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Abstract—The evaluation of fluorescent in situ hybridization 

(FISH) images is one of the most widely used methods to 
determine Her-2/neu status of breast samples, a valuable 
prognostic indicator. Conventional evaluation is a difficult task 
since it involves manual counting of dots in multiple images.  In 
this paper we present a multistage algorithm for the automated 
classification of FISH images from breast carcinomas. The 
algorithm focuses not only on the detection of FISH dots per 
image but also on combining results from multiple images taken 
from a slice for overall case classification. The algorithm includes 
mainly two stages for nuclei and dot detection respectively. The 
dot segmentation consists of a top-hat filtering stage followed by 
template matching to separate real signals from noise. Nuclei 
segmentation includes a non-linearity correction step, global 
thresholding to identify candidate regions and a geometric rule to 
distinguish between holes within a nucleus and holes between 
nuclei. Finally, the marked watershed transform is used to 
segment cell nuclei with markers detected as regional maxima of 
the distance transform. Combining the two stages allows the 
measurement of FISH signals ratio per cell nucleus and the 
collective classification of cases as positive or negative. The 
system was evaluated with receiver operating characteristic 
(ROC) analysis and the results were encouraging for the further 
development of this method. 
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I. INTRODUCTION 

 The HER-2/neu (c-erbB2) oncogene is a tyrosine kinase 
receptor that is overexpressed in approximately 20-30% of 
high-grade invasive breast carcinomas and has been shown to 
be a valuable prognostic indicator [1]. HER-2 positive 
tumours can be more aggressive and their status can predict 
response to targeting therapy with trastuzumab (Herceptin) 
monoclonal antibodies and adjuvant chemotherapy. Knowing 
that a cancer is HER-2/neu positive helps a medical team 
select the appropriate treatment. Overexpression of the protein 
product of HER-2/neu gene is usually a consequence of gene 
amplification, in which multiple copies of the gene appear 
through the genome. It is thus possible to determine HER-
2/neu status by analyzing the numbers of gene copies centrally 
or the amount of protein peripherically.  Currently, the two 
most widely used technologies to determine HER-2/neu status 
are immunohistochemistry (IHC) and fluorescence in situ 
hybridization (FISH).  IHC uses specific antibodies to stain 
proteins (products) in situ, which allows the identification of 
many cell types that could be visualized by classical 
microscopy. FISH imaging allows selective staining of 
various DNA sequences and thereby the detection, analysis 
and quantification of specific numerical and structural 
abnormalities within nuclei.  The IHC test measures the 
protein coded by the HER2 gene, whereas FISH measures the 
number of copies of the HER-2 /neu gene present in the tumor 
cells.  There are trade-offs in choosing one of these 
techniques.  The IHC test reveals the protein on the cell by 
staining the product with specific antibody.  The advantages 
of IHC include its wide availability, relatively low cost, easy 
preservation of stained slides, and use of familiar routine 
microscopes [2].  On the other hand, the antigenicity of cells 
can be affected by tissue formalin fixation so the stained slide 
can cause inaccurate interpretation of IHC results. In addition, 
IHC testing is subjective: the reader must judge the degree of 
colour change in the nucleus against a non-standardized chart. 
A recent study by Bartlett et. al. [3] considered the accuracy, 
reproducibility and availability of different techniques for the 
evaluation of Her-2/neu status and recommended screening by 
immunohistochemistry followed by FISH testing of cases with 
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intermediate staining intensity (cases scored 2+according to 
Hercep test).  They suggested that the use of automated 
analysis may increase testing precision and predicted a wider 
future use of FISH analysis as a more cost-effective technique. 
A drawback of FISH is that it requires more specialized 
equipment than immunohistochemistry does and is, therefore, 
not as widely available yet. However, this technique is likely 
to have significant impact on diagnosis in the medical practice 
[4]. 

 The process of evaluating HER-2/neu status from FISH 
images involves the manual counting of signals in interphase 
nuclei which become visible as colored dots.  The FDA 
approved PathVision Her2 FISH kit (Vysis, Downers Grove, 
USA) uses DNA probes, which are small segments of actual 
DNA material. When applied to a tumor tissue sample, these 
DNA probes target the HER-2/neu gene and attach themselves 
to their target sequence. This process is called hybridization. 
The probes carry special fluorescent markers that emit light, 
when the probes bind to the HER-2 genes. The Her-2 probes 
are visible as orange stained spots under a fluorescent 
microscope. Similarly, probes for centromere 17 (CEP-17), 
the chromosome on which the gene HER-2/neu is located, are 
visible as green spots.  The sections are counterstained with 
DAPI, providing a blue background for nucleus body.  The 
conventional analysis involves the scoring of the ratio of 
HER-2/neu over CEP 17 dots within each cell nucleus and 
then averaging the scores for a number of ~60 cells.  Several 
images usually need to be read to reach the desired number of 
dot-including nuclei.  A ratio of >= 2.0 of HER-2/neu to CEP 
17 copy number denotes amplification1. 

 The reading of FISH images is a difficult task since 
manual dot scoring over a large number of nuclei and over 
different tissue samples is a time consuming and fatiguing 
technique. Moreover, it is user-dependent in the clinical 
setting lacking specific training for this imaging technique. 
Current analysis of FISH signals in practice is performed in a 
semi-automated way with the aid of image processing 
software, which can display the different color channels of a 
FISH image and apply thresholds for nuclei segmentation. A 
study by Klijanienko et al. [5] has shown strong correlation of 
detection results using visual-only and semi-automated 
methods for evaluating the status of Her-2/neu in breast 
carcinomas samples.  However, the counting of dots in a semi-
automatic manner still remains an impractical procedure for a 
pathologist, since it requires user intervention for excluding 
poorly segmented, overlapping, clustered or nonepithelial 
cells [5].   

Several methods have been proposed for the automated 
evaluation of FISH signals, even though they were not applied 
directly for measuring Her-2/neu gene amplification of breast 
samples. Most methods focused on automatic spot counting 
whereas only very few focused on case-based classification of 
FISH images. 

 Netten et al. [6] focused on automatic counting of dots 

per cell nucleus in slides of lymphocytes from cultured blood.  
The method that they developed consisted of the following 
steps: a) selecting regions of interest (ROIs) containing at 
least one nucleus. This was done by global thresholding to 
separate a nucleus from the background. The ISODATA 
thresholding algorithm was used to distinguish between 
nucleus and background within each ROI, followed by 
morphological operators.  Finally, a number of features 
describing the size, shape and intensity of the segmented 
nuclei were used to classify the segmented objects. For each 
segmented nucleus, the hybridized spots were detected using 
the top hat transform [7] and a nonlinear Laplacian filter.  At 
the end, features describing the area, fluorescent intensity, 
average and relative intensity of the dots were measured and 
used to eliminate false positive signals.  The method was 
evaluated on 6 slides using dot distribution, i.e. the percentage 
of nucleus containing 0,1,2,3, or >3 dots and percentage of 
correctly counted dots.  In a different study [8] the same 
authors discussed their dot detection algorithm in more detail 
and evaluated different image processing algorithms. 

 
1 PathVision HER-2 DNA Probe Kit insert 

 Solorzano et al. [9] developed a method to study 
leukocytes in blood samples.  For the imaging part, they 
segmented nuclei using the ISODATA thresholding 
algorithm. Then, the watershed algorithm incorporating the 
distance transform was used to isolate nuclei and FISH dots 
were detected using the top hat transform. A statistical error 
correction step was then used to improve the detection 
performance. The method was tested on 9 blood samples 
including 500 nuclei using the Kolmogorov-Smirnov 
maximum deviation test. 

 Kozubek et al. [10] developed a system that acquired 2-D 
and 3-D FISH images and performed image analysis on both. 
For the 2-D analysis, the system first segmented the nuclei 
using bimodal histogram thresholding. Morphological 
features, including nucleus size, presence of holes, nucleus 
roundness, and smoothness of boundaries, were used for 
further binary image processing and removal of false 
detections.  Then, the system detected hybridized dots within 
each segmented nucleus; a watershed-based algorithm was 
used for dot segmentation, employing gradual thresholding.  
Dot features, including maximum intensity, height/size at 
relative position to the nuclear center were also extracted. 3-D 
analysis was performed by analyzing the pre-extracted nuclei 
and dot features for sequential 2-D slices. The authors 
presented applications of their system for detection of 
BCR/ABL translocation in interphase nuclei and for 
measuring distances between centromeres in HL-60 nucleus.   

 Lerner et al. [11-14] proposed a FISH image 
classification system based on the properties of in- and out-of-
focus images captured at different focal planes. The signals 
were classified as real or artifacts and the images that 
contained no artifacts were considered to be the in-focus 
image. This methodology is in contrast with the methods 
described above that rely on auto-focusing mechanisms. The 
authors initially proposed the use of a neural network-based 
algorithm [11, 13]. This algorithm analyzed multispectral 
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FISH images in the RGB and HIS color spaces.  Color 
segmentation using global thresholding was applied to each of 
the RGB channels, and a set of features was extracted for each 
resulting object. Features included shape (eccentricity), size 
(area), and spectral features such as maximum and average 
hue. A neural network (NN) was used to distinguish between 
real and artifact signals. In a later study [12], the authors 
employed a Bayesian classifier instead of an NN, to avoid 
dependency on a large number of parameters and NN 
architecture settings. A number of methodologies were 
examined for density estimation.    

 Recently, Chawla et al [15] developed an automated 
system for analyzing FISH signals from brain hippocampal 
and cortical sections. Their objective was to examine temporal 
gene transcription activity for which manual counting was 
time-consuming considering that a stack of images had to be 
examined.  The system included a 3D watershed algorithm 
featuring a gradient-weighted distance transform, followed by 
a model-based region merging of nuclei.  Unwanted glia and 
non-neuronal nucleus signals were removed with a clustering 
algorithm using intensity, texture and homogeneity features. 
The remaining FISH signals were classified as being present 
in the nucleus or in the cytoplasm, depending on location and 
morphometric parameters.  Finally, FISH signals within the 
nuclei were measured.  

 Based on the above, there seems to be a potential for 
further development of systems for the automated case-based 
reading of FISH images, particularly for the application of 
HER-2/neu evaluation in breast carcinomas samples. Such a 
system should take into account multiple images of a specific 
case and quantify the HER-2/neu status in a collective 
manner. In this paper we present a multistage algorithm for 
the automated classification of FISH images from breast 
carcinomas samples. The algorithm focuses not only on the 
detection of FISH dots but on overall case classification.  
Moreover, the system is evaluated with receiver operating 
characteristic (ROC) analysis [16] in respect to three main 
tasks: nuclei segmentation, spot detection, and case 
classification.   

As can be seen in Fig.1, the algorithm consists mainly of 
two stages for nuclei and dot detection respectively, in a 
similar fashion to the approach taken by Lerner et. al. [11, 13]. 
The dot segmentation is performed in the RGB color space 
and consists of a top-hat filter preprocessing stage followed by 
grey level template matching to separate real signals from 
noise.  Nuclei segmentation is performed on the blue channel 
(DAPI) image. After a non-linearity correction step, global 
thresholding is used to identify candidate regions. A 
geometric rule is applied to distinguish between holes within a 
nucleus and holes between different nuclei. Finally, the 
marked watershed transform, defined in section III-B is used 
to segment cell nuclei. Combining the two stages allows the 
measurement of a FISH signal ratio per cell nucleus and 
consequently, the collective classification of cases, in a 
manner similar to the clinician’s evaluation.  
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Fig.1: FISH case classification algorithm. 
 
This paper is organized as follows: Section II describes the 

database used for the development and evaluation of the 
method. The method is detailed in section III whereas Section 
IV presents the evaluation of results and a related discussion. 
Finally, conclusions are stated in Section V.   

II. MATERIALS:  
        Twelve cases, six of which were classified as positive 

and other six as negative, were available for the algorithm 
evaluation. A testing set of 40 FISH images was used for the 
spot detection evaluation. The true location of 887 red spots 
and 751 green spots was labeled by an expert. The same 
expert identified the location of 385 true red spots and 334 
true green spots in 18 different FISH images that were 
employed as a training set. FISH images typically contained 
about 25 cells. The breast tissue slides were prepared using 
the following procedure. 

 Paraffin sections of 4μm thickness were incubated 
overnight at 60oC. Deparaffinization, pretreatment, enzyme 
digestion and fixation of slides were performed using the 
Vysis Paraffin Pretreatment kit according to the 
manufacturer’s recommended protocol. Slides were 
deparaffinized in xylene, dehydrated in 100% ethanol and 
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immersed in pretreatment solution. Proteolysis of neoplastic 
cells was performed by immersing the sections in protease 
solution at 37˚ C for 12 minutes. Tissue sections were 
denaturated at 85oC for 2 minutes, then the PathVysion HER-
2 DNA Probe (LSI HER-2/CEP17 probe, Abbott GmbH and 
Company, KG, Wiesbaden-Delkenheim, Germany) was added 
and hybridization took place at 37˚ C in a moist chamber for 
14-18h (overnight incubation). The following day the slides 
were washed with post-hybridization buffer (2X SSC and 
0,3% NP-40) at 72oC for 2 minutes, followed by 
counterstaining of the nuclei with 4, 6-diamino-2phenylindole 
dihydrochloride  (DAPI).  

            For each case, at least 60 non overlapping nuclei 
were scored for both Her-2/neu (red spot) and chromosome 17 
(green spot) signals by image analysis. Hybridization signals 
were enumerated utilizing a Zeiss, Axioskop 2 microscope 
equipped with a 100 Watt mercury lamp (HBO 100) and an 
automatic filter wheel system with the following filters: 
BP360/51 DAPI filter, BP485/17 FITC filter-spectrum green, 
BP560/18 Rhodamine filter-spectrum orange.  Plan-Neofluar 
lens with magnification of x100, NA=1.3 and a pixel size of 
0.24 µm were used when reading the images, along with 
manual focusing.  Images were grabbed using a CV-M300 
2/3” CCD camera (JAI, Copenchagen, Denmark). The camera 
had a high S/N ratio of >58dB and an effective pixel 
resolution of 752(horizontal) x 582 (vertical).  During clinical 
reading, the images were processed using the Meta Systems 
software (Altlussheim, Germany) in order to adjust contrast in 
the different color channels. This software contains a shading 
correction algorithm to account for non-uniform illumination. 
Her-2/neu gene amplification was determined by a ratio of 
Her-2/neu gene copies to chromosome 17 centromeres. 
According to the manufacturer’s recommendations the cases 
with a ratio ≥2 were determined as amplified, while those 
having a ratio <2 as not amplified.   

III. METHOD: 
The algorithm for the classification of FISH images was 

based on the accurate measurement of red/green spot ratio 
(corresponding to the ratio of HER2/CEP 17) per cell nucleus.  
For that reason, two combined stages for spot detection and 
cell nuclei segmentation respectively were developed as 
described below. 

A. FISH spot detection 
Despite the fact that the main content of FISH image red 

and green channels is constituted of spots, many FISH images 
frequently contain noisy areas consisting of large stains. For 
this reason, a preprocessing step for noise removal is needed. 
An effective solution is provided with top-hat filtering, as was 
proposed in [7]. A disk of 4-pixel radius was chosen as the 
structuring element of the top-hat transform.  The result of the 
top-hat filtering step is demonstrated using the example image 
of Fig. 2. 
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         Fig.2: a) Original image red channel; b) Top-hat filtering output. 

 

 A typical grey level histogram of the top-hat output 
presents a strong unimodal trend consisting of a peak followed 
by a very steep monotonous decrease and a second flat part. A 
modification of the algorithm proposed in [17] was used to 
estimate two thresholds for the top-hat red and green channel 
output respectively.  The algorithm assumes that there is one 
dominant mode in the image histogram. A straight line is 
drawn from the peak to the high intensity end of the 
histogram. More precisely, the line starts at the largest 
frequency bin A and finishes at the first empty bin B of the 
histogram following the last filled bin. The threshold is 
selected as the histogram index Th that maximises the 
perpendicular distance between the line and histogram curve. 
This procedure is illustrated in Fig.3.  A different approach 
[18] would be to plot the derivative of the histogram and 
select the position of a maximum as a threshold. 
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Fig.3: a) Typical grey level histogram of top-hat output; b) threshold 

selection. 
 

 For this application, we modified this algorithm by 
applying it not on the entire image histogram, but rather on the 
pixels belonging to the last bins of the histogram. The value 
of is estimated in the following way: if we indicate 
with the total number of pixels of the image and with 

 the intensity image histogram value relative to the 

 bin, then we consider the last bins such that: 

k
k
N

( )nih
thn − k

( ) pNih
N

kNn
n ⋅≥∑

−=

      (1) 

The value of p was chosen equal to 0.025. The histogram 
resulting from the selected pixels still presented a strong 
unimodal trend. The resulting threshold is proven to be rather 
insensitive to the value of p .  

Even if red and green spots usually have the greatest 
channel intensity, it is likely that many valid spots have 
red/green level value smaller than that of false signals, e.g. the 
ones coming from accidental or non-specific staining. 
Therefore, even the best threshold choice is not enough to 
isolate all true spots from false ones using only the red or 
green channel intensity. For this reason, we employed the 
characteristic grey level trend of every spot to perform better 

spot detection.  
Let the pixel position be represented by the ( )yx,  

coordinates and the channel intensity be the third coordinate 
as shown in Fig.4. 
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Fig.4:  Spot shape: a) channel intensity image; b) perspective intensity plot.  
   
The objective of this step is to compare the grey level 

“shape” of every candidate spot with the spot shape template 
obtained from the average shape of a set of valid labeled 
spots. To measure the similarity between every candidate spot 
and the spot template we use normalized cross correlation 
[19]. The estimation of the spot shape template is performed 
on training FISH images in the following way: considering the 
red and green channel independently, we estimate the center 
of every red and green manually labeled spot as the pixel with 
maximum channel intensity. A 7 window positioned on 
every spot center is saved as a template for spots in the red 
and green channel respectively. Two spot template windows 

 and  are estimated by averaging the respective spot 
channel intensities:   
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where  and  are the number of used red and green 

spots,  and  are coordinates in a 7 7
RN GN

1,...,7x = 1,..., 7y = ×  

window and and are red and green channel intensities 

of spot image. For each new test spot image, the 
normalized cross correlation  between  and the 

respective channel intensity , is calculated as follows: 

iRf
iGf

i th−

RC RT

RI

The thresholds ,  and  are empirically chosen 

in order to minimize spot classification error over the FISH 
images used for training. An example of original FISH image 
and the relative output of the spot detection algorithm are 
shown in Figs.5 a, b.   
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where is the mean value of , while  is 

mean value of red channel 

( vuIR ,
_

,
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a) 
RI  around the 7-pixel 

neighborhood of pixel ( . The normalized cross 

correlation  for the green channel is computed in a 

similar fashion. As we can see in Fig.1,   and  were 
evaluated only for FISH image positions where a) the top-hat 
output is above threshold and b) a nucleus is present, as found 
by the nuclei segmentation procedure described below. In 
order to select red/green spot positions, two positive 
thresholds   and  are used; spots with a value of  

and  lower then  and  respectively, are 
discarded while the remaining ones are used as input for the 
next selection step of the FISH spot detection algorithm.      
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  Fig.5:  a) Original FISH image; b) Output of the spot detection algorithm. 
  Finally, for every detected spot from the previous step, a 

channel intensity contrast measure is used. This further 
processing step is performed to discard spots whose shape is 
very similar to the template one, but have a low channel 
intensity contrast with respect to their surrounding pixels, 
making them appear invisible to the human eye. The contrast 
measure is performed using the information of the red, green 
and blue channel.  For each spot, two vectors  and  

are created. Each of the three components of vector  is 

estimated considering the average channel intensity of the 
pixels of a  window positioned on every spot center, 
while each of the corresponding three components of vector 

 is estimated considering the average channel intensity 
of the background pixels around binary object perimeter. Then 
the contrast measure  is calculated as: 

B. Cell nuclei segmentation 
Cell nuclei segmentation is performed on the FISH image 

blue channel. For many images, cell nuclei contain an 
inhomogeneous blue channel intensity. In order to reduce the 
gray level difference between dark regions and more 
illuminated ones, a nonlinearity correction step was performed 
applying the square root function to the blue channel, 
normalized by its maximum grey level , as shown in Eq. 
6.  

backvforv

MAXpforv

MAX

in
out p

p
p =

55×
        (6) 

backv
Where  and  are the pixel grey levels.  outp inp
Moreover, gray level peaks due to the presence of spots are 

made less intense by applying the opening morphological MC
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operator to the FISH image blue (DAPI) channel using a disk 
of 4-pixel radius as structuring element. A further top-hat 
filtering using as structuring element an 80-pixel radius disk is 
also performed to reduce the blue channel intensity of regions 
where non-ideal staining caused color diffusion.   

Based on the fact that the histogram of the resulting image 
has a characteristic bimodal shape, we employ the algorithm 
by Otsu et al [20] to determine the threshold for initial nuclei 
segmentation. The binary image resulting from thresholding 
sometimes contains holes even in a single nucleus body 
region. This kind of holes has to be filled to enable correct 
nuclei segmentation. On the contrary, holes present in inter 
nuclei zones of overlapping nuclei should not be filled. The 
two types of holes are illustrated in Figs 6a and b respectively. 
A method to distinguish between these two types of holes is 
described below.  

As the two types of holes can not be separated into two 
classes using just gray level or morphological features, a 
geometric approach is employed. Let P be the percentage of 
the perimeter pixels of a circle of radius R centered on a hole 
centroid that is contained in the nucleus region. It can be 
observed from Fig. 6, that the value of P is much higher for 
the first type of hole (inter nuclei) than the second type of hole 
(nucleus region). The radius R used is slightly bigger than the 
average nuclei radius.    
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Fig.6: a) Hole due to overlapping nuclei (inter nuclei case); b) Nucleus 

body hole. 

It was found experimentally that the value for P varied in 

the range of 90% to 40% for holes of the first type and second 
type respectively.  

Figs 7 a, b and c show respectively the original blue 
channel of a FISH image, the binary image after thresholding 
and the binary image after the hole classification step.  

 

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550      
a)  

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550    
   b)  

 100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550  
c) 

Fig.7: a) blue channel of original image; b) result after thresholding; c) 
result after hole classification. 

 
The last step of the nuclei segmentation algorithm involves 

the marked watershed transform [21] which is employed to 
detect borders in overlapping nuclei clusters. The distance 
transform [22] is first applied to the binary image obtained 
from the previous step. For every pixel, this transform 
produces an intensity value proportional to its Euclidean 
distance from the closest background pixel. The uneven 
shapes of binary object borders cause spurious local maxima 
of the distance transform output that do not correspond to 
nuclei centers. If all these local maxima were used as markers, 
an over segmentation would be obtained.  In order to reduce 
this effect we calculate h-dome maxima of the resulting image 
[23]. H-dome maxima are connected components of pixels in 
an 8-connected neighborhood with the same intensity value 
and whose external boundary pixels all have a value less than 
h. Characteristic values of h are in the range

 
[ ]2:5.0 .  This 

feature is employed in order to discard insignificant local 
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maxima present in the distance transformed image. Fig.8 
shows examples of the original blue channel image and the 
final output of the nuclei segmentation step. We note that the 
nuclei touching the image border are removed because they 
are not considered in the spots per cell counting. 
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Fig.8: a) Original blue channel image; b) Final output of segmentation 
algorithm. 
 

IV. RESULTS 
The algorithm was evaluated with respect to three different 

tasks: spot detection, cell nuclei segmentation and case-based 
classification as will be described below. Receiver Operating 
Characteristic (ROC) curves were used to describe the 
performance of each task, as will be shown below.   

 

A. Spot detection: 
     In order to estimate the performance of the algorithm for 

detecting FISH spots, a testing set of 40 FISH images was 
used. The true location of 887 red spots and 751 green spots 
was labeled by an expert. The same expert identified the 
location of 385 true red spots and 334 true green spots in 18 
different FISH images that were employed as training set to 
estimate spot shape templates. The false positive rate was 
defined as the ratio between the total number of detected spots 
not present in the ground truth over the total number of 
detected spots. The true positive rate was defined as the ratio 

between the total number of correctly detected spots over the 
total number of spots present in the ground truth. ROC curves 
were constructed by collecting pairs of sensitivity (or true 
positive rate) and false positive rate for different thresholds. 
Twenty one points of the curve were estimated by varying the 
threshold applied to top-hat output between 0 and 1 with a 
step of  while fixing the thresholds of normalized cross 
correlation,  and , and threshold  of gradient 
intensity value to 0.7, 0.65 and 0.3 respectively. Curves were 
estimated for red and green spots separately using the testing 
set described above and are displayed in Fig. 9.  
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Fig.9: ROC curves relative to red and green spots detection. 

 
It can be seen from Fig.9 that the performance of the 

algorithm is noticeably better for the detection of red spots. 
This can be due to the fact that red spots have a more well-
defined shape compared to the green ones. As a demonstration 
point, the algorithm can reach a sensitivity of about 92% and 
80% for red and green spots respectively at a false positive 
rate of about 25%.  

 

B. Cell nuclei segmentation: 
     In order to evaluate the performance of the algorithm for 

cell nuclei segmentation, the ratio between the area of 
intersection of segmented nuclei with true nucleus region over 
the area of the union of the two regions was calculated. The 
ground truth for the correct nucleus boundaries was 
determined manually so that 1439 nuclei were labeled. ROC 
curves were constructed by varying a threshold for the ratio of 
intersection over union as described above. Fig.10 shows the 
resulting ROC curves for three values of h {0.5, 1.0, 1.5}.  
 



TIP-01363-2004 
 

9

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
 p

o
si

tiv
e

 r
a

te

h=0.5
h=1
h=1.5

 

Fig.10: ROC curves relative to the cell nuclei segmentation. 
 
As we can see performances are not much sensitive to the 

value of h, even if a value of h = 1 shows better results in the 
high sensitivity part of the ROC curve.  It has to be noted here 
that for this application it is more crucial to not discard a true 
nucleus than to avoid merging overlapping nuclei since dot 
counting per nucleus is averaged and it is not overly sensitive 
to two nuclei being counted as one. On the other hand, correct 
nuclei segmentation definitely reduces the effect of 
background noise pixels that can be mistaken for FISH dots 
and affect the dot ratio calculations. 

 

C. FISH case-based classification: 
     Twelve patient cases, six of which were previously 

classified by an expert as positive and six that were classified 
as negative, were employed to evaluate the precision of the 
algorithm in classifying the different cases.   

For every segmented nucleus where at least one red spot 
was present the ratio d was calculated, defined as: 

G

R

N
Nd =        (7) 

where  and  are, respectively, the number of red 
and green spots present in the segmented nucleus. In the 
instances where the number of green spots was zero, but the 
number of red spots was nonzero, it was assumed that at least 
one green spot was present (probably in the same location as a 
red spot), and consequently, the value of  was set to one.  
In our experiment, considering the total number of segmented 
nuclei, we had such instances in 16% of all cells.  In Figs.11 
and 12, the histograms of the calculated red/green spot ratios 
per nucleus for the six positive and the six negative cases 
respectively were displayed. As can be seen from the plots, 
the histograms of the negative cases are more concentrated in 
the bin corresponding to a ratio red/green equal to one than 
the corresponding histograms for the positive cases. In order 
to quantitatively analyze the histogram properties, the 
probability measure  was defined as the probability 

of having a ratio red/green greater or equal then two. The 
number of images available and the values of ( )2dP ≥  for 
each of the testing cases are listed in Table 1. 

 
Table 1.  Number of available images for each case and values for the 

estimation of the probability to have a ratio greater or equal to 2 for each of 
the testing cases. 

 

RN GN

GN

( 2dP ≥ )

 
 
 
 
 
 
 
 
 
 
 
 

 
It can be seen from Table 1 that all of our cases can be 

correctly classified as either positive or negative (100% 
sensitivity with 0 false positives) by using a proper threshold 
for the statistic ( )2dP ≥ . Despite the small number of cases, 
these preliminary results are encouraging for the further 
development of a fully automated method to accurately 
distinguish between normal and abnormal breast tissue 
samples.  A larger database of FISH images of breast tissue is 
being prepared in order to examine how well these results can 
generalize in a broader population.  Moreover, it will be useful 
to examine the robustness of our algorithms to changes in the 
image acquisition step, such as changes in lens magnification 
and camera resolution and develop automated parameter 
optimization techniques to account for these changes. 

V. CONCLUSIONS 
We have developed a method for the automated evaluation 

of Her-2/status in breast samples by FISH image analysis. 
Conventional evaluation is a time-consuming task since it 
involves manual counting of dots in multiple images and, 
additionally, it is prone to inter-observer variability. 

 The developed method uses two combined multistage 
algorithms. The first one, used for the detection of the red and 
the green spots, includes mainly stages of top-hat filtering, 
binary thresholding, grey level template matching and contrast 
evaluation. The second one, used for the cell nuclei 
segmentation, consists of a non-linear blue channel correction 
step, a global thresholding by Otsu algorithm, a grey level 
hole classification by a geometric rule and of the marked 
watershed transform using local h-dome maxima as markers. 
The outputs of the two algorithms were merged for estimating 
the average red/green ratio per cell nucleus, which is the 
feature used in clinical practice to determine gene 
amplification. 

 

 # of 
Images ( )2dP ≥ ( )2dP ≥# of 

Images    

Positive 
case #1 5 0.5316 Negative 5 0.2398 case #1 
Positive 
case #2 5 0.5316 Negative 5 0.2398 case #2 
Positive 
case #3 5 0.5316 Negative 5 0.2398 case #3 
Positive 
case #4 5 0.5316 Negative 5 0.2398 case #4 
Positive 
case #5 5 0.5316 Negative 5 0.2398 case #5 
Positive 
case #6 5 0.5316 Negative 5 0.2398 case #6 
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