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Abstract

This paper presents an accurate, very fast approach for the deformations of 2D physically based

shape models representing open and closed curves. The introduced models are much faster than

other deformable models (e.g. finite elements methods). The approach relies on the determination

of explicit deformation governing equations, that involve neither eigenvalue decomposition, nor any

other computationally intensive numerical operation. The approach was evaluated and compared

with another fast and accurate physics-based deformable shape model, both in terms of deformation

accuracy and computation time. The conclusion is that the introduced model is completely accurate

and is deformed very fast on current personal computers (Pentium III), achieving more than 380

contour deformations per second.

Index Terms

Deformable model, modal analysis, real-time deformations, finite element method, eigenvalue

decomposition, deformable curves, governing equation.

I. INTRODUCTION

A key problem in machine vision is how to describe features, contours, surfaces, and

volumes, so that they can be segmented, recognized, matched, or any other similar underlying

process. The primary difficulties can be summarized as follows:

� object descriptions are sensitive to noise

� objects can be nonrigid

� the shape of the 2D object projection varies with the viewing geometry.

These problems have motivated the use of deformable models [1]-[11] to interpolate, smooth,

and warp raw data, since these models provide reliable shape reconstruction tools that are

both robust and generic. Deformable models cover a very wide range of applications and have

been used in pattern recognition [12], [13], computer animation [14], geometric modelling

[15], surgery simulation [16], medical imaging [17], tracking [18], image segmentation [19],

etc.

The class of deformable shape models originates with the method of active contours

(“snakes”) introduced by Terzopoulos et al. [3], that are used to locate smooth curves in

2-D images. Since then, deformable models have been used for a number of applications

in 2-D and 3-D by Terzopoulos, Witkin and Kass [20], where the deformable surface is

constrained to encourage axial symmetry and is evolving under the forces determined from
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a 2-D image or a pair of 2-D images. Deformable surfaces employ data information about

forces from true 3-D data sets [21].

There have been two basic classes of deformable models: those based on parametric solid

modelling primitives, such as those employed by Pentland et al. [5] and those based on

mesh-like surface models, such as those in the work of Terzopoulos et al. [20]. In the case

of parametric solid modelling, fitting has been performed using the “inside-outside” function

of the modelling primitive [22], [23], [24], rendering this formulation to a very powerful,

effective and useful method of representing shapes as canonical deformations of the prototype

object [5], [22], [25]. This description is advantageous in the sense that it can produce a

unique, compact description that is well suited for a number of computer vision applications

(such as model-based segmentation, shape recognition, shape matching, and search). On the

other hand, a drawback of this modelling method is that it may not have enough degrees

of freedom to account for fine surface details. On the contrary, in the case of mesh-like

models, which have been extensively used, fitting is performed using a physically motivated

energy function [20], [26]. This formulation provides an accurate and very detailed shape

description. Unfortunately, this description is neither unique, nor compact. Consequently, it

cannot be used in some computer vision applications (such as shape recognition and search),

without additional processing layers.

Some of the most significant mesh-like model subcategories, are the well known surface

and contour models based on modal analysis [17]. They have been extensively used in the

literature [17], [25], [27], [28] and will be the main focus of the remainder of this paper.

Modal analysis is an alternative approach to the direct integration of the system of differential

equations that result from any finite element method. It is based on mode superposition,

i.e. expressing the time-dependent solution as the superposition of the natural modes of the

system. The solution of an eigenvalue problem is necessary to find these modes. Thus, modal

analysis involves the eigen-decomposition of the surface or contour deformation model of

the object at hand that produces a robust, frequency-ordered shape description of the object

in terms of the eigenvectors of the stiffness matrix of the model [17]. A more detailed

presentation of modal analysis is presented in Section II.

All deformable models presented above are quite slow requiring dozens of iterations in the

case of parametric formulation, and up to hundreds iterations in the case of physically-based

mesh deformations that are based on modal analysis [25], [28]. The same stands for the

well-known and popular in computer vision applications, level sets-based deformable models
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[29]. Hence, all deformation-based shape modelling approaches are computationally intensive,

since each iteration turns out to be very time-consuming. Thus, although deformable models

are a powerful tool in computer vision applications, their scope is somewhat limited by their

heavy computational burden, especially when real time applications are concerned. Although

there are papers in the literature [25], [30] that claim real time deformations, e.g. the one

proposed by Basdogan [30], they still have several disadvantages, since they require compu-

tationally intensive procedures, such as the eigenvalue decomposition, which is necessary for

initialization. Additionally, all these methods share another disadvantage, the fact that their

deformations do not have an analytic expression; they have no explicit formulation that can

be used for their description and implementation. Thus, the implementation of these types

of deformable models is quite difficult. Finally, the process of studying the model in order

to infer its behavior, is quite painful and, in some cases, impossible.

We address all these problems by introducing a 2D physics-based deformable approach

representing open and closed curves, based on modal analysis, using explicit functions. This

leads to a very fast model deformation approach, involving only the calculation of an explicit

function for the description of the deformations of the object under examination, as opposed

to the eigenvalue decomposition that is necessary in classical shape modal analysis.

Our approach was motivated by the technique presented in [17], [27], which consists of

analyzing non-rigid motion, with application to medical images. Nastar et al. [17] approxi-

mated the dynamic deformations of the object contour, using a physically based deformable

curve/surface. In order to reduce the number of parameters describing the deformation, modal

analysis was exploited, thus providing a spatial smoothing of the curve/surface. On the

same basis, we employ modal analysis and, after simplifying the deformation governing

equations, we prove that the deformations of open and closed 2D curves have explicit gov-

erning equations, involving neither eigenvalue decomposition, nor any other computationally

intensive operation (EFMA, Section III). Moreover, a new methodology (TEFMA, Section

III), which further reduces the computational complexity of the introduced algorithm (EFMA)

is presented. This methodology was motivated by the propagation and the interaction of the

deformations of the model. It is capable of achieving more than ��� contour deformations

per second on a typical image of size ���� ���.

The remainder of the paper is organized as follows. The 2D physics-based deformable

shape models [17] are presented in Section II. In Section III the proof and the properties of

the explicit formulation of the deformable physics-based governing equations are introduced.
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A comparison between the initial deformation models [17] and the novel ones, are presented

in Section IV. A simple application demonstrating the effectiveness and the usage of the new

approach is also illustrated in the same Section and final conclusions are drawn in Section

V.

II. 2D PHYSICS-BASED DEFORMABLE SHAPE MODELLING BASED ON MODAL

ANALYSIS

In this Section, physically based deformable shape models [17], [27] exploiting modal

analysis are introduced. We consider both the surface and volume properties of the objects

at hand. We restrict ourselves to elastic deformations, i.e. we assume that the object recovers

its original configuration as soon as all applied forces causing the deformation are removed.
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Fig. 1. 2D closed model example of 8 nodes of mass � connected with identical springs of stiffness �. Four forces are

acting on the model, that produce model deformation.

Modelling an elastic 2D boundary can be achieved by an open or closed chain topology

of � virtual masses on the contour, shown in Figure 1. Each model node has a mass �

and is connected to its two neighbors with identical springs of stiffness �. The ratio � � �
�

constitutes the so-called characteristic value of the model, which is a constant value that

describes its physical characteristics and determines its physical behavior. When � increases,
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the object tends to behave as a rigid one, which means in practice, that the model can be

spatially moved without any deformation. On the other hand, when � decreases, model tends

to be treated as a fully deformable one, which means that each force affects only the node

(mass) it is applied to. The node coordinates of the model under examination are stacked in

vector:

�� �
�
���� �

�
�� � � � � �

�
� � �

�
�

��
(1)

where � is the number of vertices (masses) of the chain and 	 denotes the 	-th deformation

time instance. The model under study, is a physics-based system governed by the fundamental

equation of dynamics:

� ���
�
�	 
 � ���

�
�	 
 � �	���

�
�	 � ����

�
� (2)

where �� is the mass of the point under study and ���� its acceleration under total load of

forces. ����	 is a damping force, � �	���	 the external load on node under study, and � ���	
is the elastic force due to node neighbors. The above governing equation is expressed for

all model nodes, leading to a nonlinear system of coupled differential equations, since the

displacement of a node depends on the displacement of its neighbors.

In order to solve this system of equations, we propose to set the natural length 
� of

the springs equal to zero. This assumption does not import any restriction to the initial

configuration of the model, if we add an equilibrium force � �
��
�
�	 � �� ���

�
�	. This force

keeps the model inflated, so that it does not shrink to a point. We assume that, at any

future time, this equilibrium force is constant. Hence, the natural state of the model is its

initial configuration. This assumption has a main advantage, that the model can be considered

within the framework of linear elasticity. As a consequence, our solution lies in a set of linear

differential equations with node displacements decoupled in each coordinate, regardless of

the magnitude of the displacements. To enforce the assumption of constant equilibrium force

� �
��	, the angular variations of the springs orientation should be sufficient small (� ���), in

which case the aforementioned approximation is valid [5], [31].

The governing equation can now be written in a matrix form [32]:

���
� �� 
�� � �� (3)

where � � �� ����
is the nodal displacements vector. ���, and � [33] are the mass,

damping, and stiffness matrices of the model, respectively, and �� is the external force vector,

usually resulting from the attraction of the model by the object contour (sometimes based
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on the Euclidean distance between the object contour and the node coordinates [34], [35]).

Note, that the above formulation provides a simplification between forces � �
��	 and � ���	, so

that do not appear in the governing equation. These forces can be viewed as internal forces

which do not need to be computed. Furthermore, equation (3) is a finite element formulation

of the deformation process.

Instead of solving directly the equilibrium equation (3), one can transform it by a change

of basis:

� � 	
� (4)

where 	 is the square nonsingular transformation matrix of order � to be determined,

and 
� is referred to as the generalized displacement vector. One effective way of choosing

	 is setting it equal to �, a matrix whose entries are the eigenvectors of the generalized

eigenproblem:

��� � �
�
���� (5)

� � �
� �
��
���

�
��� (6)

Equation (6) is referred to as the modal superposition equation. The �-th eigenvector, i.e.

the �-th column of �, denoted by ��, is also called the �-th vibration mode, �
� (the �-th

scalar component of 
�) is its amplitude, and �� is the corresponding eigenvalue (also called

frequency). If the matrix 
� � �
��� is diagonal (standard Rayleigh hypothesis [17]), then

in the modal space the governing matrix-form equations decoupled into � scalar equations:

��
�� 
 ��� 
�

�
� 
 �

�
� �


�
� �

�� �� � � � �� � � � � �� (7)

Solving these equations at time 	 leads to ��
��	����


�� , and the displacement � of the model

nodes is obtained by the modal superposition equation (6).

In practice, we wish to approximate nodal displacements � by ��, which is the truncated

sum of the � � low-frequency vibration modes, where � � � � :

� � �� �
� ��
���

�
��� (8)

Eigenvectors ���	����


�� � form the reduced modal basis of the system. This is the major

advantage of modal analysis: it is solved in a subspace corresponding to the � � truncated

low-frequency vibration modes of the deformable structure [5], [17], [27]. The number of

vibration modes retained in the object description, is chosen so as to obtain a compact but
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adequately accurate representation. A typical a priori value for � �, covering many types of

standard deformations is equal to one quarter of the number of the vibration modes.

An important advantage of the formulations described so far, in the full as well as the

truncated modal space, is that the vibration modes �� and the frequencies �� of an open or

closed chain topology have an explicit expression [17] and they do not have to be computed

using eigen-decomposition techniques. The frequencies and the vibration modes of the closed

chain are given by:

��
� � �� ����

�
��

�

�
(9)

�� �

�
� � � � ���

����

�
� � � �

��
(10)

where � � ��� �� � � � � �� and � � ���	. ���	 is the first Brillouin zone [17] and is equal to���
�

 �� � � � � �

�

	
for � even, and

�����
�
� � � � � ���

�

	
for � odd. Furthermore, the case of

an open chain topology is very similar, where the frequencies and the corresponding vibration

modes are obtained by:

��
� � �� ����

�
��

��

�
(11)

�� �

�
� � � � ���

������ �	�

��
� � � �

��
(12)

where � � ��� �� � � � � �� and � � ��� � � � � � � ��.

Thus, the deformations of the described Deformable Model based on Modal Analysis

(abbreviated here as DMMA), for a closed chain as well as an open one, can be given by:


�� �
��
�


�

��� �������	�

�� 
 ��
� 	

�

��� �
�
���	

����	 (13)

whereas the deformations of the Truncated Deformable Model based on Modal Analysis

(abbreviated here as TDMMA), for both open and closed chains, can be described by:

�
�� �
� ��
�


�

��� �������	�

�� 
 ��
� 	

�

��� �
�
���	

����	 (14)

The above equations are a brief description of the aforementioned methodology of deformable

models that are based on modal analysis. As you can see, displacements are directly related

to the eigenvalues ��
� and eigenvectors ����	 of the model.

Figure 2 illustrates in a clear and comprehensive way the vibration modes based contour

modelling of a 2D slice of a 3D CT scanned tooth germ volume. This example is primarily

used to illustrate graphically the operation of the above mentioned deformable models.
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(a) (b)

Fig. 2. Contour modelling of a 2D slice of a 3D tooth germ volume. (a) The initial 2D closed deformable model initialized

around the tooth germ. (b) The deformable model at equilibrium.

The 25% lowest frequency modes were retained for this representation, as this truncated

description provides a satisfactory compromise between accuracy and complexity of the repre-

sentation. The circular chain is (Fig. 2a) and the vibration amplitudes are explicitly computed

by equation (14). Rigid body modes (�� � �) are discarded and the nodal displacement can be

recovered using equation (8). We can calculate the model driving forces firstly by applying a

contour detection algorithm on the image and by calculating subsequently the distance field.

The deformable model is manually initialized around the object under consideration. The

contour model nodes are separated into two categories, the landmark and the non-landmark

nodes. Landmark nodes are those with artificial or anatomical importance, such as high

curvature points, whereas non-landmarks are the rest. A corner detection algorithm [36] is

exploited to specify the external force for landmarks nodes at each frame or better at time

instant 	:

��	���
�
�	 �

�

�
�	���		� (15)

where ���	 is the distance between the landmark and its new position as it is estimated by

the corner detection algorithm, and � is a constant. The rest external force vector, i.e. for

non-landmarks nodes, is completed by:

��	���
�
�	 �

�

�
���	���	��	� (16)
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where ���	�� is the distance between the non-landmark node and its closest boundary point,

and ��� � � is a constant. This force vector is used in order to pull the model to track

the object of interest. The method is an iterative one, thus its final position is achieved after

a substantial number of iterations (number of frames). The corner detection algorithm, at

each iteration, determines the driving forces which deform the model, using one of the above

mentioned methods. Thus, the model is deformed after each iteration (frame). We assume

that the deformation at each iteration is performed in one step.

III. A CLOSED-FORM REPRESENTATION OF THE 2D PHYSICS-BASED DEFORMABLE

MODELS

It is obvious that the deformations described in the previous Section are still computa-

tionally intensive, since they require the calculation of a large number of summations in

(13) and (14). In this Section, our goal is to simplify the deformation process (Section II).

This is achieved by using the properties of trigonometric functions series, as can be seen

in Appendix. Thus, we can introduce a new way of calculating the deformations, achieving

very fast deformation computation, without loss of accuracy.

As already mentioned, the deformations � of the DMMA applied to a closed chain are

given by equation (13). (13) is applied to the � and � coordinates independently. �� denotes

the � and � components of the force acting on node �:

� � ���� � ��� � ���� ��� � � � � � ���� ���	
� (17)

and finally 
� denotes the � and � components of the displacement of the node �:

� � �
��� 
�� � 
��� 
�� � � � � � 
��� 
��	
� (18)

As we have proved in the Appendix, the deformations of the DMMA are equal, for closed

curves, to:


� �
�


� 
 ��

��
���

���
�

��
������

�

�����


��

������
�

�����
��

������
�

��
�
��

������
�

�� (19)

We call formulation (19) Explicit Formulation of Modal Analysis (EFMA) model. The defor-

mation governing equation for open chain physics-based deformable models can be proved,

in a similar way as in the Appendix, to be:


� �
�


� 
 ��

��
���

��
����

��� � ��� (20)
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���� � �
����� ����������� 
 �����������
 ������ ������������� 
 �������������

where � and � are two constant values equal to
�
������

�
and

�
������

�
respectively, � is the

model’s characteristic value, � is the total number of model nodes, and � is the distance

(in number of nodes) between the node under examination and the node, where force �� is

applied. Hence, in practice, � is equal to ���������� ���������	 for the closed case models.

Due to the fact that the model exhibits linear elasticity and that neighboring nodes cause the

forces ����	, we are able to approximate nodal displacements � (19) without any substantial

loss of accuracy, by the truncated contribution of the � �� adjacent nodes, where � �� � � :


� � �

� 
 ��

��� ���
����� ��

���
�

��
������

�

�����


��

������
�

�����
��

������
�

��
�
��

������
�

�� (22)

The nodes �-� �� to �+� ��, for each node �, form the reduced nodal basis of the system. This

is the major advantage of the new form of the deformation governing equation: it is solved in

a nodal subspace corresponding to the � �� adjacent model nodes of the deformable structure

[5], [17], [27]. From now on, the deformation calculation in a reduced nodal space (22)

will be called Truncated Explicit Formulation of Modal Analysis (TEFMA). The number

of nodes retained in (22) is chosen so as to produce a compact but adequately accurate

shape representation. After performing a sequence of experiments, it has been observed that

a typical a priori value for � ��, covering many types of standard deformations, is equal to
�
������

�

�� . Thus, only a very small number of adjacent nodes is taken into account in

the calculations. For instance, if we consider a 2D closed deformable model of 1,000 nodes

having � equal to 1, equation (19) requires � � �� ��� � �� ��� � �� ���� ��� elementary

calculations, each corresponding to the calculation of one summation term. It is clear that

equation (22) in the subspace � �� �
�
	��
�

�� of the adjacent (neighboring) nodes would

noticeably reduce the computation time, as the number of the elementary calculations would

be reduced to �� �� ����

�

	��
�

���� ���	

�
� ��� ���.

The characteristic value � influences object rigidity as follows. When � takes very large

values and reaches infinity, which, in practice, means that the deformable object has springs

characterized by very large stiffness with respect to the node mass, the limit of the governing

equation (19) is:
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���
���

�
�� ��


� 
 ��

��
������

�

�����


��

������
�

�����
��

������
�

��
�
��

������
�

��
�
�� �

�

�
(23)

Thus, the deformations described by equation (19), when � takes very large values, are given

by 
� �
�

��� 
��

�
� �

�

�
�

��� ����

�

��� ���

�
. This means that all model nodes exhibit the

same displacements. This is a rigid object motion with displacements equal to the normalized

summation of the respective forces. On the other hand, when the characteristic value � takes

very small values (close to zero), which, in practice, means that the deformable object has

very flexible springs (springs with very low stiffness) with respect to the node mass, the limit

of the governing equation (19) is given by:


��� � ���
���

�
�� ��
���

��
��

� 
 ��

��
������

�

�����


��

������
�

�����
��

������
�

��
�
��

������
�

��
�
�� �

��
� ��� � � �

�� � �� �
(24)

where � is the distance (in number of nodes) between the node � under examination and the

node where the force is applied. This means that each force applied to a model node affects

only this node, and its displacement is proportional to the force value. Thus, the object under

consideration is a fully deformable object without correlation between node displacements.

When � � �, i.e. when the object node mass and the spring stiffness are equal, � � �,

equation (19) is transformed to:

�� �
�

�

��
���

��

��
	��
�

�����


��

	��
�

�����
��

	��
�

��
�
��

	��
�

�� (25)

In that case, it is observed that the displacement propagation to the adjacent nodes is relatively

small and therefore, the nodal subspace is low. One can notice that equation (25) is similar to

the Fibonacci sequence, as the numerator and the denominator of the fraction are Fibonacci

sequences. In this case, the nodal subspace is small. Another case is when � � �, i.e. the

deformable object has spring stiffness greater than the node mass. Hence, a force applied to

a node, is expected to propagate to its adjacent nodes, depending on the value of �. Greater

values of � correspond to greater levels of deformation propagation. Thus, each force affects

a substantial number of the object nodes. If � is less than 1, which means that the spring

stiffness of the object under consideration is less than the corresponding node mass, we have

DRAFT



13

decreasing levels of deformation propagation to its adjacent nodes, restricting its influence

to a small local node area, depending on the corresponding value of �. Smaller values of

� correspond to decreasing levels of deformation propagation. That means that each force

affects increasingly fewer object nodes.

IV. PERFORMANCE ANALYSIS AND SIMULATIONS

In this Section, a comparison between the DMMA and TDMMA described in Section

II and the EFMA and TEFMA introduced in Section III is presented. The comparison is

performed in terms of the displacement estimation error and the required computation time.

The relative displacement error is defined as:��
� ������

������

��
� �

�
�



� 	� �� � ��	

���� 	� �� � ��	
(26)

where �� and � �� are the displacements calculated using DMMA (13) and the deformable

method under comparison (TDMMA and TEFMA) respectively, i.e., DMMA is the reference

deformable method. The displacement error ����� (26) of the EFMA and the DMMA is

zero, as proven in the Appendix. All experiments are performed on a Pentium III (700 MHz)

workstation under Windows 2000 Professional without any particular code optimization.
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Fig. 3. Error comparison of TDMMA and TEFMA methods.

The displacement errors ������ and ������ (26) comparison versus node number �

are illustrated in Figure 3. All errors in the Figure, are in a percentage form, due to the
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fact that the absolute error is not that representative, since it depends on the input forces

applied to the model. Note that error axis � is a logarithmic one. In the case of TDMMA,

where only ��� of the eigenvalues are taken into account, the relative average error is only

��������, which is not so important. Thus, as Nastar et al. [17] claim, one can use the

TDMMA without any particular loss of accuracy. In the case of TEFMA only
�
������

�

��

adjacent (neighboring) nodes are considered. The relative average error is only ��������,

which is negligible with respect to the global deformation of the model, and, consequently,

deformations can be computed using TEFMA without any particular loss of accuracy. Besides,

it is clearly depicted in Figure 3 that deformations extracted from the TEFMA have, in

average, a relative error ��� times less than the corresponding deformation computed by

TDMMA. It must be noted that the errors do not change with the number of nodes � .

Furthermore, Figures 4a and 4b show the errors (������ and ������) of the deforma-

tions computed using TDMMA and TEFMA versus the used modal and nodal subspace. The

experiment has been performed for various values of � varying from ���� to ���. In both

figures, the � axis denotes the error ������ and ������ (26) of each method (TDMMA

and TEFMA) under comparison. In Figure 4a,  axis depicts the percentage of modal

vibration modes exploited by TDMMA, while in Figure 4b,  axis denotes the percentage�
� ��

�
����

�
of adjacent nodes utilized by TEFMA. Those two figures illustrate the relation

between deformation error and the modal or nodal subspace used for their calculations.

First of all, let us see the relation between the error, modal or nodal subspace, and the

characteristic value � of the model. As � increases fewer modal vibration modes are needed

when performing TDMMA deformations to achieve the same error (Figure 4a). The exactly

opposite statement stands for the TEFMA deformations, i.e. as � increases, an increasing

number of adjacent nodes are exploited in their calculations (Figure 4b). Furthermore, one

can notice in Figure 4a that ������, in most cases, falls under an acceptable relative error

threshold (i.e. ���), using more than ��� of the modal vibration modes, while TEFMA needs

only a small nodal neighborhood (��) to achieve the same error. Thus, TEFMA formulation

is preferred, since it can achieve an acceptable error using a very small nodal subspace for

its calculations. This claim is enforced by the error comparison shown in Figures 4c and

4d, where � axis denotes the deformation execution time. Thus, TEFMA is proved to be

faster than TDMMA under every circumstances. For instance, for a relative error threshold

of ���, TDMMA requires �������, �������� and �������� of the vibration modes for a

model with a physical characteristic value of ���, � and ����� respectively. The corresponding
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(a) (b)

(c) (d)

Fig. 4. Error and Time comparison versus nodal and nodal subspace used for the deformations. Different plots corresponds

to different values of the characteristic value � of the model.

relative execution time of these deformations is �������, �������� and ��������. On the

other hand, the deformations of the aforementioned models (having the same characteristic

value �), using TEFMA, require only a very small set of adjacent nodes (��������, �������

and ������� respectively), while the execution time is proved to be very fast, i.e. �������,

������� and ������� respectively. One can notice that these two deformation methods can

achieve the same accuracy, but TEFMA is much faster under all circumstances.

Additionally, we have performed a computational complexity analysis of the methods
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Fig. 5. Complexity analysis. Computations of the DMMA, TDMMA (25% of eigenvalues), EFMA and TEFMA versus the

number of model nodes.

under comparison. We assume that the four elementary mathematical operations � additions,

abstractions, multiplications and divisions � have the same computation time. Furthermore,

sine, cosine and square root calculations are assumed to be computed by a Taylor series

expansion [37]. Then it can be proven that DMMA (13) requires approximately �� 

����


���
�
� elementary computations, where � is the number of model nodes. EFMA (19) requires

only �
�
�

��
�� computations, while TDMMA and TEFMA require 


�
�

 ��

�
��
 �



�
�

and ����
����
 
��	
�� computations respectively. These curves are plotted in Figure

5. It is worth noting that TEFMA has computational complexity of order !�� �	, whereas

even TDMMA has computational complexity !�� 
	.

Furthermore, we have performed computation time benchmarking experimentally. Figures

4c, 4d and 6 show the computation time for all methods under comparison. It must be

mentioned that, in Figure 6, the computation times are plotted in a logarithmic axis for

better visualization. EFMA and TDMMA require approximately the same computation time.

Both are 3 times faster than DMMA. The computation times of these two cases are quite

satisfactory, but they are still far slower than TEFMA. TEFMA computes the deformations

very fast. The computation time of TEFMA is more than 1 second only when the model
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Fig. 6. Time comparison of DMMA, TDMMA, EFMA and TEFMA methods versus the number of model nodes.

has more than ������� nodes. Therefore, TEFMA can be deformed 100 times per second

for contours having ������ nodes and �� �� times per second for contours of ������ nodes.

Hence, it can be safely used in many real time applications. TEFMA can achieve a speedup

of 4-5 orders of magnitude versus DMMA for almost any contour length. Furthermore,

computation time comparison for TDMMA and TEFMA can also be seen in Figure 4. In

all our experiments until now motivation (external) forces are assumed to be random, i.e. a

random force vector has been chosen to deform our models.

The comparison between the initial (DMMA and TDMMA) and the introduced (EFMA

and TEFMA) models is extended to a real contour tracking problem and is focused mainly on

increasing computation speed. Contour tracking is a characteristic computer vision problem,

where lip tracking is a special case. This is the reason that it has been selected to demonstrate

the effectiveness of the proposed methodology. The main goal of this demonstration is to

contrast the proposed and the original deformable models, with respect to speed and accuracy.

The model used in our experiments consists of ���� nodes and has been applied to images

illustrating human lips from a neutral position to a fully expressive one, e.g. smile (Figure

7a). The video stream consists of 17 frames, some of which are shown in Figure 7a. Thus,

DRAFT



18

(a)

(b)

(c)

(d)

(e)

Fig. 7. Lip tracking in video stream (a), using (b) DMMA, (c) TDMMA (25% of the eigenvalues are kept), (d) EFMA,

and (e) TEFMA.

TABLE I

Time comparison. The EFMA and the TEFMA compared with the DMMA and the TDMMA respectively. All times are

measured in seconds and the number of nodes of the snake (deformable model) under consideration is 1472.

DMMA TDMMA EFMA TEFMA Rest

time (sec) 10,523 2,793 0,476 0,045 1,510

total time (sec) 12,033 4,303 1,987 1,555

average time (sec) 0,6190 0,1643 0,0280 0,0026 0,0888

total average time (sec) 0,7078 0,2531 0,1169 0,0915

���
����

��������
100,000% 26,541% 4,525% 0,426% 14.353%

���
����

��������
696,700% 184,910% 31,529% 2,968% 100,000%

deformations per seconds 1,616 6,086 35,714 384,615

algorithm iterations per seconds 1,413 3,951 8,554 10,929

the iterations of the algorithm in our experiments are limited to 17, and as a consequence the

deformations as well. The computational time of the model deformations are illustrated in

Table I. It is obvious that EFMA and specially TEFMA are much faster than either DMMA
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or TDMMA. Moreover, we can see in Table I, that DMMA, TDMMA, EFMA and TEFMA

require in average ������, ������, ������ and ������ seconds per iteration respectively,

while the rest of our tracking algorithm needs ������ seconds. Thus, TEFMA can achieve

a rate of over ��� model deformations per second, and the whole algorithm can perform

about �� iterations per second, a fact that establishes it as a potential real time application,

something that is almost prohibiting when implementing deformable based applications. In all

of the above mentioned experiments, we assumed that the physics-based deformable model

characteristic value � is equal to 1.

The results of each deformable model case are depicted in Figure 7. Figure 7 illustrates

the model adaptation on human lips over a video stream from a neutral position to a fully

smiled one (Figure 7a), exploiting DMMA (Figure 7b), TDMMA (Figure 7c), EFMA (Figure

7d) and TEFMA (Figure 7e). The above mentioned experiment was performed using models

with physical characteristics equal to 1 (�=1). It is worth noticing that there is no visible

difference between the results of the DMMA, EFMA and TEFMA, while TDMMA produces

small errors in deformation accuracy (Figure 7c). In this example, it is obvious that TEFMA

has the best computational time and deformation accuracy.

V. CONCLUSION

In this paper, we have presented a closed-form solution for 2D physics-based shape model

deformation along with its properties. The deformation equations [17] were simplified and

analyzed. As a result, a closed-form solution can be reached for the objects deformation.

The presented 2D physics-based deformable model drastically reduces the computation time

needed to perform the deformation. This solution is very useful in analyzing the deformation

behavior of the contour at hand. The extremely low computational time and the low defor-

mation error with respect to all the other available techniques in the literature, makes the

introduced physics-based deformable model a very promising tool for various image analysis

and computer vision applications.

APPENDIX

A. Derivation of Closed-Form Governing Equations

The proof of the explicit governing equations is going to be restricted to closed curves.

Hence, the physics-based deformable model representing closed curves (Section II), can be
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explicitly described by:

� �
��
���

�
�


�

��� �"�����	�

�� 
 ��
� 	

�

��� �
�
���	

����	� � � ���	� (A.1)

where ��
� is given by equation (9), ����	 by equation (10), ���	 is the first Brillouin zone,

and finally "� denotes the � and � components of the force acting on node �.

���	 is equal to
���

�

 �� � � � � �

�

	
for � even, and

�����
�
� � � � � ���

�

	
for N odd.

Furthermore, for equal eigenvalues, ��
� (9), the corresponding eigenvectors (10) are modified

to consist of sines instead of cosines. Thus, the first eigenvector of the set of equal eigenvalues

consists of cosines (as shown in equation 9), the next one of sines
�
�������

�

�
, the next of

cosines, and so on.

The normalization factor (

�

��� �
�
���	 ) in equation (A.1) can be analyzed [38] to be given

by:


 �
��
���

�����	 �

��
�

�
�
� � �� �� �

�

�� � � �� �
�

� � � ���	� (A.2)

for both the cosine and sine cases.

Furthermore, it is assumed that the vector �, a �� � � vector describing the � and �

components of the forces acting on the model nodes, is a vector that consists of zero elements

except one, the "� element. Therefore, only one force, "� is acting on the model, and more

specifically on node �. Thus, equation A.1 can now be simplified into:

� �
��
���

�
�

"�����	

�� 
 ��
� 	


����	� � � ���	� (A.3)

and the deformation �� of node � � assuming that the only force acting on the model is "�

� is described by:

�� �
�
�

"�
����	����	

�� 
 ��
� 	


� � � ���	� (A.4)

Due to the fact that � � ���	, there exist two cases, one for � even, and one for � odd.

Consequently, our proof is separated into two distinct cases.


� N is even.

Since � is even, � lies in the interval
���

�

 �� � � � � �

�

	
, or even better in

�
�� �

�
�

� �
�
�
� �

�
� � �

�
�
� �

�
� � � �

	
. Thus, equation (A.4), becomes:

�� � "�

�
��

����
�
��

�
�



����	����	

�� 
 ������ ��
�
	

 
� (A.5)
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where � is the characteristic value of the model. Furthermore, equation (A.5) can be

rewritten as:

�� � "�
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(A.6)

Since, the formula
���

�	�����

�

�������� 	

�

is symmetrical with respect to � factor, the formula

produces the same result for � and for � -�. Thus, we can write:
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(A.7)

Therefore, for � even, deformations of the physics-based model, provided that only

one force, "�, is applied to it (to node �), are now described by equation (A.7).

�� N is odd.

For � odd, � lies in the interval
�����

�
� � � � � ���

�

	
, or even better in

�
��� �

���
�

�
�

� �
���
�
� �

�
� � � ��. Thus, equation (A.4), for � odd becomes:
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where � is the model characteristic value. Hence, equation (A.8) can be written as:
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(A.9)

Furthermore, as previously mentioned, the formula
���

�	�����

�

�������� 	

�

is symmetrical with

respect to factor �. That is, the formula produces the same results for � and for � -�.
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Thus, we can write:
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(A.10)

Therefore, for � odd, deformations of the physics-based model, provided that only one

force "� is applied to it (to node �), are now described by equation (A.10)

Thus, for both cases, deformations of the model (eq. A.7 and A.10), are given by:

�� � "�
�

�

����
���

�#�
��������

�

� 
 ������ ��
�

� (A.11)

Now, if we associate variable � (the node under examination) and � (the node where the

force "� is applied to), the model can be fatherly simplified. Then, we assume that node �

is related to node � by � � � 
 �, where � is the distance (in nodes) between nodes � and

�. For example, if � is equal to zero, the node under examination is the same with the one

that force "� is applied to. Hence, the above equation (A.11) can be rewritten:

���� � "�
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�

� (A.12)

Analyzing the above equation (Section B), we conclude that it is equivalent to:
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Therefore, the physics-based deformable model with respect to closed curves (eq. A.1), can

be fully described by:
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�� � (A.14)

where � is the model characteristic value, � is the total number of model nodes, and finally,

� is the distance (in nodes) between the node under examination and the node that force "�

is applied to. Hence, in practice, � is equal to ������� ��� �� � ��� ���	.
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B. Summation Reduction of the Basic Deformation Function

In this Section, our goal is to simplify equation (A.12), into an equivalent, compact

equation, such that the calculation involves no summations or any other computationally

intensive operations.

First of all, suppose that there exists:
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(B.1)

More specifically, the above function (B.1) separated into two parts, $ and %. Hence, part

$ can be analyzed to:
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(B.2)

Moreover, it is known [38] that

���

��� �#�
��������

�
� � for every �, and as a consequence,

equation (B.2) can be fatherly simplified to:

$ �
� 
 ��

��
���� �� �� �	� (B.3)

In a similar manner, part % is analyzed to:

% �
�

�
���� �� �� �	� �

�
���� �� �	� (B.4)

Therefore, equation (B.1) is now described by the recursive equation:

���� �� �	 �
� 
 ��

�
���� �� �� �	� ���� �� �� �	� (B.5)

After solving the above homogeneous recurrence equation [37] and determining its char-

acteristic polynomial and its roots, equation (B.5), can be rewritten in a more simple form,

involving no recurrence:
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where � and � are two constant values equal to
�
������

�
and

�
������

�
respectively, and ��

and �� are two parameters related to the initial values of the function under examination. The

parameters �� and �� can be easily estimated by solving the following system of equations:
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Therefore, equation (B.6) can be rewritten in the form:
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Furthermore, ��� ���
��

and ��� ���
��

can be explicitly calculated [39], and they are equal to

� �
�

����

����� and �
�

����

����� respectively. Thus, our initial function (eq. B.1) can be transformed

to in its final compact form, accomplishing our goal:
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