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Abstract

This paper deals with the statistical analysis of the behavior of a blind robust watermarking

system based on pseudorandom signals embedded in the magnitude of the Fourier transform of the host

data. The host data that the watermark is embedded into is one-dimensional and non-white, following

a specific probability model. The analysis performed involves theoretical evaluation of the statistics of

the Fourier coefficients and the design of an optimal detector for multiplicative watermark embedding.

Finally, experimental results are presented in order to show the performance of the proposed detector

versus that of the correlator detector.
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I. Introduction

The risk of illegal copying, reproduction and distribution of copyrighted multimedia material is

becoming more threatening with the all-digital evolving solutions adopted by content providers,

system designers and users. Thus, copyright watermark protection of digital data is an essential

requirement for multimedia distribution. Robust watermarks can offer a copyright protection

mechanism for digital media. The watermark is a signal that contains information about the

copyright owner and it is embedded permanently in the multimedia data. It introduces imper-

ceptible content changes that can be detected by a detection program.

Robustness is a very important property of the watermarking scheme. The watermarks must

be robust to distortions, such as those caused by image processing algorithms (in the case of

image watermarks). Image processing does not modify only the image but may also modify the

watermark as well. Thus, the watermark may become undetectable after intentional or uninten-

tional image processing attacks. The watermark must also be imperceptible. The watermark

alterations should not decrease the perceptual media quality. A general watermarking framework

for copyright protection has been presented in [1], [2] and describes all these issues in detail.

Watermarking methods can be distinguished in two major classes, according to the embed-

ding/detection domain. In the first class, the embedding is performed directly in the spatial

domain [3]-[5]. The second class is referred to transform domain techniques. In these meth-

ods, the watermark is embedded in a transform domain, attempting to exploit the transform

properties mainly for watermark imperceptibility and robustness. The watermark can be em-

bedded in the DCT [6]-[9], DFT [10], [11], Fourier-Mellin [12], [13], DWT [7], [14], [15]-[18] or

fractal-based coding domains [19], [20]. Many approaches adopt principles from spread spectrum

communications in their watermarking system model [8], [21], [1], [2].
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Correlation detection of watermarked signals is involved in the majority of the watermarking

techniques in the literature. However, correlator detector is optimal and minimizes the error

probability only in cases when the signal follows a Gaussian distribution. There are papers in

the literature that propose detectors, different than the correlator, in the cases when the host

data do not follow a Gaussian distribution [22]-[24]. In [22], the embedding domain is DCT. The

DCT coefficient distribution is modelled as a generalized Gaussian one. Then, the maximum

likelihood (ML) criterion is used in order to derive the optimal detector structure. In [24], [25],

the watermark is embedded in the magnitude of the DFT domain. In this case, the authors

assume that the Fourier magnitude does not follow the generalized Gaussian distribution. They

propose the Weibull one, due to the facts that its support domain is the set of the positive real

numbers and that it represents a big probability distribution family. In the present paper, the

watermark is also assumed to be embedded in the magnitude of the DFT domain. Moreover,

we assume that the signal is not white and that it follows a specific probability model. The

novelty of the present paper, that is also the main difference from the papers reported above, is

that the DFT magnitude distribution is analytically calculated and it is proven to be different

than the Weibull distribution [24]. Finally, we construct the optimal detector according to the

Neyman-Pearson criterion.

The paper is organized as follows. The watermarking system model is presented in section

II. In the next section, the signal model is presented and the distribution of DFT magnitude

coefficients is shown. Then, in section IV, the construction of the optimal detector is depicted.

In sections V and VI, the experimental results and the conclusions are presented.
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II. Watermarking system model

Let s(i), i = 1, 2, ..., N be the samples of a host signal s with length N . Let also S(k), k =

1, 2, ...N be the Discrete Fourier transform coefficients of s(i) and M(k), P (k) the magnitude of

the Fourier transform (M(k) = |S(k)|) and its phase, P (k) = arg(S(k)), respectively. Suppose

that SR(k) and SI(k) denote the real and the imaginary part of S(k) respectively. As mentioned

in the introduction, the watermark embedding is performed in the Fourier domain and more

specifically in its magnitude. Thus, starting from the magnitude of the Fourier transform M ,

we produce the watermarked transform magnitude. Let us assume that M ′ is the watermarked

magnitude generated by the watermark embedding function f :

M ′ = f(M, W, p). (1)

In the previous formula, vector W contains the samples of the watermark sequence. This sequence

is produced by a random generator. We assume that W (k), k = 1, 2, ..., N is a random signal

that consists solely of 1′s and −1′s and that it is uniformly distributed in its domain {1,−1}.

Thus, the mean of the watermark sequence samples W (k) is equal to zero. In the case that

f is of a linear form, it can be easily proven that the mean of the watermarked magnitude

remains unaltered. This property increases both the watermarked signal imperceptibility as well

as its robustness. The parameter p that is employed in (1) is a real number that determines

the watermark strength. An increase in the value of p results in a more robust (and more easily

perceptible) watermark.

If the embedding function is multiplicative, the watermarked magnitude is given by:

M ′ = M + MWp = M(1 + Wp). (2)

In order to compute the final watermarked signal s′ (in the spatial domain), the inverse discrete
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Fourier transform is applied on the watermarked magnitude M ′ and the initial DFT coefficient

phase P .

s′ = IDFT (M ′, P ). (3)

Given a possibly watermarked signal y, the watermark detector aims at deciding whether y hosts

a certain watermark W . Watermark detection can be expressed as a hypothesis test where two

hypotheses are possible:

• H0: signal y does not host watermark W

• H1: signal y hosts watermark W .

It should be noted that hypothesis H0 can occur either in the case that the signal y is not water-

marked (hypothesis H0a) or in the case that the signal y is watermarked by another watermark

W ′, where W �= W ′ (hypothesis H0b). The events H0a, H0b are mutually exclusive and their

union produces the hypothesis H0.

The performance of a watermarking method depends mainly on the selection of the watermark

detector d. The correlator detector is the most commonly used watermark detector. It has been

employed in many watermarking methods which perform not only spatial domain watermarking

but also watermarking in transform domains. Its test statistic is the correlation between the

watermark and the possibly watermarked signal y.

d =
1
N

N∑
i=1

y(i)W (i) (4)

In order to decide on the valid hypothesis, the detector output d is compared against a suitably

selected threshold T . The evaluation of the watermarking method can be measured by the false

alarm Pfa and the false rejection Pfr probabilities. False alarm probability is the type I error

which is the probability of rejecting hypothesis H0, even though it is true. In our case it is the

probability of detecting a watermark W in a signal that is not watermarked by the watermark
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W . Correspondingly, false rejection is the type II error, whose probability is that of not detecting

a watermark W in a signal that is actually watermarked by the watermark W (accept H0 even

it is false).

In most of the watermarking methods, hypothesis H0 is accepted, when the detector output is

greater than a threshold T . Thus, false alarm and false rejection probabilities can be expressed

as:

Pfa = P{d > T |H0}, Pfr = P{d < T |H1}.

The calculation of the above probabilities can be performed, if the detector distribution for both

hypotheses is known. Thus, assuming that the f0(x), f1(x) are the probability density functions

for the hypotheses H0 and H1 respectively, the error probabilities are given by:

Pfa =
∫ ∞

T
f1(x)dx,

Pfr =
∫ T

∞
f0(x)dx.

According to the above equations, Pfa and Pfr depend on the threshold T . A possible change of T

increases one probability and decreases the other. Thus, apart from the detector, an appropriate

threshold should be selected. In many cases the detector is expressed as a sum or a product

of almost independent terms that obey the same distribution. According to the central limit

theorem, the detector (or the detector logarithm in case of multiplicative embedding) obey a

Gaussian distribution. Thus, in this case, the error probabilities can be written as

Pfa = f(
T − µ1

σ1
),

Pfr = 1 − f(
T − µ0

σ0
),

f(x) =
∫ ∞

x

1√
2π

exp

(
−x2

2

)
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where µ0, µ1 are the mean values and σ0, σ1 the standard deviations of the distributions f0, f1

respectively.

III. Signal model and distribution of DFT magnitude coefficients

A basic step for the optimal detector construction is the computation of the transform coef-

ficient distribution. Thus, in this section, the distribution of the DFT magnitude coefficients of

a signal will be computed, whose model is ergodic and wide-sense stationary stochastic process.

The signal statistics are modeled as:

E(s(i)) = µs, ∀i = 0, ..., N − 1 (5)

E(s(i) s(i + D)) = Fs,s(D), ∀i = 0, ..., N − 1 (6)

σ2
s = E(s(i)2) − µ2

s (7)

where E(·) denotes the expected value.

A first order separable autocorrelation function model will be assumed [26]:

Fs,s(D) = µ2
s + σ2

sa
|D| (8)

where a is a real-valued constant. Typically a is in the range [a = 0.9, ...0, 99] for several class of

1D signals (e.g. audio). It should be noted that if a tends to zero, the autocorrelation approaches

a Dirac distribution.

It is obvious from equations (5) and (8) that the signal correlation Fs,s(D) depends only on

the absolute difference D of the signal indices. The DFT transform of signal s(i), i = 1, ..., N is

given by the following equation:

S(k) =
N−1∑
i=0

s(i)e−
j2πik

N =
N−1∑
i=0

s(i) cos
(−2πik

N

)
+ js(i) sin

(−2πik

N

)
, k = 1, ..., N (9)
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We can assume that the DFT transform (9) of the signal follow a Gaussian distribution due

the Central Limit Theorem for random variables with small dependency [27]. This assumption

is valid at least for small values of parameter a. In order to show this experimentally we have

performed the Kolmogorov-Smirnov test for all the coefficients. In Figure 2 the p-values for each

coefficient for the case of a = 0 (Figure 2a) and a = 0.995 (Figure 2b) are illustrated. The

statistic parameters used in the Kolmogorov-Smirnov test (expected value and variance) were

theoretically derived from equations 12, 13, and 30. It is shown that the p-values are very low

which means that all the coefficients follow the Gaussian distribution.

Thus, it is proved that the mean of S(k) is given by:

µS(k) = E[S(k)] = E

[
N−1∑
i=0

s(i)e−
j2πik

N

]
=


0, k �= 0

µsN, k = 0.

The proof of µS(k) is given in the Appendix. The variance of S(k) will be computed separately

for its real SR(k) and imaginary SI(k) part according to the following formula:

σ2
SR(k) = E[SR(k)2] − E[SR(k)]2 =

=
N−1∑
i=0

N−1∑
l=0

cos
(−2πik

N

)
cos

(−2πlk

N

)
E[s(i)s(l)] − µ2

SR(k) (10)

By substituting equation (5) in the equation (10) we result in

σ2
SR(k) =

N−1∑
i=0

N−1∑
l=0

cos
(−2πik

N

)
cos

(−2πlk

N

)(
m2 + s2a|j−m|)− µ2

SR(k) (11)

The final results for the variances of SR(k) and SI(k) are given below:

σ2
SR(k) = −1

2
s2

 −2a cos
(
2πk

N

) (
2aN (1 + a2) + a2(N − 2) − N − 2

)
−N + a4N − 6a2 + 6a2aN + 2a2 cos

(
4πk

N

) (
aN − 1

)


2a2 cos
(
4πk

N

)
+ 4a2 − 4a cos

(
2πk

N

)
(1 + a2) + 1 + a4

(12)
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σ2
SI(k) = −1

2
s2

(
−2a2 cos

(
4πk

N

) (
aN − 1

)
− 2aN cos

(
2πk

N

)
(a2 − 1) + N(a4 − 1) + 2a2(aN − 1)

)
2a2 cos

(
4πk

N

)
+ 4a2 − 4a cos

(
2πk

N

)
(1 + a2) + 1 + a4

(13)

The proof of the above equations is given in the Appendix.

In Figure 1 the theoretical variances and experimental of real and imaginary part of the Discrete

Fourier transform coefficients are shown. In this example 100 signals of length 1000 obeying the

model (8) were used for a = 0, 99.

The next step is to calculate the distribution of the Fourier magnitude |S(k)|. By observing

(10), we conclude that all but the DC term, have zero mean. If the variances of SR(k) and SI(k)

were equal, then we could conclude that the distribution of |S(k)| =
√

SR(k)2 + SI(k)2 is the

Rayleigh one [28]:

|S(k)| ∼ fs(s) =
s

σ2
exp

(
− s2

2σ2

)
, x > 0.

However, the variances of the real and the imaginary part of S(k) are equal only in the case

of signals whose samples can be modeled as independent identically distributed (i.i.d) random

variables (a = 0). Thus, for any other case we have to use the probability density function of a

signal

z =
√

x2 + y2

where x ∼ N(0, σ2
1), y ∼ N(0, σ2

2) and σ1 �= σ2. It is proved in the Appendix that the pdf of

such a random variable z is given by:

fz(z) =
z

σ1σ2
exp

(
−σ2

1 + σ2
2

4σ2
1σ

2
2

z2

)
I0

(
0,

σ2
2 − σ2

1

4σ2
1σ

2
2

z2

)
(14)

where I0 denotes the modified Bessel function and σ1, σ2 are the standard deviations of the real
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and imaginary part of S(k). Thus, the Discrete Fourier magnitude distribution is given by:

|S(k)| ∼ fz(z) =
z

2σSR(k)
σSI(k)

exp

−
σ2

SR(k)
+ σ2

SI(k)

4σ2
SR(k)

σ2
SI(k)

z2

 I0

0,
σ2

SI(k)
− σ2

SR(k)

4σ2
SR(k)

σ2
SI(k)

z2

 . (15)

IV. Optimal watermark detector

In the next section the optimal watermark detector for multiplicative watermarks will be

evaluated by using the likelihood ratio test (LTR). According to the Neyman-Pearson theorem,

in order to maximize the probability of detection PD for a given Pfa = e, we decide for H1 if:

L(M ′) =
p(M ′; H1)
p(M ′; H0)

> T (16)

where the threshold T can be found from

Pfa =
∫

M ′:L(M ′)>T
p(M ′; H0)dM ′ = e (17)

The test of (16) is called Likelihood Ratio Test (LTR). In the sequel the probability density

functions of the watermarked signal P (M ′; H0), P (M ′; H1) will be computed for watermarked

signals with a known and an unknown (random) watermark. For P (M ′; H0) we assume that the

watermark is a random one whose pdf is modeled by:

fw(w) =



0.5 , w = 1

0.5 , w = −1

0 , otherwise

(18)

According to the embedding formula (2), it can be easily proved that the pdf of the water-

marked signal is equal to:

fM ′(x) =
1
2

[
1

1 + p
fM

(
x

1 + p

)
+

1
1 − p

fM

(
x

1 − p

)]
(19)
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By substituting f ′
M with the probability density function of the distribution in equation (14)

we find:

p(M ′; H0) = M ′(k)
4σ1σ2

· (20)

[
1

(1+p)2
exp

(
−σ2

1+σ2
2

4σ2
1σ2

2

M ′(k)2

(1+p)2

)
I0

(
0,

σ2
2−σ2

1

4σ2
1σ2

2

M ′(k)2

(1+p)2

)
+

1
(1−p)2

exp
(
−σ2

1+σ2
2

4σ2
1σ2

2

M ′(k)2

(1−p)2

)
I0

(
0,

σ2
2−σ2

1

4σ2
1σ2

2

M ′(k)2

(1−p)2

)]

In the case of hypothesis H1, the signal is watermarked by the known watermark W . Thus,

the probability is given by (14):

p(M ′(k); H1) =
M ′(k)

2σ1σ2(1 + W (k)p)2

exp

(
−σ2

1 + σ2
2

4σ2
1σ

2
2

M ′(k)2

(1 + W (k)p)2

)
I0

(
0,

σ2
2 − σ2

1

4σ2
1σ

2
2

M ′(k)2

(1 + W (k)p)2

)
. (21)

Assuming independence between the transform coefficients of S, we conclude that:

p(M ′; Hj) =
N−1∏
k=0

p(M ′(k); Hj) , j = 0, 1 (22)

By combining equations (14), (21) and (16) we get the optimal detector scheme:

L(M ′) =
N−1∏
k=1

2
(1+W (k)p)2

I0

(
0,

σ2
2−σ2

1

4σ2
1σ2

2

M ′(k)2

(1+W (k)p)2

)
1

(1+p)2
exp

(
−σ2

1+σ2
2

4σ2
1σ2

2

2p(W (k)−1)M ′(k)2

(1+W (k)p)2(1+p)2

)
I0

(
0,

σ2
2−σ2

1

4σ2
1σ2

2

M ′(k)2

(1+p)2

)
+

1
(1−p)2

exp
(
−σ2

1+σ2
2

4σ2
1σ2

2

2p(W (k)+1)M ′(k)2

(1+W (k)p)2(1−p)2

)
I0

(
0,

σ2
2−σ2

1

4σ2
1σ2

2

M ′(k)2

(1−p)2

)
> T (23)

A. Threshold estimation

The threshold is selected in such a way so that a predefined false alarm error probability can

be achieved. In order to calculate the false alarm error probability, we firstly have to know

the detector distribution in the case of erroneous watermark detection. We assume that the
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distribution is Gaussian. Then, we estimate the distribution parameters from the statistics of

the empirical distribution. The latter is calculated by detecting erroneous watermarks from the

(possibly) watermarked signal.

From the empirical distribution statistics and the desired false alarm error probability, we cal-

culate the threshold according the equation below:

Pfa =
∫ +∞

T

1
σ̂
√

2
exp

(
−(x − µ̂)2

2σ̂2

)
dx (24)

where µ̂ and σ̂ are the expected value and the standard deviation of the detector output set.

Thus, according to the equation above, the threshold T is given by:

T = µ̂ − σ̂
√

2 erf−1(2 Pfa − 0.5) (25)

The total number of such detections needed is not predefined but, should be sufficiently large

if we want to accurately approximate this distribution. The minimal number of experiments

required in order to sufficiently approximate the distribution is found through the following pro-

cedure. We estimate the distribution parameters, µ̂, σ̂ using the empirical distribution produced

from L detector outputs, for an increasing L in a certain range of L, [Lmin, Lmax]. Then, accord-

ing to these statistics, we calculate the threshold in order to achieve a false alarm probability

e.g. equal to 10−10. We stop for an L∗ that leads a rather stable estimation of T .

This procedure is illustrated in Figure 4 for Lmin = 5, Lmax = 1000. According to this Figure,

the threshold value is stabilized when the number of experiments becomes greater than L∗ = 100.

Of course, L∗ depends on the watermark embedding power, the signal length, and the signal

characteristics. For this reason, we propose to execute the above procedure for representative

signal sets and for the chosen embedding power in a particular application.
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V. Experimental results

In this section, experiments are performed in order to verify the superiority of the proposed

detector against the classical correlator one. The experiments are performed on one dimensional

digital signals.

In order to construct signals with the desired autocorrelation properties (8) we filter a random

white normally distributed signal S of zero mean value with an IIR filter:

H(z) =
1 − a

1 − az−1
.

This filtering creates a signal having an autocorrelation function of the form:

RSS(k) =
1 − b

1 + b
σ2

sa
k (26)

that is identical to (8) for µ2
s = 0. The variance of the filtered signal equals to (1− a)/(1 + a)σ2

s .

Watermark embedding is performed according to (2). Then, the watermarked signal is fed to

both the correlator (4) and the proposed detectors (23). In order to estimate false alarm and

false rejection probabilities, both correct and erroneous keys have been used during detection.

The above procedure is executed for a large number of different keys. Due to the Central Limit

Theorem for products [29], the distribution of L(x) is log-normal. Consequently, the distribution

of ln(L(x)) is normal, where ln(x) is the natural logarithm of x. In order to show the very

good approximation of the detector output by the Gaussian distribution, we depict its empirical

distribution in Figure 3. In Figures 3a and 3b the detector distribution for detection using an

erroneous and correct key respectively is shown. The fitting is very good since the Kolmogorov-

Smirnov null hypothesis has not been rejected for level of significance equal to 0.01 In the

following the proposed detector will be the ln(L(x)) instead of L(x). Let dr(x) and de(x) be the

distributions of the detector outputs for detecting correct and erroneous watermarks respectively.
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The calculation of the empirical mean and standard deviation by approximating the empirical

pdf with a normal one, can be used to produce Receiver Operator Characteristic (ROC) curves

for both detector outputs. ROC curves will be used for comparing detector performance.

The above procedure is performed for several values of parameter a. The detection was per-

formed using:

• the correlator detector

• the proposed detector considering the parameter a known

• the proposed detector by estimating the (unknown) parameter a from the watermark sequence

• the normalized correlator

In Figures 5-8 the performance of the proposed detector against the correlator one is shown,

for several values of parameter a in the range [0, 1].

In Figure 5, the value of the parameter a is zero. This is a special case for white signals, i.e.

no filtering is performed by equation(26). In the subsequent Figures, the parameter a increases,

reaching the value a = 0.995 in the last Figure (Figure 8). By observing the Figures 5-8, we can

conclude that:

• the proposed detector performance is by far better that the correlator detector one.

• The performance of the proposed detector using the estimated parameter a, is almost the same

with that using the known parameter a since that their ROC curves are very close to each other

• The ROC curves that correspond to the proposed detector are not affected significantly by the

value parameter a contrary to the correlator detect or ROC curves that show very decreased

detection performance for highly correlated signals, i.e. as parameter a tends to one.
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VI. Conclusions and future work

This paper deals with the statistical analysis of the behavior of a blind robust watermarking

system based on 1-D pseudorandom signals embedded in the magnitude of the Fourier transform

of the data and the design of an optimum detector. A multiplicative embedding method is

examined and experiments are performed in order to show the proposed detector’s improved

efficiency against correlator one.
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Appendix

I. Calculation of Discrete Fourier coefficient mean

The mean of S(k) is given by:

E [S(k)] = E

[
N−1∑
i=0

s(i) cos
(−2πik

N

)
+ js(i) sin

(−2πik

N

)]

= E[s(i)]
N−1∑
i=0

cos
(−2πik

N

)
+ jE(s(i))

N−1∑
i=0

sin
(−2πik

N

)
(27)

Replacing na by 2πkj
N in the following equation [30]

N∑
n=1

cos(na) =


sin[(N+1/2)a]

2 sin(a/2) − 1
2 , a �= 2lπ

N, a = 2lπ

results in

N−1∑
j=0

cos(
2πkj

N
) = 1 +

N−1∑
j=1

cos(
2πkj

N
) = 1 +


sin[(N−1+1/2) 2πk

N ]
2 sin( πk

N
)

− 1
2 , k �= 0

N − 1, k = 0

Taking into account that 0 ≤ k < N equation the constraint a �= 2lπ can be written as 2πk
N �=

2lπ ⇒ k �= 0

Finally

N−1∑
j=0

cos
(

2πkj

N

)
=


0, k �= 0

N, k = 0
(28)

Using the equation

N∑
n=1

sin(na) =


sin[1/2(N+1)a] sin[Na/2]

sin(a/2) , a �= 2lπ

0, a = 2lπ

and following the same procedure we end up in the following equation

N−1∑
j=0

sin
(

2πkj

N

)
= 0 (29)
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Thus, the mean is equal to:

µS(x) = E[S(x)] =


0, k �= 0

E[s(i)]N, k = 0
(30)

II. Calculation of Discrete Fourier coefficient variance

S(k) is a complex signal thus the variances of real and imaginary part will be calculated

separately.

A. Variance of real part

The variance of the real part of S(k) is given by:

var(SR(k)) = E(S2
R(k)) − E(SR(k))2

= E

(N−1∑
i=0

s(i) cos
(−2πik

N

))2
− E

[
N−1∑
i=0

s(i) cos
(−2πik

N

)]2

(31)

The second sum has been calculated in 30. The first sum equals to:

E

(N−1∑
i=0

s(i) cos
(−2πik

N

))2
 =

N−1∑
i=0

N−1∑
m=0

cos
(

2πik

N

)
cos

(
2πmk

N

)
E[s(i)s(m)]

=
N−1∑
i=0

N−1∑
m=0

cos
(

2πik

N

)
cos

(
2πmk

N

)
(µ2

s + σ2
sa

|i−m|)] = (32)

Using the equation 3 of 1.353 of [31]

n−1∑
k=0

pk cos(ks) =
1 − p cos(s) − pn cos(ns) + pn+1 cos(n − 1)s

1 − 2p cos(s) + p2
(33)

and splitting the sum
N−1∑
m=0

cos
(

2πik
N

)
cos

(
2πmk

N

)
(µ2

s + σ2
sa

|i−m|)] in two sums

N−1∑
m=0

cos
(

2πik

N

)
cos

(
2πmk

N

)
(µ2

s + σ2
sa

|i−m|)] =

i∑
m=0

cos
(

2πik

N

)
cos

(
2πmk

N

)
(µ2

s + σ2
sa

i−m)] +
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N−1∑
m=i+1

cos
(

2πik

N

)
cos

(
2πmk

N

)
(µ2

s + σ2
sa

m−i)] (34)

we derive equation 12.

B. Variance of imaginary part

The variance of the imaginary part of S(k) is given by:

var(SI(k)) = E(S2
I (k)) − E(SI(k))2

= E

(N−1∑
i=0

s(i) sin
(−2πik

N

))2
− E

[
N−1∑
i=0

s(i) sin
(−2πik

N

)]2

(35)

By splitting the above equation as in 34 and using the equation 1 of 1.353 of [31] that has the

form:

n−1∑
k=1

pk sin(kx) =
p sin(x) − pn sin(nx) + pn+1 sin(n − 1)x

1 − 2p sin(x) + p2
(36)

we conclude in equation 13.

III. Calculation of the fz(z) distribution

In this section the distribution of fz(z) =
√

x2 + y2, where x ∼ N(0, σ2
1), y ∼ N(0, σ2

2) and

σ1 �= σ2, will the calculated. By substituting x by z cos(t) and y by z sin(t) the above distribution

equals with:

f(z) =
2π∫
0

z

2πσ1σ2
exp

[
−
(

z2 cos2(t)
2σ2

1

+
z2 sin2(t)

2σ2
2

)]
dt =

2π∫
0

z

2πσ1σ2
exp

−
z2 cos2(t)

2σ2
1

+

(
σ2
σ1

)2
z2 sin2(t)

2σ2
2

+

[
1 −

(
σ2
σ1

)2
]
z2 sin2(t)

2σ2
2


dt =

2π∫
0

z

2πσ1σ2
exp

(
− z2

2σ2
1

)
exp

−
[
1 −

(
σ2
σ1

)2
]
z2 sin2(t)

2σ2
2

dt (37)
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By substituting the quantity −

[
1−
(

σ2
σ1

)2
]

2σ2
2

= σ2
2−σ2

1

2σ2
1σ2

2
by the parameter q equation 37 has the

form:

f(z) =
z

2πσ1σ2
exp

(
− z2

2σ2
1

) 2π∫
0

exp
[
qz2 sin2(t)

]
dt (38)

After taking into account the periodicity of the sin function and its symmetry in the integral

[0, 2π] (
2π∫
0

exp
(
a sin2(t)

)
dt = 2

π∫
0

exp
(
a1−cos(2t)

2

)
dt = exp

(
a
2

) 2π∫
0

exp
(−a

2 cos(t)
)
dt =

2 exp
(

a
2

) π∫
0

exp
(−a

2 cos(t)
)
dt)

the integral in equation 38 can be written as

2π∫
0

exp
[
qz2 sin2(t)

]
dt = 2 exp

(
qz2

2

) π∫
0

exp

[
−qz2

2
cos(t)

]
dt (39)

Using the formula 3.339 of [31]

π∫
0

exp [z cos(x)]dx = πI0(z) (40)

where I0(z) is the modified Bessel function of z, the integral in equation 39 equals:

2π∫
0

exp

[
−qz2

2
cos(t)

]
dt = 2π exp

(
qz2

2

)
I0

(
−qz2

2

)
(41)

Finally, substituting q and using equation 41, equation 38 has the form:

f(z) =
z

σ1σ2
exp

(
−z2(σ2

1 + σ2
2)

4σ2
1σ

2
2

)
I0

(
z2(σ2

1 − σ2
2)

4σ2
1σ

2
2

)
(42)

In the special case that σ1 = σ2, the probability density function f(z) is the Rayleigh function.
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Fig. 1. Theoretical and experimental variances of real (a) and imaginary (b) part of each Discrete Fourier

coefficient of 100 signals of length 1000 having a = 0.99.
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Fig. 2. P-values (output of Kolmogorov-Smirnov test) for each coefficient of the real part of the Fourier

transform of a signal (a) a = 0, (b) a = 0.995

DRAFT



25

−300 −280 −260 −240 −220 −200 −180 −160 −140
0

10

20

30

40

50

60

70

80

90
empirical detector output distribution (erroneous key)

120 140 160 180 200 220 240 260
0

10

20

30

40

50

60

70

80
empirical detector output distribution (correct key)

(a) (b)

Fig. 3. Empirical detector output distribution (a) erroneous key, (b) correct key
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Fig. 4. Threshold estimation versus the number of experiments
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