168

“outwards.” During grouping, we require that lines can be grouped
together only if their gradient directions are toward each other, as
shown in Fig. 1.

A. Partial Shape Completion

In real images, lines corresponding to all sides of a building are
not always obtained. This is often due to poor contrast. Thus, the
grouping may result in some partial boundary shapes of the buildings.
We use deformable contours (snakes) [7] for partial shape completion.
Deformable contours are active contours of deformable shape, where
the final shape is determined by minimization of an energy function.
In any approach using deformable contours, the initialization is
important, which is two-folds, the initial shape and its spatial position.
The spatial position of the initialization is very crucial, while the
initial shape itself is not. In our approach, initialization is not a
problem, since we have already obtained the partial shapes. The
deformable contours are initialized at the locations of the partial
shapes and then allowed to deform according to the following energy
function:

Let (s,9s), 5 =1,2--- N be the initial position of the snake. The
energy function associated with the deformable contour is given by

E= Esnake. + Ezmage + Eshape:
N
Esnake = Z(ZKISQ + y’sz);
s=1
N
Ez'mage = —/31 Z | v f(xs-, ys)l§ Eshape
s=1
N
=N ZPSQ(I_CS)'f'WICs @)
s=1

where f(zs,ys) is the image intensity at (Zs,Ys), ps is the curvature
at the site s, and Cs is a corner process defined between the snake
sites (x5, ys) and (Zoq1, Yotr),

ps = 1’83/,5, - ysx's' ;

Cs = {0,1}.
(v +2,%)% o

B. Results

Fig. 2 shows the LAX image that has many buildings of different
sizes. Fig. 3 shows the lines with gradient directions. Gradient
directions are represented by short projections at the centers of the
lines. The result of the grouping is shown in Fig. 4. As seen in Fig. 4,
many of the groupings display only partial shapes. The deformable
contours approach is used to complete the partial shapes. Fig. 5 shows
the final result after partial shape completion. Fig. 6 is a section of the
aerial image made available in connection with the ARPA RADIUS
project. Fig. 7 shows the lines with their gradients, Fig. 8 shows the
result of grouping, and Fig. 9 shows the partial shape completion
result.

V. SUMMARY

MRF models have been successfully used for many low-level
image processing problems, but not many attempts have been made
to use MRF’s for high-level problems. Here, we have presented an
MRF model for a high-level delineation problem. Using MRF models
for high-level problems enables the specification of prior beliefs in
a probabilistic framework. Our experiments show that the grouping
based on MRF’s provides good results on real aerial images.
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Multichannel Techniques in Color
Image Enhancement and Modeling

I. Pitas and P. Kiniklis

Abstract— We present novel multichannel methods in two target re-
search areas. The first area is color image modeling. Multichannel AR
models have been developed and applied to color texture segmentation
and synthesis. The second area is color image equalization, which is
performed on the three channels RGB simultaneously, using the joint
pdf. Alternatively, equalization at the HSI domain is performed in order
fo avoid changes in digital image hue. A parallel algorithm is proposed
for color image histogram calculation and equalization,

1. MULTICHANNEL AR MODELING
We use the three-channel 2-D AR model of the form

P1 b2

%[, 5] = Z Z Alm,n]x[i —m,j —n] +wi, j]

m=0 n=0

(m,n)7#(0,0)

D

in which the model coefficients Alm,n] are 3 x 3 arrays, and image
pixels x[m,n| are vectors of length 3. The double summation is
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Fig. 1. (Upper left) Color image consisting of two different textured regions; (upper right) multichannel prediction error image; (lower left) prediction error
image filtered by a 3 x 3 moving average filter; (lower right) result of thresholding image 2c.

over a quarter plane window. The three-channel 2-D Yule-Walker
equations are

Z ZA[mv n]Rxx[l - ’ITL,j - TL]

_ JPu,

=1,
The autocorrelation matrices are given by R..[k, 1] = E{x[i+k,j+
NxTi, 5]}. The solution of (2) gives the coefficients A[m,n] and
the correlation matrix P.,,.

The fitness of the multichannel AR models to color image modeling
is measured in terms of the prediction mean square error

_ 1 . . an2
MSE = 33> lxlis j] = %ol A1l
2 7

where x,[i, j] is the predicted image

xplis ] =D Y Alm,n]xli —m,j —n].

for [m,n] = [0,0]
otherwise.

2

3

@

Several simulation experiments have been performed on the well-
known color images LENNA, BABOON, and CAR. The multi-
channel prediction MSE has been found to be 5-30% lower than
single-channel MSE. The conclusion from these experiments is that
multichannel AR models describe better the color image than single-
channel AR models. The price paid for better performance is the
computational complexity for the calculation of the autocorrelation
matrices and for the solution of the Yule-Walker equations.

We have employed multichannel AR models for segmentation
of textured color regions, using techniques similar to the single-
channel ones reported in the literature [2], [3]. Classical segmentation
techniques fail in such cases. Let us suppose that we know the
seeds of the textured region to be segmented from others. Its pixels
can be used to estimate autocorrelation matrices. The corresponding
Yule-Walker equations can be solved, and the resulting AR model can
be applied to the entire image. The prediction error ||x[¢, j] —X{é, 5]||
at each image pixel can be used for segmentation by thresholding.
The regions having similar (different) texture to the seed region give
low (high) prediction error. In most cases, a lowpass filtering of the

prediction error image must be performed prior to its thresholding in
order to eliminate spurious pixels. Multiple textured regions can be
segmented using more than one seed regions. An application of color
texture segmentation based on this method is shown in Fig. 2.

For color texture synthesis, a multichannel AR model is driven by
a white Gaussian noise process w[¢, j] having a known correlation
matrix P,,. When the matrices A[m,n] and P, have been derived
from an area of random texture, by solving the corresponding
Yule-Walker equations, the synthetic texture produced by these
matrices will be similar to the original one.

II. MULTICHANNEL HISTOGRAM EQUALIZATION

BW histogram equalization techniques can be applied for color
image enhancement in a component-wise manner [4]. However, such
a method equalizes the marginal pdf’s (histograms) of each primary
color R, G, B, and not the joint pdf in the RGB cube, which is a 3-D
distribution. Furthermore, it produces unacceptable shifts in hue. We
propose a new method for multichannel equalization that equalizes
the n-dimensional histogram of a n-channel image.

The histogram of an n-channel image is an empirical n-
dimensional pdf. In the continuous case, a random vector X =

[x1,%2,...,%Xn] has the following pdf:
"F(z1,...,%n)
= ) = — 5
FX) = flansnoyme) = g T ®
and cumulative distribution function
F(X)—_—F(Z‘l,...,l‘n)=P{X1le,...,xns.’ﬂn}. (6)
The conditional density of the RV’S Xg,...,Xk4+1, assuming
Xk,...,X1, is defined as
F@1yee s Thye ey Tn)
e Cas = . 7
f(.’,L‘n, ,Zk-}-l/wk, ’wl) f(1'1>--~7$k) )
The corresponding distribution function is obtained by integration
F(xn,.e s Tht1/Thy- ., 21)
Tn Tht1
=/ / f(Zn,...,Zk+1/.’I,'k,...,.2?1)de+1-"dzn.

®)
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Fig. 2. HSI color coordinates.

The nonlinear pointwise transformation that equalizes the random

vector X = [x1,X2,...,Xn] can be shown to be [5]
1= F(x1),y2 = F(x2/%1),...,¥n = F(Xn/Xn—1,...,%X1).
©
If we want to transform X = [Xi,Xs2,...,Xn] to Z =

[21,22,...,2,], where Z must have a certain nonuniform joint
pdf fz(Z), we first derive the transformations Y T(X) and
S = G(Z) that equalize the random vectors X and Z. Then, we
combine these two transforms into one

TN

In the digital case, the multichannel histograms take the form

Z=G" (10)

flz1i) = Pr{xy
fl@1i, 225) = Pr{x;

where 0 < 4,4,k,... < L. L is the number of discrete levels
per image channel, and xi;,x3;,... are possible values for the
corresponding RV’s. The multichannel histogram equalization takes
the following form, by combining (9) and (11):

Z f(l?lm% Z
Z f(11171'2]>x3m).

ﬂfnyﬂ”zj)

xlz}‘,

an

T1i, X2 = 2aj}.. ..

f CL‘11 Izm

Y1i Pl

Y25 =
(12)

Y3k

Similar formulae can be derived for n > 3.

Although the RGDB space provides a straightforward way to
display color images, it is not always the best choice for processing
and analysis. One of its disadvantages is its inability to handle the
perceptual properties of colors, such as intensity, hue, or saturation.
The HSI color space has primaries H (hue), S (saturation), and
I (intensity) and corresponds directly to the perceptual attributes of
colors. Fig. 2 shows the H ST coordinates and their relationship to the
RGD cube. The intensity is measured along the diagonal of the RGDB
cube, i.e., the line segment from (R, G, B) = (0,0,0) to (1,1,1).
Hue and saturation are polar coordinates in the plane perpendicular
to the I diagonal. The transformation equations from the RGB to
the HSI, and vice versa, can be found in [4].

Modification of one or more channels in an RG'B image causes
shifts in hue, but modification of the I or S components does not.
This remark suggests the application of histogram equalization or
modification only to I and/or S components. The cone shape of the
H ST space suggests nonuniform densities for I and S if an overall
uniform density is desired for the entire RGB cube. If this fact is
not taken into account when image intensity is equalized, many pixels
concentrate near the points I = 0 and I = 1. The limited color space
provided near these points causes distortion of the colors.
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The following pdf’s fill the HSI color space uniformly, and they
can be derived using geometrical concepts.

1212 for 0 <I<05
(D) = {12(1—1)2 for 0.5 <1< 1 a3
fs(S)=65—-65"for0<§<1 (14)

65 for S <2I,1¢€1(0,1/2]

. S>oI I 1/2
F1s(1,5) = 0 forS>2I,1€(0,1/2] (15

65 for S <2(1-1),I€l1/2,1]
0 forS>2(1-1),I€[l/2,1].

Transformations of the form (10) can be used for the modification of
I and S either jointly or separately. It has been found in a variety of
images that histogram modification toward (13) gives the best color
image enhancement. Although modifications toward either (14) or
(15) are mathematically correct, they usually lead to large saturation
values that are not present in natural scenes.

The 3-D histogram matrix for a color image with 24 b/pixel has
16777216 elements and is very sparse. A usual way to represent
a sparse matrix is to use a linear list. In our case, every element
of this list holds four numbers: three indices (one for each R, G, B
color component) and the number of occurrences of this triplet in
the image. Only the triplets that are present in an image need to be
stored in the list. List processing is easier when it is sorted based
on the (R, G, B) triplets. In the following, an efficient algorithm
for constructing a sorted RGB histogram list for a given image is
described.

Let L represent the number of discrete levels for each component
R,G, B (typically L = 256). We scan the entire image L times.
The rth time corresponds to the level R = r for the red component
and has two steps. In the first step, we scan the image, select all the
pixels having R = r, and construct a 2-D histogram matrix for the
G and B components. In the second step, we scan this matrix, and
we transfer all its nonzero elements to the corresponding elements of
the histogram list having R = r. Since we scan the GB matrix in a
certain order (e.g., row-wise), there is no need for any further sorting.

This algorithm can be easily parallelized on MIMD machines using
the master-slave concept. The image is distributed from the master
to every slave. The parts of the list corresponding to different ranges
of R can be constructed independently in the slaves. These parts are
consecutive and can be concatenated by the master processor. No
time-consuming list merging is needed.

For multichannel histogram equalization, we have to transform
only the (R,G, B) triplets that exist in the original image and,
consequently, only the colors present in its histogram list. The trans-
formation equations from the color (215, @25, Zak) t0 (Y1i, ¥2;, Ysk)
are given by (12). f(-) are image histograms, and the indices 1,
2, 3 correspond to R, G, B, respectively. We compute and store
the histograms f(z1:), f(21:,22;) of the original image using 1-
D and 2-D arrays. We use a list to store the 3-D color histogram
f@1i, @25, w3k ). Let M be the number of different values of red R
appearing in the list. We traverse the histogram list M times, each
corresponding to a different value R = r. In each pass, we apply
(12) to compute two look-up tables for the transformation of the
G, B components. The image can be equalized using these two look-
up tables and the first equation of (12). Let us suppose that we have to
transform the triplet (z1:, ©2;, ¥3x). Since f(@1m) and f(@1:, 22m)
are known for every m, y1: and y2; can be easily calculated. Finally,
we can compute the sum needed for evaluating ysx by working only
on the part of the sorted list that corresponds to R = zi,. Thus,
it is necessary to have access only to the part of the list that has
R = zy; in order to transform (@, zo;, 31 ). This fact facilitates
the parallel implementation of this equalization algorithm on MIMD
machines. The construction of the color histogram list can be followed
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by equalization with no need to transfer the already computed parts
of the list from the slaves to the master processor.

Both histogram list calculation and equalization algorithms have
been implemented on a TELMAT T-NODE machine with 4, 8, or
16 transputers T800. In the case of 16 transputers, the speedup
obtained over the serial computation ranges from 4.01 (L = 64)
to 14.87 (L = 256). As expected, the speedup is best for 256
levels/component because the computational load is much larger than
the communication load between processors. The same observations
hold for parallel equalization using the color histogram list, where
a speedup of 10.15 has been obtained for L = 256 and a farm of
16 transputers.
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A Fast Learning Algorithm for Gabor Transformation

Ayman Ibrahim and Mahmood R. Azimi-Sadjadi

Abstract— An adaptive learning approach for the computation of
the coefficients of the generalized nonorthogonal 2-D Gabor transform
representation is introduced in this correspondence. The algorithm uses
a recursive least squares (RLS) type algorithm. The aim is to achieve
minimum mean squared error for the reconstructed image from the set of
the Gabor coefficients. The proposed RLS learning offers better accuracy
and faster convergence behavior when compared with the least mean
squares (LMS)-based algorithms. Applications of this scheme in image
data reduction are also demonstrated.

I. INTRODUCTION

The Gabor transform [1]-[11] is viewed as the optimum case of the
short time Fourier transform (STFT) in which the window function
is chosen to have a Gaussian shape. This choice of the window
function in the 2-D Gabor elementary functions guarantees the lower
bound of the joint uncertainty, i.e., the 2-D Heisenberg inequality,
in the two conjoint spatial-frequency domains. The Gabor analysis is
based on projecting a given signal/image onto a family of shifted
and modulated Gaussian window functions, which are called the
“Gabor elementary functions” or the “Gabor basis functions,” and the
corresponding projection coefficients are called the “Gabor transform

Manuscript received May 1, 1994; revised March 7, 1995. The associate
editor coordinating the review of this paper and approving it for publication
was Prof. Rama Chellappa.

The authors are with Department of Electrical Engineering, Colorado State
University, Fort Collins, CO 80523 USA.

Publisher Item Identifier S 1057-7149(96)00141-8.

171

coefficients.” The use of such a transform is motivated by the fact that
Gabor elementary functions have optimal localization property [2],
[3] in the joint time (or spatial) and frequency domains. This leads to
optimal extraction of the textural information from the images, which
is an important feature for pattern recognition, segmentation, and
image analysis applications. Beside the optimal localization property.
other benefits of the Gabor transform include compatibility with
mammalian visual systems [2], [3] and energy packing capability,
which leads to lower entropy in the transform domain [4]. The
deficiency of the Gabor transform, however, is that the elementary
functions are not orthogonal. As a result, there is no straightforward
method available for extracting these transform coefficients. If they
were orthogonal, the extraction of these coefficients could have been
done easily by the simple inner product formula [4].

Many approaches have been proposed to find a method for extract-
ing the Gabor transform coefficients [4]-[10]. Bastiaan [5] derived
an analytic solution for the 1-D case based on the expansion onto
another set of discrete functions that are biorthogonal to the Gaussian
elementary functions. This method was extended to the 2-D case
by Porat and Zeevi [7]. Daugman [4] proposed a three-layer neural
network for extracting the Gabor coefficients. The learning of the
neurons is accomplished using a least mean squares (LMS) type
algorithm [11]. Teuner and Hosticka [8] presented an algorithm that
computes the Gabor transform coefficients using the complex LMS
algorithm. Recently, Wang et al. [9] proposed a method to calculate
the Gabor transform coefficients based on the biorthogonal functions.
They used the FFT algorithm for the computation of the Gabor
transform coefficients. Yeo [10] proposed a method to calculate the
coefficients by multiplying a constant complex matrix and the inverse
of a sparse real matrix.

Generally, these methods are based on either finding an analytical
solution [5]-[7], [9], [10] or solving a set of normal equations
using the LMS algorithm [4], [8]. The analytical solution requires
a significant number of computations, and further, the solution may
never exist. On the other hand, the main shortcoming of the LMS-
based approaches is that the choice of the step size results in
a tradeoff between accuracy and speed of convergence [11]. The
primary objective of this correspondence is to find a solution to these
problems by introducing an adaptive learning for the Gabor transform
computation. The proposed algorithm uses the recursive least squares
(RLS) learning algorithm instead of the LMS, which converges to an
optimal solution in only few iterations. After convergence is achieved,
Gabor transform coefficients can be extracted at the weights of the
adaptive system. This RLS-based learning algorithm offers better
accuracy and faster convergence when compared with the LMS-
based algorithm. In addition, it does not have the accuracy-speed
trade-off problems of the LMS method and provides better numerical
stability compared with the analytical solutions. Simulation results
are presented that demonstrate the applications of this method for
image dimensionality reduction areas.

II. TwO-DIMENSIONAL GABOR
TRANSFORMATION USING RLS LEARNING RULE

The goal of the 2-D Gabor transform is to represent a digital image
f(z,y), where x and y represent spatial coordinates, either exactly
or in some optimal sense (e.g., minimizing the mean squared error
between the reconstructed image and the original image) by projecting
it onto a set of 2-D Gabor elementary functions. For a finite extent
image f(z,y),2=0,1...,X—1; y=0,1,...,Y — 1 partitioned
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