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ABSTRACT
This paper presents a complete functional system capable of
detecting people and tracking their motion in either live cam-
era feed or pre-recorded video sequences. The system consists
of two main modules, namely the detection and tracking mod-
ules. Automatic detection aims at locating human faces and is
based on fusion of color and feature-based information. Thus, it
is capable of handling faces in different orientations and poses
(frontal, profile, intermediate). To avoid false detections, a num-
ber of decision criteria are employed. Tracking is performed us-
ing a variant of the well-known Kanade-Lucas-Tomasi tracker,
while occlusion is handled through a re-detection stage. Man-
ual intervention is allowed to assist both modules if required.
In manual mode, the system can track any object of interest, so
long as there are enough features to track. The system caters
for calibrated cameras and can provide 3-D coordinates of any
tracked object(s) of interest. It has been tested with very good
results on a variety of video sequences, including a database of
studio video sequences, for which 3-D ground truth data, origi-
nating from a 4-camera infrared tracking system, exist.
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1. INTRODUCTION

Tracking the motion of people in video sequences has been a
topic of active and intense research for the past two decades.
Such a task is usually preceded by an initialization step that aims
at detecting the presence of people.

Detecting people has been tackled with using a range of
methods. Various methods aim at recovering the human figure,
i.e. the silhouette [1], [2], whereas others focus on recovering
the position of certain parts of the human body, e.g. arms, hands,
limbs etc. [3], [4]. A large number of attempts focus on face de-
tection, due to its obvious importance as a pre-processing step
in applications such as intelligent human-computer interfaces,
content-based image retrieval, surveillance, video coding, face
recognition, face authentication, pose estimation etc. A num-
ber of factors that include pose variations (frontal, profile and
intermediate poses), skin-color variations, facial structural com-
ponents, such as moustache, beards and glasses, occlusion and
poor or variable imaging conditions make this task a rather dif-
ficult one. These factors essentially force researchers to make a
number of assumptions that enable them to successfully han-
dle the task in hand, but at the same time limit the applica-
tion scope of such algorithms. Face detection methods can be
classified into a number of different categories, ranging from
knowledge-based methods, aiming mainly at face localization,
to appearance-based methods, where models are learned from a
set of representative training images and used for face detection.
For details on these methods, the reader is referred to [5], [6].

Video-based tracking of the motion of the human body, ei-
ther viewed as a single object or comprising an articulated struc-
ture consisting of a number of rigid body parts, is also a chal-
lenging research topic with applications in many domains such
as human-computer interaction, surveillance, hand gesture recog-
nition and 3-D reconstruction. There exist alternative approaches,
which could be divided into two broad classes, active and pas-
sive tracking. Active trackers employ wearable devices, which
simplify further processing and are mainly suitable for well-
controlled environments. Passive trackers, on the other hand,
use at the most simple markers attached to the subject(s) or no
such devices at all. Computer vision researchers have been try-
ing to achieve results comparable to active tracking using pas-
sive techniques for a long time, in an effort to produce generally
applicable motion tracking systems, free of special markers or
devices, able to function in uncontrolled (indoor or outdoor) en-
vironments. However, a number of difficulties arise, including
but not limited to projection ambiguities, computational burden,
self occlusion, unconstrained motion, clutter, poor or varying
lighting conditions, use of a single camera etc. These difficulties
have led researchers to adopt a number of assumptions in order
to focus on tackling specific aspects of an overall very complex
problem. Assumptions can be either related to the motion of
the camera or subjects (e.g. fixed camera, single-person scenes,
occlusion-free scenes, known motion models, front-to-parallel
movement with respect to the camera) or refer to the appear-
ance of the environment (constant lighting conditions, uniform
background etc.) or the subject(s) (known initial position, tight
clothing etc.). For a comprehensive review of different methods,
the reader is referred to [7] and earlier surveys [8, 9, 10].

It is obvious that building tracking systems that can be used
in real-world environments is far from being a simple process.
In [11], a real-time tracking system was built and tested on a va-
riety of physical locations, without any special devices. The pro-
posed system uses simple 2-D models of the human body to per-
form detection and tracking, as well as a priori knowledge to re-
cover from failures. However, the system performance deterio-
rates when specific assumptions adopted by the authors, namely
that the background is much less dynamic than the subject and
that there is only one subject within the camera field-of-view,
do not hold. [12] presents a system capable of detecting and
tracking multiple people in the context of video-conferencing.
The system continuously applies a neural-network-based face
detector to account for new subjects entering the field-of-view
of the camera or to handle occlusion and tracks the detected
faces. Limitations include detecting portions of the background
as valid faces, as well as loss of valid faces when the regions
corresponding to faces merge with regions of falsely detected
faces, due to proximity. In [13], a real-time system for face and
facial feature detection and tracking in video sequences was pro-
posed. The system can automatically detect and subsequently
track up to four faces in specific orientations only. In [14], a
face tracker similar to the automatic tracker used in this paper
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was integrated into a video encoding environment, in an attempt
to allocate more coding bits to the face regions of interest, with
the use of additional cues to lower the number of false alarms.
However, in scenes with multiple faces or in scenes where faces
move quickly in and out of the field-of-view, the authors decided
that the best strategy is not to track such faces at all, which limits
the applicability of such a system in more generic environments.
In [15], a real-time visual surveillance system for detecting and
tracking multiple people and monitoring their activities in an
outdoor environment was implemented. The system employs
shape analysis and tracking to locate certain parts of the human
body (head, hands, feet, torso) and can track multiple people.
Additionally, it can detect and track objects other than people
and consequently monitor interactions between people and such
objects. In [16] the image intensity was represented by a 3D
deformable surface model. The system relies on selecting and
tracking feature points by exploiting a feature vector which is an
intermediate step of the deformation governing equations. This
vector is proven to be a combination of the output of various
line and edge detection masks, thus leading to distinct, robust
features.

The goal of this work is to present an automatic/semi-auto-
matic system, that integrates enhanced versions of a number of
different algorithms originating from different fields of com-
puter vision and aims at robust face detection and tracking, as
well as object tracking in general, covering both 2-D and 3-D
cases, with performance comparable to expensive commercial
tracking systems that utilize special devices for tracking. Our
approach for face detection was motivated by [17] and [18] and
involves fusion of information available from two separate de-
tectors in order to produce more accurate results than each de-
tector alone, as well as to complement each other with respect to
failures. The first detector is based on color whereas the second
employs the so-called Harr like features. The tracking algorithm
of this system is a variant of the Kanade-Lucas-Tomasi tracker
[19], [20], which can successfully deal with still or slowly mov-
ing features and large displacements of features between con-
secutive frames, in order to make the tracking process more ro-
bust to occlusions. The proposed system can operate in different
modes (automatic and semi-automatic) and is capable of track-
ing either automatically detected faces or any other manually
selected object(s) of interest. In its default configuration, the
system can cope with a range of different environments. How-
ever, a number of parameters can be fine-tuned to produce even
better results.

One of the novel contributions of this paper is a fusion sche-
me that combines the results of the two separate detectors, aim-
ing at reliable detection of faces in various poses (frontal, pro-
file, intermediate) and orientations. However, the main contribu-
tion is the implementation and testing of a complete functional
system, which incorporates all the above and aims at detecting
and tracking people in live camera input or pre-recorded video
sequences.

The remainder of the paper is organized as follows. The face
detection algorithm is presented in Section 2. In Section 3 the
tracking process is introduced. Tracking using a calibrated cam-
era is described in Section 4. A brief description of the main
features of this system can be found in Section 5. Section 6
presents experimental results, while in Section 7 the final con-
clusions are drawn.

2. FACE DETECTION BASED ON FUSION OF
INFORMATION

In this Section, two different face detection algorithms based on
color and Harr-like features are described. Their strengths and

weaknesses are identified and the two approaches are shown to
be complementing each other. A fusion scheme that combines
the two algorithms and employs additional decision criteria to
improve the detection rate and reduce false detections is derived.
Fusion is essential, because an automatic system for face detec-
tion, especially when applied as an initialization step in a sys-
tem for tracking people, should be able to cope with frontal to
profile face poses, as well as different orientations. However,
the computational efficiency should be high enough to allow for
fast detection and not limit its applicability in real-world envi-
ronments.

A number of detection methods use color to perform skin
segmentation and then post-process the segmentation results, to
compensate for any errors originating from substantial changes
in foreground and background lighting. This process typically
involves a connected component analysis step, followed by shape
analysis and detection of multiple facial features in each con-
nected component [17], [21]. The facial features used in such
methods include the eyes, eyebrows, hair, nose and the mouth.
Symmetry of the human face [22], as well as biometric informa-
tion, i.e. distances between facial features [23] have also been
exploited.

Another category of methods ignore color information and
search for salient features by means of edge detectors [24], [25].
Such features, however, can be easily corrupted by noise and il-
lumination changes. Other researchers [26], [27], [28] use stan-
dard face patterns as templates and evaluate the correlation be-
tween a new image and the pattern images for a number of dif-
ferent features (eyes, nose, mouth, face contour). Limitations in
scale, pose and shape variations can be overcome at the expense
of increased computational burden. All the above mentioned
methods share a common characteristic, that is, they are mainly
focused on frontal face detection. A limited number of attempts
to build profile or non-frontal face detectors are reported [29],
[30], [31], [32].

2.1. Color-based face detection

Using color as the primary source of information for skin de-
tection has been a favorable choice among researchers. Conse-
quently, there have been a number of attempts to determine the
optimum color space for skin segmentation. Researchers have
concluded that the skin color distribution forms a cluster (the
so-called skin locus) in various color spaces [33], [34], which is
however, camera-specific. For a more comprehensive discussion
on skin color detection techniques, the reader is also referred to
[35].

The color-based algorithm that we have used is similar to
the one in [17]. Skin segmentation in the Hue-Saturation-Value
(HSV) color space, which has been a popular choice among re-
searchers due to its inherent relation to the human perception
of color, is used. Moreover, the V component (intensity) is ig-
nored, in order to obtain at least partial robustness against il-
lumination changes, resulting in a 2-D color space. Instead of
modelling skin color distribution using non-parametric methods,
such as Lookup Tables (LUT), Bayesian classifiers or Self Or-
ganizing Maps or parametric methods (single Gaussian, mixture
of Gaussians or even multiple Gaussian clusters), the system in
this paper employs a skin classifier that explicitly defines the
boundaries of the skin cluster in the HSV color space.

The input image is first converted into the HSV color space.
The H, S values of all the individual pixels are tested against ap-
propriate thresholds (the thresholds used are similar to the ones
used in [17]). More specifically:

f(h) =


1 , 0 < h < 0.15
0 , otherwise (1)
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(a) (b)

Figure 1: (a) Hue-Saturation-Value color space, (b) Thresholding in the Hue-Saturation space

and

g(s) =


1 , 0.2 < s < 0.6
0 , otherwise (2)

with h and s values in the interval [0, 1]. A pixel will be
classified as skin-like only if f(h)g(s) = 1. Since the HSV
color space has a hexcone shape, as illustrated in Figure 1-a,
this is equivalent to cutting a sector out of the hexagon, as seen
in Figure 1-b [17]. Such a method is attractive because of its
simplicity and the ability to construct very fast classifiers. Since
the detection method presented in this paper involves a com-
bination of two detectors, it is essential that the computational
burden is kept low.

The skin segmentation results are morphologically proces-
sed by means of a number of opening and closing operations.
Connected component analysis is the next step. The number of
contour points of each connected component is tested against a
threshold, to ensure that the subsequent ellipse fitting process
is applied only to large enough regions. The shape for each
connected component is then examined by an ellipse fitting al-
gorithm to further reduce the number of candidate regions. In
[17], the best-fit ellipse was computed using moments. Our al-
gorithm uses the general conic-fitting method presented in [36],
with additional constraints to fit an ellipse to scattered data. Ad-
ditional decision criteria are incorporated to ensure that invalid
ellipses will not be fit. These criteria refer to the orientation of
the ellipse, the ratio of the ellipse axes and the area occupied by
the ellipse. The thresholds for the criteria have been determined
by experimentation and are the following:

• N > 10 ∗ scale

• 1.6 < b
a

< 2.5

• A > 36 ∗ scale

• 45o < θ < 135o

where N is the number of contour points of the connected
component, a and b denote the lengths of the minor and major
axis of the ellipse respectively, A is the area occupied by the el-
lipse, θ is the angle between the horizontal axis and the major
ellipse axis (i.e. the orientation of the ellipse), in degrees, and
scale is a parameter associated with the size of the input images.
However, it is important to note that the same threshold values
have been used in all the experiments presented within this pa-
per.

Color-based detectors suffer from false detections, due to
the presence of other foreground or even background objects
that exhibit similar color and shape properties with the objects
of interest (e.g. faces). For this reason, the candidate regions
that survive this process are then subjected to a facial feature
extraction process. The first step of this process is to calculate
the first order derivative with respect to the vertical axis of the
input image I , by first converting to grayscale and then applying
an extended Sobel operator. The kernel used is:24 −1 −2 −1

0 0 0
1 2 1

35
The resulting image J is then thresholded to produce a bi-

nary image B, according to:

B(i, j) =


1 , J(i, j) > J(i, j)
0 , otherwise

where J(i, j) denotes the average grayscale value of all im-
age pixels.

The goal is to ensure that the existence of strong edges a-
round the eyes will eliminate any falsely detected regions. It
appears that this process achieves good results and fails only in
rare cases. For instance, if the subject wears clothes with colors
similar to the color of the human skin, folds in the clothes can
potentially confuse the detector, as illustrated in Figures 2-c and
-d. It should also be noted that the color-based detection algo-
rithm will often detect face regions which include skin-like areas
irrelevant to the subsequent tracking process (i.e. the neck), as
can be seen in Figure 2-e. These areas will be eliminated by ap-
plying the second face detection algorithm, which is presented
in Section 2.2 and fusing the results of the two detectors, as il-
lustrated in Section 2.3.

2.2. Face detection based on Harr-like features

In [18], a real-time frontal face detection framework was pro-
posed, based on simple features that are reminiscent of Harr ba-
sis functions. These features were extended in [37] to further
reduce the number of false alarms. Although this is a fast and
efficient frontal face detector with very good published results
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Face detection in complex backgrounds. (a) False detections produced by the detector in [37], (b) elimination of false
detections by means of a skin-like threshold, (c)-(d) false detections produced by the color-based detector, (e) erroneous detection
regions (including the subject’s neck), produced by the color-based detector, and (f) results of fusing the two detectors.

on test datasets (namely the MIT+CMU set), exposure to real-
world conditions can drastically deteriorate its performance. An
example of false detections on images that contain complex or
misleading background is illustrated in Figure 2-a. Another in-
teresting fact, which is also illustrated in the same figure, is that
when the face to be detected is not “up-frontal” , the detector
will usually include a portion of the background in the corre-
sponding bounding box. Such results, however, will cause prob-
lems if they are subsequently used as input to the tracking mod-
ule. To overcome the first problem, namely the false detections,
the algorithm is modified so as to include a color-based thresh-
olding step. This step is identical to the initial skin-like segmen-
tation step of the color-based detection algorithm, as specified
by (1) and (2). However, it is not applied to the whole input im-
age but to each face region detected by the original algorithm.
Based on the fact that a face, whether frontal, profile or in any
intermediate pose or orientation should contain a large portion
of skin-like pixels, thresholding on the number of skin-like pix-
els is also employed. A candidate face region will be a valid
face only if S/T > 1

4
, where S denotes the number of skin-

like pixels according to the above thresholding procedure and
T the total number of pixels contained in the candidate region.
The choice of a small threshold value is related to the fact that
the detector in question produces results that contain portions
of the background. This value eliminates any false detections
associated with the background, while maintaining all correctly
detected faces, as can easily be seen in Figure 2-b.

2.3. Fusion of color-based and feature-based detectors

The proposed system incorporates a combination of the two de-
tectors presented above, in order to handle as many different
detection scenarios as possible. Using this dual approach, the
problem of detection is essentially split in two separate tasks:
frontal and non-frontal face detection. The frontal case is mainly
handled by the frontal face detector used in [37], modified by in-
corporating the color-based thresholding step described earlier.
The color-based face detection scheme described in Section 2.1
is responsible for detecting faces in different poses and orienta-
tions, as well as for supplementing the results of the frontal face
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(a) (b)

(c) (d)

Figure 3: Correct detections produced by the fusion of two detectors in frame (a) 10, (b) 15, (c) 45 and (d) 58 of a video sequence with
complex background and additional foreground items.

detector.
The combined algorithm proceeds as follows. Both algo-

rithms are applied to the input image. The first detector, pre-
sented in Section 2.1 correctly detects frontal faces. However,
portions of the background are included in the resulting bound-
ing boxes, as illustrated in Figure 2-a. The second detector, de-
scribed in Section 2.2 also detects frontal faces, including skin-
like areas irrelevant to the subsequent tracking process (i.e. the
neck), as can be seen in Figure 2-e. The intersections of the
frontal face regions detected by both detectors are the ones ac-
cepted as frontal faces. However, there exist cases when either
of the two detectors will detect faces that the other one has failed
to do so. These additional faces are also accepted. More specif-
ically, the color-based algorithm detects some frontal faces that
the first detector can not handle, mainly because of restrictions
in the minimum size of detected faces. The result of “fusing”
the two detectors is illustrated in Figure 2-f, where it can be
clearly seen that original “erroneous” facial regions of both the
first and second detectors that contained background pixels have
been corrected. Results are very good, as illustrated in Figure 3.
A schematic description of the overall detection module is de-
picted in Figure 4-b.

3. REGION BASED FEATURE TRACKING

In this Section, the algorithm used for tracking faces (or other re-
gions of interest) is presented. The algorithm is based on select-
ing a large number of point features in the tracking region which
are subsequently tracked in the next frames. Tracking is initial-
ized either manually or with the output of the detection module,
i.e. the bounding box(es) of the area(s) corresponding to the de-
tected face(s). The result of the tracking algorithm is specified
as the bounding rectangle of all the tracked features. Point fea-
tures are tracked using the Kanade-Lucas-Tomasi (KLT) algo-

rithm [19], [20]. The displacement d = [dx dy]T between two
feature windows on images I and J is obtained by minimizing:

ε =

Z Z
W

[J(x +
d

2
)− I(x− d

2
)]2w(x)dx (3)

where x = [x, y]T , W is the region of the window and w(x)
is a weighting function. In order to perform one iteration of the
minimization procedure of (3), the equation Zd = e must be
solved, where [19], [20]:

Z =

Z Z
W

g(x)gT (x)w(x)dx (4)

e = 2

Z Z
W

[I(x)− J(x)]g(x)w(x)dx (5)

and

g =

"
∂(I+J)

∂x
∂(I+J)

∂y

#
(6)

To eliminate background features from the tracking process,
a clustering procedure is applied [38]. Let (µx, µy), (σx, σy)
be the mean and variance of the feature coordinates for all fea-
tures in frame t and [x, y]T the coordinates of some feature.
This feature is retained in frame t+1 if xε[µx − σx, µx + σx],
yε[µy−σy, µy +σy], otherwise it is rejected. Assuming that the
tracked object features have similar motion patterns, this enables
the algorithm to reject stationary or slowly moving background
features, after a number of frames. This is particularly useful if
the region used for tracking initialization contains a portion of
background, as can be seen in Figure 3-b to -d.

Feature generation is based on the algorithm used for point
feature tracking [19], [20], where a good feature is defined as
the one whose matrix Z has two large eigenvalues that do not
differ by several orders of magnitude. Such a feature assures that
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(a)

(b)

(c)

Figure 4: Schematic Diagrams: (a) Overall system, (b) Detection module and (c) Tracking module

equation Zd = e is well conditioned. It can be shown that the
large eigenvalue prerequisite implies that the partial derivatives
∂(I+J)

∂x
and ∂(I+J)

∂y
are large [19], [20].

To overcome the problem of loss of features, especially when
the amount of motion between two subsequent frames is above
average, the number of features in each tracked region is checked
in each frame against a specified threshold. If the number falls
below the threshold, features are regenerated (i.e. existing fea-
tures are kept, while new features are generated inside the region
until the specified number of features is reached). Feature regen-
eration also takes place at regular intervals, in an effort to further

enhance the tracking process.

There exist cases, however, when tracking failure will occur,
i.e. a face is lost in a frame. To cope with such problems, re-
detection is employed using the combined face detection algo-
rithm presented earlier. However, if any of the detected faces co-
incides with any of the faces already being tracked, the latter are
kept, while the former are discarded from any further process-
ing. Re-detection is also periodically applied to account for new
faces entering the field-of-view of the camera. The schematic
description of the tracking module is illustrated in Figure 4-c.
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4. TRACKING USING A CALIBRATED CAMERA

In order to be able to extract the 3-D coordinates of the tracked
object of interest (e.g. a face), camera calibration is necessary.
The latter is performed using the method described in [39]. A
planar chessboard pattern is observed by the camera in a number
of different orientations. The method yields better results when
an average of 20-25 different orientations are captured. Differ-
ent orientations can be obtained by either moving the camera or
the pattern, without explicit knowledge of the actual motion. Ra-
dial lens distortion is also accounted for. One of the advantages
of the method is the fact that a simple pattern and an easy to per-
form calibration procedure are used. Additionally, this method
is more robust than self-calibration methods [40], [41].

In the case that the camera used is calibrated with the method
described above, the 2-D (image) coordinates of the center of
gravity of all tracked features within a region of interest are used
to obtain the 3-D (world) coordinates of the tracked object(s) in
each frame.

The calibration process essentially provides for each pixel a
line connecting it to the camera center of projection, where the
point projected on this pixel can lie (i.e. projection line). In or-
der to exactly localize this point, i.e. calculate the world coordi-
nates of this point using its 2-D image coordinates, an additional
constraint among the world coordinates must be introduced [42].
In our case, we assume that the center of gravity of the object
being tracked, is constrained to move on a plane, the equation
of which is a priori known. Thus, the position of the point in
the 3-D space is defined as the intersection of the projection line
with the plane. The accuracy of each of the calculated 3-D coor-
dinates depends on the angle between the projection line and the
corresponding axis. In fact, the error of the calculated 3-D co-
ordinates is inversely proportional to the angle. In other words,
the deviation of the calculated 3-D coordinates from the actual
ones increases as this angle approaches 0o.

5. OVERALL SYSTEM DESCRIPTION

In this Section, the main features of the system are illustrated.
The system is parameterized, which means that it can be fine-
tuned for the environment it is supposed to operate on. The
overall system diagram is depicted in Figure 4 (a).

Tracking can be performed in two different modes. The first
one is a semi-automatic mode, where the detection process can
be either automatic or manual, while the tracking stage is fully
automatic. However, the user may intervene and manually cor-
rect the tracking (or the detection) results. The second one is
fully automatic in both initialization and tracking, in the sense
that the user need not intervene at any point while processing
takes place.

In the first mode, if manual initialization is selected, user
intervention is required to initialize the regions to be tracked
in the first frame of the video sequence. Features are gener-
ated within each of the regions according to the algorithm in
[19], [20]. These are the features used in the automatic track-
ing stage. Manual intervention can also take place under other
circumstances, such as:

• initialization of the tracking algorithm for new faces en-
tering the scene

• re-initialization if any of the tracked faces is lost

• correction of erroneous tracking results

Correction of erroneous results includes stopping the track-
ing of wrongly detected objects as well as correcting the tracked
region, so as not to contain portions of the background. It is

obvious that, using the manual initialization option, the system
can be used to track any object(s) of interest, other than faces, in
a video sequence.

In the second mode of operation, the user does not interact
with the system during the processing of the video sequence.
Both the detection and the tracking stages are performed au-
tomatically by the system, using the corresponding algorithms
described earlier.

As already mentioned, the system can operate both on live
input from a camera connected to a PC or on pre-recorded video
sequences. If calibration data are available, they can be fed into
the tracking system. The system provides for storing the track-
ing results, namely, video files depicting the bounding boxes of
the objects being tracked, overlaid on the original video, and/or
a text file containing the 2-D/3-D coordinates of the objects be-
ing tracked.

A tracking system should definitely cater for manual setup
that would allow it to perform optimally in a number of different
environments. Hence, a number of user-specified parameters in
the system presented in this work can be properly adjusted to
fine-tune its performance. It should be stressed, though, that the
default parameters used are the ones that would allow the sys-
tem to operate efficiently in a variety of different environments.
Adjustments can, under certain circumstances, produce better
results.

As far as detection is concerned, the following parameters
can be set for the color-based detection algorithm (used also in
the combined algorithm):

• the minimum and maximum hue/saturation thresholds u-
sed to initially segment the image

• the level of pre-processing, i.e. the number of times mor-
phological operations will be successively applied to the
initially segmented regions

• minimum and maximum acceptable values of the ratio
associated with the axes of the ellipse

• minimum and maximum acceptable values of the angle
between the major axis of the ellipses that have been fit
and the horizontal axis

• percentage of the pixels that have been classified as skin-
like to the total number of pixels contained in an initially
detected region.

The parameters for the tracking module consist of:

• the maximum number of features that will be generated
(if possible) in each region (either manually initialized or
automatically detected) by the feature selection process

• re-detection interval (in frames) in order to cater for new
faces entering the scene

• automatic feature regeneration interval (in frames), in or-
der to compensate for lost features

• the threshold of the ratio of the actual tracked features to
the maximum number of features that will invoke auto-
matic feature regeneration within the tracked regions.

Additionally, the algorithm that will be used for detection,
i.e. color-based detection, detection as in [18] or the combined
algorithm that “fuses” the two detectors, can be specified.

6. EXPERIMENTAL RESULTS

A number of different tracking performance evaluation meth-
ods have been proposed, as in [43]. The ideal case involves
direct comparison of the output of a tracking system against ref-
erence or ground truth data. Video sequences with ground truth
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Figure 5: The Virtual Studio.

were available for the purpose of this study [44]. The sequences
were obtained in the Virtual Studio of the Technical University
of Ilmenau in Germany, as part of the CARROUSO (“Creating,
Assessing and Rendering in Real Time of High Quality Audio-
Visual Environments in MPEG-4 Context” [45]) European Re-
search Project. The sequences included scenes shot with differ-
ent subjects, lighting conditions, motion trajectories and occlu-
sion conditions. Along with the video and audio data associated
with the scenes, ground truth data were provided by means of the
output of a 4 infrared camera system located on the studio ceil-
ing. However, ground truth was available for a maximum of two
subjects within the studio, namely those carrying special mobile
infrared transmitters placed on their heads. Figure 5 illustrates
the Virtual Studio. The dashed lines indicate the camera’s field
of view, INF1 . . . INF4 denote the infrared cameras and LED1,
LED2 denote the mobile transmitters. AKG1. . . AKG8 denote
fixed position microphones, while MIC1 and MIC2 correspond
to two close-talking microphones, depending on whether one or
two acoustic sources were present on stage. Visual aids are de-
noted by (+).

6.1. Face Detection

Both the color-based and the combined face detection algorithms
have been tested on a representative sample of 1239 images
taken from the above mentioned sequences. The images contain
1587 facial instances, in various poses, orientations and lighting
conditions. In order to calculate the results, two assumptions
were made: the whole face should be within the field-of-view
of the camera and should be clearly visible (i.e. it should not be
occluded) and the subject(s) should not present the back side of
their head to the camera (i.e. at least some part of the facial skin
should be visible). Examples of these images are illustrated in
Figures 2 and 3.

The detection rate of the color-based algorithm is 57.9%,

while the false alarm rate is 9.6%. When running the combined
algorithm, the detection rate increases to 79.1%, whereas the
false alarm rate drops to 3.4%. A substantial 37.1% increase
and a simultaneous 65% decrease in the detection and the false
alarm rates respectively is achieved by the use of the introduced
combined algorithm. Direct comparison with the feature-based
detector, presented in Section 2.2 would not be accurate, be-
cause the latter is a frontal face detector that can handle approx-
imately ±15 degrees of in-plane rotation. However, a qualita-
tive comparison reveals that the false alarm rate, when fusing
the two detectors is again significantly lower, while the hit rate
is comparable to that of the feature-based detector.

The detection rate of the combined algorithm is indeed very
high. This can become more evident if one considers the fol-
lowing facts: first, detection results refer to facial instances in
all possible poses and orientations and second, the computa-
tional burden is very low, since a detection scheme that fuses
the results of only two separate detectors is employed. This is
in contrast with previous works on multi-view detection, which
either involve running multiple detectors on input images, each
responsible for handling different views (poses-orientations), or
applying a pose estimation stage prior to the detection stage
[29], hence producing a substantial increase in the computa-
tional overhead. Additionally, results from other published meth-
ods refer to facial instances that correspond to a subset of all pos-
sible poses and orientations. Finally, the images used for testing
these methods can not always be considered as real-world ex-
amples, since these images are usually acquired under specific
conditions (e.g. constant lighting, uniform background etc.).

6.2. Tracking

The overall system has been tested on various video sequences
with good results. Table 1 illustrates the default values of the
parameters associated with the detection and tracking modules
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of the system, which were also used in these tests. The system
is capable of processing full PAL video sequences (24-bit-color,
resolution 720x576 pixels ) at a frame rate of 5 frames/sec using
a 2GHz Pentium IV PC with 512 MBytes of RAM. It should
be noted, though, that the frame rate can substantially increase
(12-15 frames/sec) at the expense of accuracy if the frames are
sub-sampled prior to processing or certain internal parameters
of the detection algorithms are relaxed.

Table 1: System default parameter values. These values were
used to produce the results presented in this paper.

Parameter Value
Hue 0(min) - 0.16(max)

Saturation 0.20(min) - 0.60(max)
Pre-processing level 2

Percentage of skin-like pixels 0.25
No. of contour points 40

Ellipse ratio 1.6(min) - 2.5(max)
Ellipse orientation (degrees) 45(min) - 135(max)

Ellipse area (pixels) 144
No. of features 150

No. of frames (re-detection) 100
No. of frames (regeneration) 10

Regeneration threshold (percent) 0.25

Test video sequences include the CARROUSO project video
sequences [44]. In Figures 6, 7 and 8, the results of automatic
face detection and 2-D tracking for three of the CARROUSO
project video sequences are illustrated. Sample frames are taken
at 50-frame intervals, except for the third sequence, where frames
are sampled in such a way as to illustrate the ability of the sys-
tem to recover from tracking failures. In the first sequence, a
single subject is moving parallel to the camera at a distance of 4
meters, from the left to the right, moving in and out of the field-
of-view, with optimal lighting conditions and no occlusion. Op-
timal lighting conditions refer to the fact that the studio lights
were configured to produce a uniform lighting, with no dark
spots or strong shadows introduced into the scene. The second
sequence involves two subjects moving randomly, with optimal
lighting conditions and at times occluding each other. In the
third sequence, the two subjects are moving randomly, with sub-
optimal lighting conditions and at times occluding each other.
Sub-optimal lighting conditions refer to the fact that the studio
lights were configured in such a way as to introduce dark spots
or strong shadows into the scene, thus making both detection
and tracking of the two subjects more difficult than in the sec-
ond sequence.

It can be clearly seen that the system accurately tracks the
face of the subject in the 700 frames of the first sequence. Addi-
tionally, the system re-detects the subject and re-initiates track-
ing between frames 600 and 650, as seen in Figure 6 (l) and (m),
when the subject moves out of the field-of-view of the camera
and later re-enters the scene. This is accomplished through the
re-detection stage applied when one of the tracked faces is lost.
The re-detection process is illustrated more clearly in Figure 7,
because the two subjects are moving randomly in the second
sequence and occlusion takes place quite often. The system ini-
tially does not detect the second subject, because an inadequate
portion of its facial skin is visible. It therefore does not track
the second subject until frame 100, depicted in Figure 7-c, when
the subject is detected for the first time. This is due to the fact
that the system applies the detection algorithm periodically to
account for new faces entering the scene or for faces that were

not detected at earlier stages, as in this case. The re-detection
period is 100 frames, as illustrated in Table 1. The two subjects
are successfully tracked until frame 300, Figure 7-g. The system
then loses track of the first subject (the taller actor) and can not
re-detect him, because he is facing away from the camera. The
subject is re-detected later, Figure 7-i, by which time, the second
subject is lost again and re-detected later in the sequence. Both
subjects are accurately tracked for the subsequent 200 frames,
Figure 7-j to -n. The second subject leaves the field-of view of
the camera, Figure 7-o, and re-enters later. The system again
re-detects him, Figure 7-p, and successfully tracks both subjects
for the remainder of the sequence.

Finally, the difficulties introduced by sub-optimal lighting
conditions are illustrated clearly in Figure 8, where one can see
that the tracking results are not as accurate as those of Figure
7. The system successfully detects the faces of the two actors
initially and tracks them until frame 30, Figure 8-b, at which
point occlusion is about to occur. This causes the system to lose
track of the second subject (the shorter actor) and to re-detect
him in subsequent frames, as illustrated in Figure 8-c. Both ac-
tors are then correctly tracked until frame 150, depicted in Fig-
ure 8-e. Occlusion occurs again, but the system later re-detects
the occluded shorter subject, as seen in Figure 8-f. Tracking is
subsequently performed without any problems, until frame 550,
Figure 8-n. The occlusion that follows causes the system to re-
detect only the first subject (the taller actor), while the second
subject is detected later, when enough portion of its facial skin
is visible to the camera, Figure 8-p. Both subjects are then suc-
cessfully tracked for the remainder of the sequence.

In Figure 9, the coordinate system is illustrated, while in
Figures 10 and 11, the results of 3-D tracking, i.e. the X and
Z coordinates of the tracked object are plotted for the first two
of the above three sequences, depicted in Figures 6 and 7, along
with the ground truth associated with these sequences. However,
it should be noted that the ground truth data provided do exhibit
errors in the form of discontinuities and erratic trajectories, as il-
lustrated in Figures 10 and 11. This is mainly due to the fact that
even with 4 infrared cameras, the link between the mobile trans-
mitter and any one of the cameras is at times lost. Additionally,
the local movement of the head, where the infrared transmitters
were located, can produce results that look erroneous. Even so,
the ground truth data available can be used to provide valuable
information about the performance of a tracking system. It is
obvious, though, that in the video sequence segments where the
ground truth data are unreliable, the error should be smaller than
it actually is.

Figure 9: The coordinate system for the CARROUSO project
video sequences

Calculation of 3-D coordinates for faces was proven to be
inaccurate, due to the fact that the angle between the projection
line and the Z-axis was very small. For this reason, the track-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 6: 2-D tracking results on the first test video sequence, 700 frames, sample frames displayed at 50-frame intervals (order:
top-to-bottom, left-to-right).

ing process was initialized manually. Instead of the face(s), both
feet of the subject(s) were tracked. The center of gravity of the
feet was used to calculate the 3-D coordinates. Since the feet
center of gravity lies on the same vertical axis with the mobile
transmitter (located on the head of the subjects), direct compar-
ison between the X, Z tracking data (derived for the feet) and
the X, Z ground truth data (provided for the head) was possible.
As referred in Section 4, in order to calculate the 3-D coordi-

nates, the point in question was assumed to lie constantly in the
same plane. More specifically, it was assumed that the center of
gravity of the feet was always located at a constant height, i.e.
the value of the Y-coordinate of the point was constant. Since
the subjects moved on a horizontal floor with no stairs or ramps,
this assumption was indeed a valid one.

Figures 12 and 13 depict the absolute error between the
tracking data and the ground truth data for the two video se-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 7: 2-D tracking results on the second test video sequence, 850 frames, sample frames displayed at 50-frame intervals (order:
top-to-bottom, left-to-right).

quences of Figures 6 and 7. The erroneous peaks in the error
plots of the calculated 3-D coordinates are associated with the
instantaneous glitches of the infrared tracking system. Some ex-
amples of such inaccuracies are illustrated in Figures 10 and 11.
Erroneous peaks in the error plots are also identified to indicate
unreliable ground truth data. The X-coordinate absolute error
for the first sequence ranges from 0 to approximately 0.4 meters,
if the erroneous peaks are not taken into account. The absolute
error for the Z-coordinate ranges from 0 to 0.6 meters. One
source of error is associated with the fact that system-provided

and ground truth 3-D coordinates refer to different points on the
subject (feet and head respectively). Moreover, the assumption
of constant height is at times violated, therefore producing devi-
ations in the calculated 3-D coordinates. The corresponding er-
rors for the second sequence are generally higher, possibly due
to the unrestricted movement of the subject(s), ranging from 0
to 0.6 meters and 0 to 0.7 meters for the X and the Z coordinates
respectively. It is obvious, however, that the results obtained are
very satisfactory for a number of applications.

Additionally, a number of single-subject indoor and outdoor
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 8: 2-D tracking results on the third test video sequence with sub-optimal lighting conditions, 750 frames, sample frames
correspond to frame 0, 30, 62, 100, 150, 200, 250, 276, 300 and at 50-frame intervals afterwards (order: top-to-bottom, left-to-right).

video sequences were available for testing. The results of auto-
matic face detection and 2-D tracking for one of these video
sequences are illustrated in Figure 14. In the sequence, a female
subject is moving almost parallel to the camera, staying within
the field-of-view of the camera at all times, with outdoor light-
ing conditions. Visual inspection of Figure 14 shows the correct
localization of the face throughout the sequence.

7. CONCLUSION

In this paper, a complete system for tracking people in 2-D, as
well as calculating their 3-D coordinates using a calibrated cam-
era was presented. The system can operate on either live cam-
era feed or pre-recorded video sequences. Initialization can be
automatic, in which case a detection algorithm that is based on
fusion of two detectors, based on color and Harr-like features re-
spectively, is employed. The combined algorithm is capable of
handling different face orientations and poses (frontal, profile,
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(a) (b)

Figure 10: 3-D tracking results produced by the system, with respect to the (a) X coordinate and (b) Z coordinate for the sequence (first
690 frames) in Figure 6. Black crosses correspond to ground truth data associated with the sequence. Ellipses indicate unreliable
segments of ground truth data values.

(a) (b)

Figure 11: 3-D tracking results produced by the system, with respect to the (a) X coordinate and (b) Z coordinate for the sequence in
Figure 7. Black crosses correspond to ground truth data associated with the sequence. Ellipses indicate unreliable segments of ground
truth data values.

intermediate). To avoid false detections, a number of decision
criteria are employed. Tracking is performed using a variant
of the well-known Kanade-Lucas-Tomasi tracker. Manual inter-
vention is allowed to assist both modules if required, while oc-
clusion is handled through a re-detection stage. The system can
also accommodate calibrated tracking and can hence provide 3-
D coordinates of any tracked object(s) of interest. It has been
tested on a variety of video sequences, including a database of
studio video sequences, for which 3-D ground truth data orig-
inating from a 4-camera infrared tracking system exist. It has
been shown to perform reliably, especially when compared to
expensive commercial tracking systems. Finally, fine-tuning
for adaptation to different environments has been provided by
means of user-specified parameters both for detection and track-
ing.
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