
wg, the above optimization problem is reformulated to a

maximum margin classifier(g, b) such that:

min
g,b

1
2
gTg (23)

subject to the separability constraints:

yi(gTpi + b) ≥ 1. (24)

The above analysis shows that MWCVTCCs are equivalent to maximum margin classifiers when the

within class scatter matrix is the identity matrix.

(a) (b)

Fig. 1. The geometrical interpretation of minimum within class variance two class classifiers a) the optimization problem

(21) subject to the constraints (22) finds the optimum hyperplanewT x + b such that the variancesr2
1 + r2

2 is minimized

subject to data separability b) the equivalent optimization problem (23) subject to the constraints (24) is to find a maximum

margin SVM hyperplane in a space whereSw = I (i.e., maximize2r subject to separability).

The geometric interpretation of the optimization problem (21) subject to the constraints (22) and of

the equivalent optimization problem (23) subject to (24) is pictorially described in Figures 1 a) and
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b). The optimum hyperplane in the case of the optimization of (21) subject to (22) is demonstrated

in Figure 1 a. The optimum hyperplane in this case is the one with normal vector such thatr2
1 + r2

2

is minimized. The equivalent is a maximum margin hyperplane (maximize2r) in a normalized space

whereSw = I, as described in Figure 1 b).

Another attempt to relate further MWCVTCCs, maximum margin SVM classifiers and the recently

introduced Ellipsoidal kernel machines [30] is through the following. From VC dimension theory for

a set of binary classifiers in<M with minimum marginρ and under the assumption that the data are

enclosed in a hypersphere with radiusR then the VC dimensionh is:

hSphere = min{ceil(
R2

ρ2
),M}+ 1 (25)

ceil is the ceiling operator. The VC dimension is directly related to the generalization error [4], [31],

[30]. The theory of SVMs has emerged from the above equation. That is, in SVM theory the family

of classifiers obtained by the constraint optimization problem (6) maximize the margin, while the

constraints (7) ensure empirical error minimization. As can be seen by the generalization error theory

[4], [30] the VC dimension depends not only on the margin but also on the diameter of the enclosing

hypersphere. The geometric area of a hypersphere in<M with radiusR and centerm is defined as

(x−m)T (x−m) ≤ R2 or equivalently(x−m)TA(x−m) ≤ 1 with A being aM ×M diagonal

matrix with diagonal elementsAi,i = 1
R2 .

Let us now consider the enclosing hyperellipse with semi-major axis equal toR. The minimum

enclosing hyperellipse is defined asGR = {x : (x−m)TS−1(x−m) ≤ 1} whereS is the covariance

matrix of the hyperellipse. From the above observation, it is easy to show that for the VC dimension

of a classifier defined in a hyperellipse it is valid that:

hGR
≤ hSphere. (26)

The above can be easily proven by observing that the area defined by the hyperellipse is inside the

hypersphere [30]. Suppose the two parallel hyperplanes that define the classifier can shatterl-points

for a known margin in the hyperellipse. Then, the exactl-points can be shattered having the same

margin in the hypersphere.

As has been shown by the above analysis, the so-called ellipsoidal classifiers in [30] have VC

dimension less of equal to the dimension of maximum margin classifiers. The ellipsoidal classi-

fiers minimize the functionalwTSw (instead of the functionalwTw for SVMs andwTSww for

MWCVTCCs). Thus, the ellipsoidal classifiers [30] are equivalent to maximum margin classifiers

subject to the transformationpi = S−
1
2 (xi −m). In MWCVTCCs we useS

− 1
2

w instead ofS−
1
2 . The

above is a first attempt to relate intuitively the proposed classifiers with maximum margin classifiers

and the ellispoidal classifiers in [30].

III. M INIMUM WITHIN -CLASS VARIANCE MULTICLASS CLASSIFIERS USINGMERCER’ S

KERNELS

In this Section we describe the way the two class MWCVTCC (described in Section II-C) can

be extended to multi-class classifications problems using the multi-class SVM formulation presented
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in [4], [24], [27]. The procedure followed in order to generalize in arbitrary Hilbert spaces the

optimization problem (9) subject to the constraints (10), using a non-linear functionφ, so as to define

decision surfaces, is also presented. The training dataxi are initial mapped to an arbitrary Hilbert

space under the mapφ : <M → H. In this section, only the case in which the mappingφ1 satisfies

the Mercer’s condition [4] (or conditionality positive kernels) will be taken into consideration. It is

not necessary to know the explicit form of the functionφ, since all the algorithms that will be defined

from now onwards require only the close form of the dot products inH, the so calledkernel trick:

h(x,y) = φ(x)T φ(y) (27)

whereh is called thekernel function. The typical kernels used in literature are the polynomial and

the Radial Basis Functions (RBF) ones:

h(x,y) = φ(x)T φ(y) = (xTy + 1)d (28)

h(x,y) = φ(x)T φ(y) = e
(x−y)T (x−y)

γ2 ,

whered is a positive integer that is the degree of the polynomial andγ is the spread of the Gaussian

kernel.

A. Solution of the optimization problem using Mercer’s Kernels

The constrained optimization problem (9) subject to (10) is extended in Hilbert spaces using the

multiclass SVM formulation in Section II-D. This novel multi-class classifier is the generalization of

the two class problem defined in (9) in arbitrary Hilbert spaces. The within-class scatter matrix of

the training vectors is defined in theK-class case as:

SΦ
w =

K∑

k=1

∑

xi∈Uk

(φ(xi)−mΦ
k )(φ(xi)−mΦ

k )T (29)

wheremΦ
k is the mean vector of the classUk i.e, mΦ

k = 1
Nk

∑
xi∈Uk

φ(xi).

The modified constraint optimization problem is formulated as:

min
wk,b,ξ

K∑

k=1

1
2
wT

k SΦ
wwk + C

N∑

j=1

∑

k 6=lj

ξk
j (30)

subject to the separability constraints in

wT
lj (φ(xj)−mΦ)+blj ≥ wT

k (φ(xj)−mΦ)+bk+2−ξk
j , ξk

j ≥ 0, j = 1, . . . , N, k ∈ {1, . . . , K}\lj .
(31)

and inspired by the above constraints we propose a variant where we subtract the mean of each class

from the vectors. In this case we have to solve the optimization problem (30) subject to:

wT
lj (φ(xj)−mΦ

lj )+blj ≥ wT
k (φ(xj)−mΦ

k )+bk+2−ξk
j , ξk

j ≥ 0, j = 1, . . . , N, k ∈ {1, . . . , K}\lj .
(32)

1The following discussion holds for the linear case as well, whenφ(x) = x and is interesting since it provides solutions

in linear cases when the number of samples is smaller than the dimensionality, i.e. the within-class scatter matrix is singular.
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The solution of the constraint optimization problem (30) subject to the constraints (31) can be

given by finding the saddle point of the Lagrangian:

L1(wk,b, ξ, α,β) =
∑K

k=1
1
2w

T
k SΦ

wwk + C
∑N

i=1

∑K
k=1 ξk

i −
−∑N

i=1

∑K
k=1 αk

i [(wli −wk)T (φ(xi)−mΦ) + bli − bk − 2 + ξk
i ]−

−∑N
i=1

∑K
k=1 βk

i ξk
i ,

(33)

whereα = [α1
1, . . . , α

k
i , . . . , α

K
N ] and β = [β1

1 , . . . , βk
i , . . . , βK

N ] are the Lagrangian multipliers for

the constraints (31) with:

αli
i = 0, ξli

i = 2, βli
i = 0, i = 1, . . . , N (34)

and constraints:

αk
i ≥ 0, βk

i ≥ 0, i = 1, . . . , N, k ∈ {1, . . . , K}\li. (35)

For the second optimization problem of the variant MWCVMCs (i.e, (30) under the constraints

(32)) the corresponding Lagrangian is:

L2(wk,b, ξ,α, β) = 1
2

∑K
k=1 wT

k SΦ
wwk + C

∑N
i=1

∑K
k=1 ξk

i −
−∑N

i=1

∑K
k=1 αk

i [w
T
li
(φ(xi)−mΦ

li
)−wT

k (φ(xi)−mΦ
k ) + bli − bk − 2 + ξk

i ]−
−∑N

i=1

∑K
k=1 βk

i ξk
i .

(36)

The Lagrangian equations (33) and (36) has to be maximized with respect toα andβ and minimized

with respect tow andξ. In order to produce a more compact equation form let us define the following

variables:

Ai =
K∑

k=1

αk
i , ck

i =

{
1, if li = k

0, if li 6= k.
(37)

One of the KKT conditions for the Lagrangian (33) requires:

∇wk
L1|wk=wk,o

= 0 ⇔ SΦ
wwk,o =

N∑

i=1

(ck
i Ai,o − ak

i,o)(φ(xi)−mΦ) (38)

where mΦ = 1
N

∑N
i=1 φ(xi) is the mean vector of the projected samples, and for the second

Lagrangian (36):

∇wk
L2|wk=wk,o

= 0 ⇔ SΦ
wwk,o =

N∑

i=1

(ck
i Ai,o − ak

i,o)(φ(xi)−mΦ
k ) (39)

where the subscripto denotes the optimal parameter choise. Since the Hilbert spaceH is of arbitrary

dimension, the matrixSΦ
w is almost always singular. Thus, the optimal normal vectorwk,o cannot

be directly found from (38) or from (39), since the matrixSΦ
w cannot be inverted. A solution of

the optimization problem (30) subject to the separability constraints (31) (and of (30) subject to

(32) ) will be provided without having to assume that the within-class scatter matrix of the data is

invertible, neither in the input space<M , nor in the Hilbert spaceH. The existence of a solution

to this optimization problem will be justified by proving that we can find a mapping that makes the

solution feasible. This mapping is the Kernel PCA (KPCA2) transform [32].

2This is particularly important for the small sample size problem in which the within-class scatter matrix is singular. In

the linear case i.e.,φ(x) = x the KPCA degenerates to the typical PCA transform.
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Let the total scatter matrixSΦ
t in the Hilbert spaceH be defined as:

SΦ
t =

N∑

i=1

(φ(xi)−mΦ)(φ(xi)−mΦ)T . (40)

The matrixSΦ
t is bounded, compact, positive and a self-adjoint operator in the Hilbert spaceH. Thus,

according to the Hilbert-Schmidt Theorem [26] its eigenvectors system is an orthonormal basis of

H. Let BΦ andBΦ
⊥ be the complementary spaces spanned by the orthonormal eigenvectors ofSΦ

t

that correspond to non-zero and zero eigenvalues, respectively. An arbitrary vectorw ∈ H, can be

uniquely represented asw = ϕ + ζ with ϕ ∈ BΦ and ζ ∈ BΦ
⊥. Let us define the linear mapping

LΦ : H → BΦ as:

w = ϕ + ζ → ϕ. (41)

The following proposition demonstrates that the optimization of the (30), subject to the constraints

(31), can be performed in the spaceBΦ, instead ofH, without any information loss.

Proposition 1. Under the mappingLΦ the optimization problem (30) subject to the constraints

(31) is equivalent to:

min
ϕ

k
,b,ξ

K∑

k=1

1
2
ϕT

k SΦ
wϕk + C

N∑

j=1

∑

k 6=lj

ξk
j , (42)

subject to the constraints:

ϕT
lj (φ(xj)−mΦ) + blj ≥ ϕT

k (φ(xj)−mΦ) + bk + 2− ξk
j (43)

ξk
j ≥ 0, j = 1, . . . , N, k ∈ {1, . . . , K}\lj .

The corresponding optimization problem for the MWCVMCs variant is to optimize (42) subject to

the constraints:

ϕT
lj (φ(xj)−mΦ

lj ) + blj ≥ ϕT
k (φ(xj)−mΦ

k ) + bk + 2− ξk
j (44)

ξk
j ≥ 0, j = 1, . . . , N, k ∈ {1, . . . ,K}\lj .¤

A proof of this Proposition can be found in Appendix I.

The optimal decision surfaces of the optimization problem (30) subject to the constraints (31) and

of (30) subject to (32) can be found in the reduced spaceBΦ spanned by the non-zero eigenvectors

of SΦ
t . The number of the non-zero eigenvectors ofSΦ

t is m ≤ N − 1, Thus, the dimensionality

of BΦ is m ≤ N − 1. Therefore, according to the functional analysis theory [33], the spaceBΦ is

isomorphic to the(N − 1)-dimensional Euclidean space<N−1. The isomorphic mapping is:

ϕ = Pη, η ∈ <N−1, (45)

whereP is the matrix having as columns the eigenvectors ofSΦ
t that correspond to non-null eigen-

values. Equation (45) is an one-to-one mapping from<N−1 ontoB.

Under this mapping, the optimization problem is reformulated to:

min
η

k
,b,ξ

K∑

k=1

1
2
ηT

k S̃wηk + C

N∑

j=1

∑

k 6=lj

ξk
j , (46)
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whereS̃w is the within-class scatter matrix of the projected vectors at the non-null KPCA space given

by S̃w = PTSΦ
wP, subject to the constraints:

ηT
lj (x̃j − m̃) + blj ≥ ηT

k (x̃j − m̃) + bk + 2− ξk
j (47)

ξk
j ≥ 0, j = 1, . . . , N, k ∈ {1, . . . ,K}\lj

and for the variant the constraints are:

ηT
lj (x̃j − m̃lj ) + blj ≥ ηT

k (x̃j − m̃k) + bk + 2− ξk
j (48)

ξk
j ≥ 0, j = 1, . . . , N, k ∈ {1, . . . , K}\lj

where x̃i = PT φ(xi) and m̃k = PTmΦ
k are the projected vectors to the non-null KPCA space.

More details on the calculation of the projections to the KPCA space can be found in [3], [32].

Under mapping (45), the optimal decision surface inH for the optimization problem (42), subject

to (43), can be found by solving the optimization problem (46) subject to (47) in<N−1. However,

the matrix S̃w may still be singular, since its rank is equal toN − K. If this is the case, i.ẽSw

is singular, it containsK null dimensions. Thus, in order to satisfy the invertibility ofS̃w along

with the null eigenvectors ofP, K more eigenvectors are discarded, which correspond to the lowest

non-zero eigenvalues. An alternative way here is to perform eigenanalysis on the singular matrixŚw

and remove the eigenvectors that correspond to null eigenvalues (the latter case requires a second

eigenanalysis).

The Lagrangian of the optimization problem (46) subject to the constraints (47) is given by:

L3(ηk,b, ξ,α, β) =
∑K

k=1
1
2ηT

k S̃wηk + C
∑N

i=1

∑K
k=1 ξk

i −
−∑N

i=1

∑K
k=1 αk

i [(ηli − ηk)T (x̃i − m̃) + bli − bk − 2 + ξk
i ]−

−∑N
i=1

∑K
k=1 βk

i ξk
i .

(49)

The search of the saddle point of the Lagrangian (49) is reformulated to the maximization of the

Wolf dual problem:

W (α) = 2
N∑

i=1

K∑

k=1

αk
i +

1
2

∑

i,j,k

(−1
2
c
lj
j AiAj + αk

i α
li
i −

1
2
αk

i α
k
j )(x̃i − m̃)S̃−1

w (x̃j − m̃) (50)

which is a quadratic function in terms ofα with the linear constraints:

N∑

i=1

ak
i =

N∑

i=1

ck
i Ai, k = 1, . . . ,K. (51)

The above optimization problem can be solved using optimization software packages [27] or the

MATLAB [34] function quadprog . The corresponding decision hyperplane is:

f(x) = argmax
k=1,...,K

(wT
k (φ(x)−mΦ)+bk) = argmax

k=1,...,K
[

N∑

i=1

(ck
i Ai,o−αk

i,o)(φ(xi)−mΦ)TPS̃−1
w PT (φ(x)−mΦ)+bk],

(52)

as detailed in Appendix II.
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For the variant (i.e., (46) subject to (48)) the corresponding Lagrangian multiplier is:

L4(ηk,b, ξ, α,β) =
∑K

k=1
1
2ηT

k S̃wηk + C
∑N

i=1

∑K
k=1 ξk

i −
−∑N

i=1

∑K
k=1 αk

i [η
T
li
(x̃i − m̃li)− ηT

k (x̃i − m̃k) + bli − bk − 2 + ξk
i ]−

−∑N
i=1

∑K
k=1 βk

i ξk
i .

(53)

and as can be seen in Appendix III. The Wolf dual problem is the maximization of:

W (α) = 2
∑

i,k

αk
i +

K∑

k=1

N∑

i=1

N∑

j=1

ωi,j,kxiS̃−1
w xj (54)

whereωi,j,k is defined in Appendix III. The corresponding decision function for the variant is:

f(x) = argmax
k=1,...,K

(wT
k (φ(x)−mΦ

k )+bk) = argmax
k=1,...,K

[
N∑

i=1

(ck
i Ai,o−αk

i,o)(φ(xi)−mΦ
k )TPS̃−1

w PT (φ(x)−mΦ
k )+bk,o].

(55)

KPCA MWCVMC
Training datai

Training

Project
data

Training data

Projected
training

data

Fig. 2. Diagram of the MWCVMC training procedure.

Project
vector

MWCVMC

Training data

Testing vector
x

Projected
testing
vector

class

Testing

KPCA

Fig. 3. Diagram of the MWCVMC testing procedure.

Summarizing, in the training phase the samples are first projected using KPCA. Afterwards, the

optimization problem (46) subject to (47) (or the variant (46) subject to (48)) is solved. The training
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phase is schematically described in Figure 2. When a test sample arrives, it is firstly projected using

KPCA and afterwards is classified using (52) or (55). The test step is schematically described in

Figure 3.

B. Alternative Multiclass Desicion Surfaces in [5] and [18]

The decision surfaces proposed in [5] and [7] have been inspired by the solution of the linear

case where the termxT
i S−1

w xj is employed in the dual optimization problem (14). Assuming that

the original within-class scatter matrix of the data is not singular, this term has been expressed as an

inner product of the form(S
− 1

2
w xi)T (S

− 1
2

w xj) (if Sw is invertible then it is a positive definite matrix).

Then, in [5], instead of projectingxi usingφ (as described previously), the transformed vectorS
− 1

2
w xi

is projected in the Hilbert space (also usingφ) and the matrix[Q]i,j = 1
2yiyjh(S

− 1
2

w xi,S
− 1

2
w xj) is

used for the solution of the dual optimization problem. Of course, the decision surface provided in

[5] does not constitute the solution of the optimization problem of MWCVTCC in Hilbert spaces.

Following this strategy, the nonlinear multi-class decision surfaces proposed in [7] has been formu-

lated. The fact that the termxT
i S−1

w xj can be written in terms of dot products as(S
− 1

2
w xi)T (S

− 1
2

w xj)

is taken under consideration. Then, kernels are applied in (50) as:

W (α) = 2
N∑

i=1

K∑

k=1

αk
i +

1
2

∑

i,j,k

(−1
2
c
lj
j AiAj + αk

i α
li
i −

1
2
αk

i α
k
j )h(S

− 1
2

w xi,S
− 1

2
w xj). (56)

The corresponding decision function is:

f(g) = argmax
k=1,...,K

1
2
[

N∑

i=1

(ck
i Ai − αn

i )h(S
− 1

2
w xi,S

− 1
2

w x) + bk]. (57)

The above decision surfaces are not the ones derived from the generalized MWCVMC optimization

problem (30), subject to the constraints (19), which is described in Section III.It has been shown, in

[7], that these surfaces outperform maximum margin SVM in facial expression recognition. Moreover,

in [5], that the above surfaces outperform maximum margin SVMs in a two class problems for face

verification. As we have already mentioned, we have generalized the methods and concepts presented

in [5], [7] using arbitrary Mercer’s kernel in multiclass problems (the two class problem is a special

case of the treated problem).

C. Relationship with Complete Kernel Fisher Discriminant Analysis

In this section, the relationship of the proposed decision hyperplanes/surfaces with the ones derived

through CKFD [3] is analyzed. Only the linear case will be considered, in our discussion, since the

non-linear case is a direct generalization of the linear one using Mercer’s kernels.

As it has been by the Proposition 1 in order to solve the linear or the generalized non-linear

constraint optimization problems of MWCVMCs, the problem can be solved in<N−1 using PCA

(KPCA using a linear kernel becomes PCA) and solve an equivalent linear optimization problem

there.
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In the linear case (i.e., use linear kernelh(x,y) = xTy), in order to move from<N−1 to <N−K

we have removedK columns from the matrixP (the PCA matrix) which are the eigenvector that

corresponds to the lowest non-zero eigenvalues ofSt. If these columns are not removed fromP, then

Św = PTSwP containsK eigenvectorsρk that correspond to a null eigenvalues. Letυk ∈ <M be

υk = Pρk, then, under the projection toυk, all the training samples are separated without an error,

sinceυT
k Swυk = 0 andυT

k Stυk > 0. That is,υk is a solution of the optimization problem (9) and

since the data are projected to the one dimensional space it is very easy to find thresholds in order to

to perfectly separate the projected vectors. This can be easily proven by observing that all samples

after projecting to one of the directionsυk fall in center of each class [35].

Figure 4 describes pictorially the effect of the vectorsw (K total vectors) for the cases,

wTSww = 0 andwTStw > 0.

Fig. 4. Illustration of the effect of the projection to a vectorw with wT Sww = 0. If wT Stw > 0 is valid for the

vectorw then all the training vectors of the different classes are projected to one vector different for each class, while if

wT Stw = 0 all the training vectors are projected to the same point.

It is interesting to notice that the vectorsυk are the same ones given by the irregular discriminant

projection defined in [3], [36]. That is, the vectorsυk are the solution of the optimization problem:

max
wk∈<M

tr[WTSbW] (W = [w1, . . . ,wK ] ||wk|| = 1) subject towT
k Swwk = 0, (58)

which is also a maximization point of the Fisher’s discriminant ratio:

J(W) =
tr[WTSbW]
tr[WTSwW]

(59)

that makesJ(U) → +∞, (U = [υ1, . . . ,υK ]). Summarizing, we can tell that we remove theK

dimensions of the space<N−1 due to the fact that the interesting vectorswk with wT
k Swwk =

0 that provide fully class separability can be found by eigenanalysis only and not by solving a

quadratic optimization problem. Hence, in the new space<N−K all the solutionsηk of the MWCVMC

optimization problem satisfyηT
k Swηk > 0.

DRAFT July 29, 2008



17

IV. M INIMUM WITHIN -CLASS VARIANCE MULTICLASS CLASSIFIERS INPSEUDO-EUCLIDEAN

SPACES

In the previous section only conditionally positive kernels have been considered [17]. In this section,

the use of not-conditional positive kernels (i.e., indefinite kernels and dissimilarity measure) along

with the MWCVMC will be presented. In [15], [37] a unified theory for (dis)similarity measures and

kernels has been developed. In terms of kernels, theL2 similarity measure between the two vectors

xi andxj using a functionφ can be written as:

d(xi,xj) = ||φ(xi)− φ(xj)||2 = φ(xi)T φ(xi)− φ(xi)T φ(xj)− φ(xj)T φ(xi) + φ(xj)T φ(xj)

= h(xi,xi)− 2h(xi,xj) + h(xj ,xj).
(60)

Let us define the similarity (or dissimilarity) matrixD ∈ <N×N as:

[D]i,j = d(xi,xj). (61)

The centered matrixB is defined as:

B = −1
2
JDJ (62)

whereJ = IN×N− 1
N 1N1T

N
∈ <N×N is the centering matrix,IN×N is theN×N identity matrix and

1N is theN -dimensional vector of ones. It can be proven that the matrixB is positive semidefinite,

if and only if the kernelh is conditionally positive [37]. Many kernels exist, which have been used

very successfully in pattern recognition applications like face recognition [16], [17], [18] that do not

necessarily define positive semidefinite matricesB. Typical examples of these kernels are the sigmoid

kernels:

h(xi,xj) = tanh(κ(xT
i xj) + θ) (63)

with κ > 0 andθ < 0, as well as the fractional polynomial models [16], [18]:

h(xi,xj) = (xT
i xj + 1)d (64)

with 0 < d < 1. In the following, the MWCVMC using non-conditionally positive kernels will be

defined for the general case where only the dissimilarity measured is known and the explicit form

of the kernel functionh remains unknown. In the trivial case that the kernel function is known, the

dissimilarity can be built usingh. In this case, data representation is not strictly performed with

vectors but possibly by other means as well (e.g. sets). A dissimilarity measure that can quantify the

similarity between object representationsAi
3 and obeys the following properties, should be available:

• reflectivity: d(Ai,Ai) = 0

• positivity: d(Ai,Aj) > 0 if Ai 6= Aj

• symmetry:d(Ai,Aj) = d(Aj ,Ai),

whered(Ai,Aj) is a dissimilarity measure between the two object representationsAi,Aj .

3The objectAi can be a set/vetor but is not necessary to be explicitly defined as its definition is not of particular interest

here. The only thing that should be defined is the dissimilarity measure.
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A. Embedding function to pseudo-Euclidean spaces

The dissimilarity matrixD is used to define an embedding functionG ∈ <k×N , wherek ≤ N is

the dimensionality of the embedding. Therefore, thei-th column ofG, denoted bygi, corresponds

to the features of the objectAi in the pseudo-Euclidean space. In order to find the embeddingG,

the matrixB is defined as in (62). The matrixJ projects the data so that the embeddingG has zero

mean. The eigendecomposition of the matrixB will give us the desired embedding. The matrixB

is positive semi-definite (i.e., it has real and non-negative eigenvalues), if and only if the distance

matrix D is Euclidean matrix [15]. Therefore, for a non-EuclideanD, B has negative eigenvalues.

For more details on pseudo-Euclidean embedding and dissimilarity based pattern recognition, the

interested reader may refer to [15], [23], [38], [20]. Let the matrixB hasp positive andq negative

eigenvalues. Then, the matrixB can be written as:

B = QΛQT = Q|Λ| 12
[

M

0

]
|Λ| 12 QT = GTMG, (65)

whereΛ is a diagonal matrix with the diagonal consisting of thep positive andq negative eigenvalues,

which are presented in the following order: first, positive eigenvalues with decreasing values, then

negative ones with decreasing magnitude and finally zero values. The matrixQ is an orthogonal

matrix of the corresponding eigenvectors. The matrixM is equal to

[
Ip×p 0

0 −Iq×q

]
whereIp×p

and Iq×q are the identityp× p andq × q matrices, andk = p + q. The matrixG is the embedding

of the facial image database in the pseudo-Euclidean space<k = <(p,q) [15]:

G = |Λk|
1
2 QT

k , (66)

whereΛk contains only the non null diagonal elements ofΛ. Qk is the matrix with the corresponding

eigenvectors.

Actually, the pseudo Euclidean-space<(p,q) consists of two Euclidean spaces, where the inner

product is positive definite for the first one and negative definite for the second one. Using the

previous remark, for the sake of completeness, a brief description of the procedure followed, when

going back from the embeddingG to the dissimilarity matrixD, will be provided. The inner products

in the pseudo-Euclidean space are defined as:

〈g,y〉 =
p∑

i=1

giyi −
p+q∑

j=p+1

giyi = gTMy. (67)

The norm of a non-zero vectorg in a pseudo-Euclidean space is defined as:

||g||2 = 〈g,g〉 = gTMg, (68)

which can be positive, negative or zero (contrary to the positive or zero norm value in an Euclidean

space). The dissimilarity matrixD can now be retrieved from the embeddingG, using the notion of

the inner products as:

[D]i,j = ||gi − gj ||2 = 〈gi − gj ,gi − gj〉 = (gi − gj)TM(gi − gj)

= d(Ai,Aj) = b1T + 1bT − 2B
(69)
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whereb is a vector with the diagonal elements of the matrixB.

Prior to proceeding to the description of the MWCVMC in pseudo-Euclidean spaces someone

should notice that the matrixG has uncorrelated features with zero mean vectorm = 1
N

∑N
i=1 gi = 0.

That is, if St is the total scatter matrix, then:

St =
∑

i

(gi −m)(gi −m)TM = GGTM = |Λ|M = Λ. (70)

Therefore,G can be considered to be the result of a mapping of a kernel-PCA (KPCA) projection

procedure [32] using indefinite kernels [15], [17]. Thus, if a vectorial object representation is available

(i.e., the representation ofAi is a vector) andd is defined as in (60) using conditionally positive

kernels, then this embedding is the KPCA projection that has been used in section III prior to the

optimization of the MWCVMC in Hilbert spaces.

Each objectAi is supposed to belong to one of theK object classes{U1,U2, . . . ,UK}. For notation

compactness, the setUk will be used for referring both to the set of the object representations of

the k-th object class and to the various feature vectors that are produced during the embedding and

correspond to the objects of thek-th object class. The mean vector for the classr is denoted aśmr.

Then, the within-class scatter for the vectorsgi is defined as:

Św =
K∑

r=1

∑

gi∈Ur

(gi − ḿr)(gi − ḿr)TM. (71)

As seen previously, the dimensions that correspond to the null eigenvalues ofB have not been

taken into consideration for the definition of the embeddingG and the matrix́Sw, since they offer

no information for the optimization of the MWCVMCs (as described in the previous section). Now

we should take care of the dimensions of the embedding that correspond to negative eigenvalues. The

problem of these dimensions is that they lead to Hessian matrices that are not positive semidefinite.

Hence the optimization problems are not convex and generally NP-complete. Two alternatives exist

regarding the dimensions of the embeddingG that correspond to negative eigenvalues:

• to remove the dimensions that correspond to negative eigenvalues. In this case the embedding

G degenerates to:

Gp = Λ
1
2
p QT

p (72)

whereGp ∈ <p,N . This step is preferred when the negative eigenvalues are few in number and

very small in magnitude, in comparison to the magnitude of the positive eigenvalues (i.e., the

dissimilarity measure is almost Euclidean). Such embedding has been successfully used for face

recognition when using KPCA with fractional polynomial kernels [16], [18].

• To use only the magnitude of the negative eigenvalues. This step is preferred when the magnitude

of the negative eigenvalues is not small, or when there are many dimensions that correspond to

negative eigenvalues in the embedding. In this case the new embedding is:

Gl = ∆
1
2
l QT

l (73)

where ∆l is a diagonal matrix having as diagonal elements the magnitude of the diagonal

elements ofΛl, in descending magnitude order. The matrixQl contains the corresponding
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eigenvectors. For the dimensionalityl of the new embedding, it is valid thatl ≤ k ≤ N . This

step is preferred for the definition of the Hessian matrix of the quadratic optimization problem

of SVMs in pseudo-Euclidean spaces [15], [17].

In both cases, the new embeddingGl is purely Euclidean. Without loss of generality, the embedding

Gl will be considered for the description of the MWCVMC. Let the vectorgl
i be thei-th column

of the matrixGl. The mean vector for the classr is denoted byḿr and the mean of all classes

by ḿ (which, in the case under examination, is a zero vector). Since there are no dimensions that

correspond to negative eigenvalues, the within-class scatter matrix of the embeddingGl is defined

as:

Sl
w =

K∑

r=1

∑

gl
i
∈Ur

(gl
i − ḿr)(gl

i − ḿr)T . (74)

The dimensionality of the embedding isl ≤ k ≤ N , while the rank ofSl
w is less than, or equal to

N −K. Thus, there is not a guarantee that the within-class scatter matrixSl
w will be invertible. Two

alternatives exist regarding the solution of this problem:

• to avoid initially eigenvectors corresponding to the smallest eigenvalues ofB, when defining the

pseudo-Euclidean space (i.e.,l ≤ N −K);

• perform eigenanalysis toSl
w and remove the null eigenvectors.

Without loss of generality, let us follow the first approach, by choosingl ≤ N −K. The MWCVMC

is defined in the pseudo-Euclidean space as:

min
wk,b,ξ

K∑

k=1

1
2
wT

k Sl
wwk + C

N∑

j=1

∑

k 6=lj

ξk
j (75)

subject to the constraints:

wT
lj (g

l
j − ḿ) + blj ≥ wT

k (gl
j − ḿ) + bk + 2− ξk

j (76)

ξk
j ≥ 0, j = 1, . . . , N, k ∈ {1, . . . , K}\lj ,

for the MWCVMCs the variant is:

wT
lj (g

l
j − ḿlj ) + blj ≥ wT

k (gl
j − ḿk) + bk + 2− ξk

j (77)

ξk
j ≥ 0, j = 1, . . . , N, k ∈ {1, . . . , K}\lj .

The corresponding hyperplanes(w1, b1), · · · , (wK , bK) are found by solving the optimization prob-

lem (75) subject to the constraints (76) as in Appendix II, and for the variant solving (75) subject to

(77) as presented in Appendix III.

B. Classifying Novel Object Representations using pseudo-Euclidean embedding and MWCVMC

Let {B1, · · · ,Bn} be a set ofn objects. The matrixDn ∈ <n×N is created:[Dn]i,j = d(Bi,Ai)

which represents the similarity between then test object and all the training object representations.
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The matrixBn ∈ <n×N of inner products relating all new data to all data from the training set can

be found as follows:

Bn = −1
2
(DnJ−UDJ), (78)

where J is the centering matrix andU = 1
N 1n1T

N
∈ <n×N . The embedding of the test object

representationsGn ∈ <l×n that is used for classification is:

Gn = ∆
− 1

2
l QT

l BT
n . (79)

The columns of the matrixGn are the features used for classification. Letgi,n ∈ <l be the i-th

column of the matrixGn. For more details about the embedding of novel data in pseudo-Euclidean

spaces, the interested reader may refer to [15]. After the embedding, the classification ofBi to one

of the K-object classes is performed by using the decision function:

f(Bi) = arg max
k=1,...,7

(wT
k (gi,n − ḿ) + bk), (80)

or for the variant

f(Bi) = arg max
k=1,...,7

(wT
k (gi,n − ḿk) + bk), (81)

wherewk andbk have been found during training.

V. EXPERIMENTAL RESULTS

Three set of experiments have been conducted in order to test the proposed methods:

• Multiclass classification experiments using Hausdorff distances for the facial grids in order to

recognize the seven basic facial expressions (i.e., test the MWCVMCs in pseudo-Euclidean

spaces).

• Multiclass classification experiments using polynomial Mercer’s kernels for face recognition (i.e.,

test the MWCVMCs in Hilbert spaces).

• Multiclass classification experiments with various Mercer kernels using datasets from UCI repos-

itory [25].

Moreover, we compare the two MWCVMCs variants presented in Section III (i.e., the one that

optimized (30) subject to the constraints (31) and the one that optimizes the same functional subject

to (32)). Since, these two MWCVMCs variants minimize the same functional and have about the

same separability constraints with a small difference (i.e., in the first we subtract the total mean

vector, like a normalization, while in the second we subtract the mean of the class to be classified),

we anticipate small performance difference between them.

A. Multiclass Classification Experiments in Face Expression Recognition

1) Database description:The database used for the experiments was created using the Cohn-

Kanade database. This database is annotated with FAUs. These combinations of FAUs were translated

into facial expressions according to [39], in order to define the corresponding ground truth for the

facial expressions. The facial expressions under examination are the six basic ones (anger, disgust,
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fear, happiness, sadness and surprise) plus the neutral state. All the available subjects were taken

under consideration to form the database for the experiments.

The geometrical information vector taken under consideration is the deformed Candide grid pro-

duced by the grid tracking system as described in [40]. In Figure 5, a sample of an image for every

facial expression for one poser from this database and the corresponding deformed grid, is shown.

The deformed grids were afterwards normalized in order to have the same scale and orientation.

Happiness SurpriseFearDisgustNeutral SadnessAnger

Fig. 5. The facial expression image and the corresponding grid for a poser of the Cohn-Kanade database.

Facial expression recognition was also studied in the presence of partial facial occlusion. A pair

of black glasses and a mouth mask, as well as left and right face area masks were created using a

graphics computer program, to be superimposed on the eyes or mouth regions respectively to simulate

partial occlusion. The glasses were similar to black sun glasses, while the mouth mask was similar to

a medical mask that covers the nose, cheeks, mouth and chin. The Candide nodes corresponding to

the occluded facial area were discarded. Figure 6 presents one expresser from Cohn-Kanade database

posing for the 6 basic facial expressions. On each image, the Candide grid has been superimposed

and deformed to correspond to the depicted facial expression, as it is used for the facial expression

classification using shape information. The first and last row show the facial part that is taken under

consideration when mouth and eyes occlusion is present. The equivalent subset of the Candide grid

used for classification is also depicted. In Figure 7 one expresser is depicted from the Cohn-Kanade

database for the 6 basic facial expressions under partial occlusion.

2) Hausdorff distance:In order to calculate the distance between two grids, the Hausdorff distance

has been used. More specifically, given two finite point sets:A = {a1, . . . ,ap} andB = {b1, . . . ,bp}
(in our case this set of points is the set of Candide nodes), the Hausdorff distance is defined as:

H(A,B) = max{d(A,B), d(B,A)}, (82)

where

d(A,B) = sup
a∈A

inf
b∈B

‖ a− b ‖ (83)
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Fig. 6. A poser example from the Cohn-Kanade database, depicting the grid taken under consideration in the original

image (second row) and when mouth and eyes occlusion is present (first and last row, respectively).

Fig. 7. A poser example from the Cohn-Kanade database, depicting the original images (second row) and eyes and mouth

occlusion (first and last row, respectively).

‖ · ‖ represents some underlying norm defined in the space of the two point sets, which is generally

required to be anLp norm, usually theL2 or Euclidean norm.

In the proposed method, a robust alternative of the Hausdorff distance, the so-called mean Hausdorff

distance [41] is used in order to measure the similarity between facial grids. The mean Hausdorff
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distancedMH(A,B) from A to B is defined as:

dMH(A,B) =
1

N(A)

∑

a∈A
min
b∈B

‖a− b‖ (84)

whereN(A) is the number of points inA. The mean Hausdorff distance is used to create a feature

space, using pseudo-Euclidean embedding, as described in Section IV, so as to define later a multiclass

SVM classifier in this space. It should be noted here that in the setup used in this paper, where the

same grid (the Candide grid) is tracked in all cases over facial video frames, the correspondences

between the grid nodesai,bi, i = 1, . . . , p (p = q) in the two grid sets are known. Thus, the sum of

Euclideans
∑

i ‖ai −bi‖ would suffice. However, the use of Hausdorff distance makes the proposed

system applicable to other scenarios, e.g. when different grids are used or when part of the grid is not

available (p 6= q e.g. due to image cropping). This may occur when a tracking algorithm is applied

and some nodes are lost or considered unreliable. Thus, the general Hausdorff distance is adopted.

Another measure that we are currently investigating is the angle of the Candide points between the

neutral and the expressed grids. Using the angle of points in a sequence of grids the dynamics of

facial expression could be described. But this approach has the same disadvantage as the one proposed

in [7], in which deformation vectors have been used for facial expression recognition, and require

the initial detection of the neutral state (the neutral state is not required in the proposed procedure).

3) Experimental protocol:The most frequently used approach for testing the generalization per-

formance of a classifier is the leave-one cross-validation approach [42]. It was devised in order to

make maximal use of the available data and produce averaged classification accuracy results. The

term leave-one out cross-validation does not correspond to the classical leave-one-out definition, as

a variant of leave-one-out was used (i.e., leave 20% of the samples out) for the formation of the

test dataset in our experiments. However, the procedure followed will be called leave-one-out from

now on for notation simplicity without loss of generalization. More specifically, all image sequences

contained in the database are divided into 7 facial expression classes. Five sets containing 20% of the

data for each class, chosen randomly, were created. One set containing 20% of the samples for each

class is used as the test set, while the remaining sets form the training set. After the classification

procedure is performed, the samples forming the test set are incorporated into the current training set,

and a new set of samples (20% of the samples for each class) is extracted to form the new test set.

The remaining samples create the new training set. This procedure is repeated five times. A diagram

of the leave-one-out cross-validation method can be seen in Figure 8. The average classification

accuracy is defined as the mean value of the percentages of the correctly classified facial expressions

over all data presentations. The accuracy achieved for each facial expression is averaged over all

facial expressions and does not provide any information with respect to a particular expression. The

confusion matrices [7] have been computed to handle this problem. The confusion matrix is a

n× n matrix containing information about the actual class labellabac (in its columns) and the label

obtained through classificationlabcl (in its rows). The diagonal entries of the confusion matrix are
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Anger 20%Anger

Disgust

Fear

Happiness

Sadness

Surprise

Anger 20% Anger 20% Anger 20%

Disgust 20% Disgust 20%Disgust 20% Disgust 20%

Fear 20% Fear 20% Fear 20% Fear 20%

Happiness 20% Happiness 20%Happiness 20%Happiness 20%

Sadness 20% Sadness 20% Sadness 20%Sadness 20%

Surprise 20% Surprise20% Surprise20% Surprise 20%

...

...

...

...

...

...

Training test Test set}
...Neutral Neutral 20% Neutral 20% Neutral 20%Neutral 20%

Fig. 8. Diagram of leave-one-out method used in classification assessment for facial expression and FAUs recognition.

the percentages that correspond to the cases when facial expressions are correctly classified, while

the off-diagonal entries correspond to misclassifications. The abbreviationsan, di, fe, ha, sa, su

andne represent anger, disgust, fear, happiness, sadness, surprise and neutral, respectively. We have

experimented with various numbers of theC parameter (fromC = 10−6 until C = 106 in log scale)

and the best setup has been when usingC = 100 for all tested classifiers. Only the best accuracies

achieved for any method used are taken under consideration to make the final conclusions.

4) Experiments regarding the entire Candide grid:The confusion matrix obtained when maximum

margin SVMs were used taking under consideration the deformed Candide grids, is presented in Table

Ia. The accuracy achieved was equal to 85.2%. As can be seen from the confusion matrix, fear seems

to be the most ambiguous facial expression having the lowest correct classification ration (71.2%). The

overall facial expression recognition accuracy rates achieved for different number of dimensions of

the pseudo-Euclidean space of the Hausdorff distances taken under consideration when maxim margin

SVMs, MWCVMCs and MWCVMCs variant were used are depicted in Figure 9a. The highest overall

accuracy rate achieved was equal to 99% (achieved by MWCVMC and the variant). The confusion

matrix calculated in this case is presented in Table Ib. As can be seen from the confusion matrix,

almost all previous misclassifications are now eliminated. The only misclassification remaining is the

one between fear and happiness, which was actually the most usual misclassification appearing when

the maximum margin SVMs were used.

A comparison of the recognition rates achieved for each facial expression with the state of the
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TABLE I

CONFUSION MATRICES WHEN USING A) MAXIMUM MARGIN SVMS AND B) MWCVMCS.

labac%\labcl% an di fe ha sa su ne

an 91 14.3 0 0 10.8 0 4.8

di 6 85.7 7.3 0 0 0 0

fe 0 0 71.2 0 0 7.1 2.4

ha 0 0 8.8 91 4.6 0 0

sa 0 0 5.5 0 80 0 2.4

su 3 0 0 0 0 92.9 5.8

ne 0 0 7.2 9 4.6 0 84.6

labac%\labcl% an di fe ha sa su ne

an 100 0 0 0 0 0 0

di 0 100 0 0 0 0 0

fe 0 0 93 0 0 0 0

ha 0 0 7 100 0 0 0

sa 0 0 0 0 100 0 0

su 0 0 0 0 0 100 0

ne 0 0 0 0 0 0 100

(a) (b)

(a)

(b) (c)

Fig. 9. Recognition accuracies obtained for facial expression recognition using maximum margin SVMs and MWCVMC

in the pseudo-Euclidean space when a) all the grid nodes were used b) eyes occlusion is present (mouth nodes discarded)

and c) mouth occlusion is present (eyes nodes discarded).

art [42]-[45], when six facial expression were examined (the neutral state was not taken under

consideration) is depicted in Figure 10, where the recognition rate of each of the six basic facial

expressions is depicted. As can be seen, our recognition rates are the highest for each facial expression.
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The second best reported results are the ones in [45], where a97% total recognition rate has been

reported. Moreover, the proposed method has been tested for the recognition of the neutral state,

unlike the methods in [43], [44], [45], that have been tested only for the recognition of the six

expression. That is, the error that will be introduced by the inclusion of the neutral state to the other

expressions remains unknown. The method in [42] has been tested for the recognition of neutral state

and has achieved78.59% (our method had100% performance for the neutral state). To the best of the

authors knowledge these are the best results achieved in Cohn-Kanade database for the recognition

of the seven facial expressions.

Fig. 10. Comparison of the recognition rate for every of the six basic facial expression of various state-of-the-art facial

expression recognition methods.

5) Experiments in the presence of eyes occlusion:The recognition accuracy rate achieved when

eyes occlusion was present and the maximum margin SVMs were used was equal to 83.5%. Thus,

the introduction of eyes occlusion results in a 1.7% recognition accuracy rate drop. The equivalent

recognition accuracy rate achieved when MWCVMC (or MWCVMC variant) were used was equal

to 96.3% (2.7% drop in recognition accuracy due to eyes occlusion). The recognition accuracy rates

achieved for different number of dimensions of the pseudo-Euclidean space of the Hausdorff distances

taken under consideration when maximum margin SVMs and the two MWCVMC were used are

depicted in Figure 9b.
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6) Experiments in the presence of mouth occlusion:The recognition accuracy rate achieved when

mouth occlusion was present and the maximum margin SVMs were used was equal to 79.8%. Thus,

eyes occlusion results in a 5.4% recognition accuracy rate drop. The equivalent recognition accuracy

rate achieved when MWCVMC (or MWCVMC variant) were used was equal to 93.7% (5.3% accuracy

drop due to eyes occlusion presence). The recognition accuracy rates achieved for different number

of dimensions of the pseudo-Euclidean space of the Hausdorff distances taken under consideration

when maximum margin SVMs and MWCVMC were used are depicted in Figure 9c.

B. Multiclass Classification Experiments in Face Recognition

The face recognition problem has been performed in order to assess the proposed method us-

ing Mercer’s kernels. Experiments were performed using the ORL (Olivetti Research Laboratory)

database. This database includes ten different images of 40 distinct subjects. For some of them, the

images were taken at different times and there are variations in facial expression (open/closed eyes,

smiling/nonsmiling) and facial details (glasses/no glasses). The original face images were all sized

92×112 pixels. The gray scale was linearly normalized to lie within the range[−1, 1]. The experiments

were performed with five training images and five test images per person for a total of 200 training

images and 200 test images. There was no overlap between the training and test sets. Since the

recognition performance is affected by the selection of the training images, the reported results were

obtained by training 5 non-overlapping repetitions with different training examples (random selection

of five images from ten ones per subject, out of a total of selections) and selecting the average error

over all the results. In Figure 11 the mean error rates for the proposed approach and the maximum

margin SVM are depicted. The tested kernels have been the polynomial kernels with degrees from 1

to 4. The best error rate of the proposed method has been measured at about 1.5% for the proposed

methods (both MWCVMC variants gave the same mean recognition rate in this experiment) was an

average of 5 simulations. However, individual experiments had given error rates as low as 0%. The

SVM classifier in this problem achieved a best error rate at about3%.

For completeness, we should note here that the proposed MWCVMCs classifiers are similar to

the classifiers tested for face recognition in the ORL database using a KPCA plus SVM scheme.

That is, the method for finding the MWCVMCS classifier is comprised of an initial KPCA step, and

afterwards a minimum within class variance multiclass system is trained. The method of the KPCA

plus SVM classifier in [46] has shown superior results in face recognition in comparison to the other

tested methods. Actually, the successful application of a KPCA plus SVM scheme has motivated

the application of MWCVMCs for face recognition in ORL database. We have experimented with a

KPCA plus SVM approach as in [46] and the best mean recognition rate has been2.5%. As can be

seen our method outperforms KPCA plus SVMs in ORL database.

C. Experimental Results in Other Databases

Apart from facial expression and face recognition we have applied the proposed classifier to other

problems. To do so we have used benchmark data sets from the University of California at Irvine
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Fig. 11. Mean face recognition error rates in ORL database.

(UCI) Repository database [25]. More precisely, we have used the Balance-scale, Glass, Iris and Wine

database. We have used a similar testing protocol as the one used in facial expression recognition

experiments but in this time we have considered70% for training and the remaining30% for testing.

This procedure has been repeated five times. The average classification accuracy is defined as the

mean value of the percentages of the correctly classified samples over all data presentations. We have

tested various kernels (i.e., polynomial and RBF kernels) but we will report only the best results for

all the tested kernels and for all the tested approaches. TheC values that we have tested had been

from C = 10−6 to C = 106 in log scale. For case of RBF kernels in order to choose the parameterγ

(spread) we have used a simple euristic method. That is, on the training set, we calculate the average

of the distance from each instance to its nearest neighbor and call thisγ0 .We used in the experiments

γ = {γ0, 2γ0, 4γ0}.
The balance-scale is separated into three classes with a total of 625 four dimensional vectors. For

this dataset the linear kernel (i.e.,k(x1,x2) = xT
1 x2) has given the best results that have been87.7%

for typical SVMs,92.9% for the MWCVMCs and93.5% for the second variant of MWCVMCs (in

this case the within class scatter matrix was invertible). The second dataset has been the Glass dataset

that is separated into 6 classes giving a total of 214 9-dimensional vectors. For this dataset the best

kernel has been an RBF kernel with varianceγ = γ0 for SVMs and an RBF with varianceγ = 2γ0

for the MWCVMCs. The best mean error rate for SVMs has been58.4%, for MWCVMCs and for the

second variant has been63% and64%, respectively. The third dataset has been Iris which is separated

into 3 classes of a total of150 four dimensional vectors. The best kernel for this dataset has been

an RBF with varianceγ = 2γ0 for all the tested classifiers. The best results have been96.07% for

SVMs and96.73% for both MWCVMCs and for the second variant. The final dataset has been the

Wine dataset which is separated into3 classes containing a total of 178 13-dimensional vectors. The

RBF kernel has given the best results for all the tested classifiers, withγ = 2γ0. In this dataset SVMs
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have given93.3%, the MWCVMCs have achieved96.67% and the variant of MWCVMCs97.1%.

The best results are summarized in Table II. As can be seen the proposed classifiers outperform

maximum margin classifiers in all cases.

TABLE II

MEAN ERRORRATES A) BALANCE-SCALE B) GLASS C) IRIS AND D) WINE.

Method Kernel Mean Error Rate %

SVMs linear 87.7

MWCVMCs linear 92.9

MWCVMCs Variant linear 93.5

Method Kernel Mean Error Rate %

SVMs RBF 58.4

MWCVMCs RBF 63.01

MWCVMCs Variant RBF 64

(a)Balance-Scale (b) Glass

Method Kernel Mean Error Rate%

SVMs RBF 96

MWCVMCs RBF 96.7

MWCVMCs Variant RBF 96.7

Method Kernel Mean Error Rate%

SVMs RBF 93.3

MWCVMCs RBF 96.67

MWCVMCs Variant RBF 97.1

(c) Iris (d) Wine

VI. CONCLUSIONS

In this paper novel multiclass decision hyperplanes/surfaces have been proposed based on the

minimization of within-class variance in Hilbert spaces subject to separability constraints. We have

provided robust solutions for the optimization problem. We have related the proposed classifiers with

SVMs and we have provided insights why the proposed surfaces can outperform maximum margin

classifiers. Moreover, we have tried to related the proposed classifiers with Fisher Kernel Discriminant

Analysis. We have extended the proposed classifiers in pseudo-Euclidean spaces (i.e., defining the

proposed classifiers with indefinite kernels). We have shown the usefulness of this extension by

applying the proposed classifiers in a space defined by Hausdorff distances and we have applied

the method for the classification of seven facial expressions, where state-of-art facial expression

recognition rates have been achieved. We have applied the proposed classifiers to other classification

problems where it is shown that they outperform typical maximum margin classifiers. Further, research

on the topic includes the explicitly measurement of the VC dimension of the proposed classifiers and

find surfaces with VC dimension strictly less than the one of maximum margin classifiers. Another

subject for research on the topic is the robust calculation of the enclosing hyperellipse of every of

the classes. This can be achieved by the robust calculation of the covariance and the mean of each

of the classes. Moreover, the proposed classifiers can be applied in a straightforward manner to other

multiclass SVM approaches apart the one described in this paper [29], [47]. Furthermore, it would

be an interesting topic to make the training procedure of the classifiers an online one. This requires

the use of both iterative KPCA and SVM algorithms. Thus, another possible research topic would

be the combination of algorithms such as [48], [49] for iterative KPCA and such as [50] for online

SVM training in order to make online minimum within class variance classifiers. Finally, it would
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be a very interesting topic to compare the proposed classifiers to recently introduced SVM variants

that consider class statistics, as well [30], [51], [52].

APPENDIX I

PROOF OFPROPOSITION

Proposition 2. If for someζ ∈ H, ζTSΦ
t ζ = 0, then under the projectionζ for all training vectors

φ(xi), φ(xj) with φ(xi) 6= φ(xj), the following holdsζT φ(xi) = ζT φ(xj). In other words, under

the projectionζ all the training vectorsφ(xi) fall in the same point. Thus,r = ζT φ(xi) is a constant

∀ xi ∈ U .

Let the matrixXΦ = [φ(x1) . . . φ(xN )] that has as columns the projected training vectors. The total

scatter matrixSΦ
t can be written as:

SΦ
t =

N∑

i=1

(φ(xi)−mΦ)(φ(xi)−mΦ)T = (XΦ −XΦGN )(XΦ −XΦGN )T (85)

where GN is a matrix with elements equal toN−1. Let IN be the identityN × N matrix. The

following holds:

ζTSΦ
t ζ = 0 ⇔ ζT (XΦ −XΦGN )(XΦ −XΦGN )T ζ = 0

||(IN −GN )XΦT
ζ||2 = 0 ⇔ ζT φ(xi) = ζT φ(xj) = ζTmΦ ¥

(86)

Let BΦ andBΦ
⊥ be the complementary spaces spanned by the orthonormal eigenvectors ofSΦ

t that

correspond to non-zero eigenvalues and to zero eigenvalues, respectively. Letϕ ∈ BΦ and ζ ∈ BΦ
⊥.

Thus, wTSΦ
ww = ϕTSΦ

wϕ ∀ w ∈ H. A proof of the above proposition can be found in [3]. The

normal vectorwk of the decision surface can be written aswk = ϕk + ζk with ϕk ∈ BΦ and

ζk ∈ BΦ
⊥.

Taking under consideration thatwk = ϕk + ζk, the Lagrangian of the optimization problem (30)

subject to the separability constraints (19) can be written as:

L1(wk,b, ξ,α, β) =
∑K

k=1 wT
k SΦ

wwk + C
∑N

i=1

∑K
k=1 ξk

i −
−∑N

i=1

∑K
k=1 αk

i [(wli −wk)T (φ(xi)−mΦ) + bli − bk − 2 + ξk
i ]−

−∑N
i=1

∑K
k=1 βk

i ξk
i

=
∑K

k=1 ϕT
k SΦ

wϕk + C
∑N

i=1

∑K
k=1 ξk

i −
−∑N

i=1

∑K
k=1 αk

i [(ϕli + ζli −ϕk − ζk)T (φ(xi)−mΦ) + bli − bk − 2 + ξk
i ]−

−∑N
i=1

∑K
k=1 βk

i ξk
i .

(87)

Taking under consideration the Proposition 2, since forζk,o ∈ B⊥, ζT
k,oS

Φ
t ζk,o = 0, thenζT

k,oφ(xi) is

a constant for allφ(xi). That is,ζliφ(xi) = ζlim
Φ andζkφ(xi) = ζkm

Φ. Thus,L1 becomes:

L1(wk,b, ξ, α,β) =
∑K

k=1 ϕT
k SΦ

wϕk + C
∑N

i=1

∑K
k=1 ξk

i −
−∑N

i=1

∑K
k=1 αk

i [(ϕli −ϕk)T (φ(xi)−mΦ) + bli − bk − 2 + ξk
i ]−

−∑N
i=1

∑K
k=1 βk

i ξk
i .

(88)
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The optimum hyperplanewo can be written aswk,o = ϕk,o + ζk,o. Then:

∇wk
L1|wk=wk,o

= ∇ϕ
k
L1|ϕ

k
=ϕ

k,o
= 0 ⇔ SΦ

wϕk,o −
N∑

i=1

(ck
i Ai,o − ak

i,o)(φ(xi)−mΦ) = 0. (89)

It can be shown in a straightforward way that the gradient in (89) is the same as the gradient of the

optimization problem (42) subject to the constraints (43). Hence, the separability constraints (31) can

be safely replaced by the separability constraints (43). Thus, the partζk,o of the vectorwk,o does

not play any role in the separability constraints (since an arbitrary vectorζk,o can be chosen, the

vectorζk,o = 0 is selected) and the Proposition 1 has been proven. A similar approach can be used

for proving the equivalent proposition for the MWCVMCs variant.

APPENDIX II

WOLF DUAL PROBLEM FOR THE OPTIMIZATION OFLAGRANGIAN (49)

In order to find the optimum separating hyperplanes for the optimization problem (46) subject to

the constraints (47), we have to define the saddle point of the Langragian (49). At the saddle point,

the solution should satisfy the KKT conditions, fork = 1, . . . , K:

∇η
k
L3|η

k
=η

k,o
= 0 ⇔ ηk,o = S̃−1

w

N∑

i=1

(ck
i Ai,o − ak

i,o)(x̃i − m̃) (90)

∂L3

∂bk
|bk=bk,o

= 0 ⇔
N∑

i=1

αk
i,o =

N∑

i=1

ck
i Ai,o (91)

∂L3

∂ξk
|ξk=ξk,o

= 0 ⇔ βk
j,o + αk

j,o = C and 0 ≤ αk
j,o ≤ C. (92)

Substituting (90) back into (49) we obtain:

L3(ηk,b, ξ, α, β) =
∑K

k=1

∑N
i=1

∑N
j=1(c

k
i Ai − αk

i )(c
k
j Aj − αk

j )((x̃i − m̃)TS−1
w (x̃j − m̃))−

−∑K
k=1

∑N
i=1 αk

i [
∑N

j=1(c
li
j Aj − αli

j )((x̃i − m̃)T S̃−1
w (x̃j − m̃))−

−∑N
j=1(c

k
j Aj − αk

j )((x̃i − m̃)T S̃−1
w (x̃j − m̃)) + bli − bk − 2]−

−∑K
k=1

∑N
i=1 αk

i ξ
k
i + C

∑K
k=1

∑N
i=1 ξk

i −
∑N

i=1

∑K
k=1 βk

i ξm
i .

(93)

Adding the constraint (92), the terms inξ disappear. Only the two terms inβ are considered:

B1 =
∑

i,k

αk
i bli =

∑

k

bk(
∑

i

ck
i Ai) andB2 = −

∑

i,k

αk
i bk = −

∑

k

bk(
∑

i

αk
i ). (94)

But, from (91)
N∑

i=1

αk
i =

N∑

i=1

ck
i Ai (95)

so B1 = B2 and the two terms cancel each other, giving:

L3(ηk,b, ξ,α, β) = W (α) = 2
∑

i,k αk
i + 1

2

∑
i,j,k(

1
2ck

i c
k
j AiAj − 1

2ck
i Aiα

k
j − 1

2ck
j Aiα

k
i + 1

2αk
i α

k
j−

−cli
j Ajα

k
i + αk

i α
li
j + ck

j Ajα
k
i − αk

i α
k
j )((x̃i − m̃)T S̃−1

w (x̃j − m̃))
(96)
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Since
∑

k ck
i Aiα

k
j =

∑
k ck

j Ajα
k
i we have:

W (α) = 2
∑

i,k

αk
i +

1
2

∑

i,j,k

(
1
2
ck
i c

k
j AiAj − cli

j AiAj + αk
i α

li
j −

1
2
αk

i α
k
j )((x̃i − m̃)T S̃−1

w (x̃j − m̃))

but
∑

k ck
i c

k
j = cli

i = c
lj
j so:

W (α) = 2
∑

i,k

αk
i +

1
2

∑

i,j,k

[−1
2
cyi

j AiAj + αk
i α

yi

j − 1
2
αk

i α
k
j ]((x̃i − m̃)T S̃−1

w (x̃j − m̃)) (97)

which is a quadratic function in terms of alpha with linear constraints:

∑N
i=1 αk

i =
∑N

i=1 ck
i Ai, k = 1, . . . , K and (98)

0 ≤ αk
i ≤ C, i = 1, . . . , N ali

i = 0, k ∈ {1, . . . , K}\li. (99)

The combination of (90) with the fact thatηk,o = PT φk,o (from the isomorphic mapping (45))

and the results of the Proposition 1, provides the following decision function:

f(x) = argmaxk=1,...,K [wT
k,o(φ(x)−mΦ) + bk,o] = argmaxk=1,...,K [φT

k,o(φ(x)−mΦ) + bk,o]

= argmaxk=1,...,K [
∑N

i=1(c
k
i Ai,o − αk

i,o)(φ(xi)−mΦ)TPS̃−1
w PT (φ(x)−mΦ) + bk,o]

(100)

or equivalently:

f(x) = argmaxk=1,...,K [
∑

i:yi=k Ai,o(φ(xi)−mΦ)TPS̃−1
w PT (φ(x)−mΦ)

−∑
i:yi 6=k αk

i,o(φ(xi)−mΦ)TPS̃−1
w PT (φ(x)−mΦ) + bk,o].

(101)

APPENDIX III

WOLF DUAL PROBLEM FOR THE OPTIMIZATION OFLAGRANGIAN (53)

At the saddle point, the solution should satisfy the KKT conditions, fork = 1, . . . , K:

∇η
k
L4|η

k
=η

k,o
= 0 ⇔

ηk,o = S̃−1
w

∑N
i=1(c

k
i Ai,o − ak

i,o)(x̃i − m̃k).
(102)

The other conditions are the same as (91) and (92).

By substituting (102) back into (53) we obtain:

L4(ηk,b, ξ, α,β) =
∑K

k=1

∑N
i=1

∑N
j=1(c

k
i Ai − αk

i )(c
k
j Aj − αk

j )((x̃i − m̃k)T S̃−1
w (x̃j − m̃k))−

−∑K
k=1

∑N
i=1 αk

i [
∑N

j=1(c
li
j Aj − αli

j )((x̃i − m̃li)
T S̃−1

w (x̃j − m̃li))−
−∑N

j=1(c
k
j Aj − αk

j )((x̃i − m̃k)T S̃−1
w (x̃j − m̃k))) + bli − bk − 2]−

−∑K
k=1

∑N
i=1 αk

i ξ
k
i + C

∑K
k=1

∑N
i=1 ξk

i −
∑N

i=1

∑K
k=1 βk

i ξm
i .

(103)

as in Appendix II the terms inξ disappear and (103) becomes:

L4(ηk,b, ξ,α, β) = 2
∑

i,k αk
i +

∑K
k=1

∑N
i=1

∑N
j=1 δi,j,k(x̃i − m̃k)T S̃−1

w (x̃j − m̃k)

−∑K
k=1

∑N
i

∑N
j λi,j,k(x̃i − m̃li)

T S̃−1
w (x̃j − m̃li)

(104)

whereδi,j,k = (ck
i Ai − αk

i )(c
k
j Aj − αk

j )− αk
i (c

k
j Aj − αk

j ) andλi,j,k = αk
i (c

li
j Aj − αli

j ).
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In order to isolatex̃T
i S̃−1

w x̃j in equation (104) we expanded̃mk as m̃k = 1
Nk

∑
x̃∈Uk

x̃ =∑N
ρ=1 νk,ρx̃ρ whereνk,ρ = 1

Nk
if x̃ρ ∈ Uk andνk,ρ = 0 if x̃ρ ∈ Uk. We expand the term as:

∑K
k=1

∑N
i=1

∑N
j=1 δi,j,k(x̃i − m̃k)T S̃−1

w (x̃j − m̃k)

=
∑K

k=1

∑N
i=1

∑N
j=1 δi,j,k(x̃iS̃−1

w x̃j − m̃kS̃−1
w x̃j + m̃T

k S̃−1
w m̃k − x̃T

i S̃−1
w m̃k)

=
∑K

k=1

∑N
i=1

∑N
j=1(δi,j,k −

∑N
ρ=1 νk,rhoδi,ρ,k−

−∑N
ρ=1 νk,rhoδρ,j,k +

∑N
ρ=1

∑N
m=1 νK,ρνk,mδρ,m,k)x̃T

i S̃−1
w x̃j

(105)

while the other one is expanded as:
∑K

k=1

∑N
i=1

∑N
j=1 λi,j,k(x̃i − m̃li)

T S̃−1
w (x̃j − m̃li) =

=
∑K

k=1

∑N
i=1

∑N
j=1(x̃

T
i S̃−1

w x̃j − m̃T
li
S̃−1

w x̃j − x̃T
j S̃−1

w m̃li + m̃T
li
m̃li)

=
∑K

k=1

∑N
i=1

∑N
j=1(λi,j,k −

∑N
ρ=1 νlρ,ρλρ,j,k −

∑N
ρ=1 νlρ,ρλi,ρ,k+

+
∑N

ρ=1

∑N
m=1 νlρ,ρνlm,m)x̃iS̃−1

w x̃j .

(106)

Thus, the Wolf dual problem is:

L4(ηk,b, ξ, α,β) = W (α) = 2
∑

i,k

αk
i +

K∑

k=1

N∑

i=1

N∑

j=1

ωi,j,kx̃iS̃−1
w x̃j (107)

where

ωij ,k = δi,j,k −
∑N

ρ=1 νk,ρδi,ρ,k −
∑N

ρ=1 νk,ρδρ,j,k +
∑N

ρ=1

∑N
m=1 νK,ρνk,mδρ,m,k+

−λi,j,k +
∑N

ρ=1 νlρ,ρλρ,j,k +
∑N

ρ=1 νlρ,ρλi,ρ,k −
∑N

ρ=1

∑N
m=1 νlρ,ρνlm,m.

(108)

After, solving the quadratic optimization problem (108) the decision function is:

f(x) = argmaxk=1,...,K [wT
k,o(φ(x)−mΦ

k ) + bk,o] = argmaxk=1,...,K [φT
k,o(φ(x)−mΦ

k ) + bk,o]

= argmaxk=1,...,K [
∑N

i=1(c
k
i Ai,o − αk

i,o)(φ(xi)−mΦ
k )TPS̃−1

w PT (φ(x)−mΦ
k ) + bk,o].

(109)
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