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Digital Color Restoration of Old Paintings

Michail Pappas and Ioannis Pitas

Abstract—Physical and chemical changes can degrade the visual color
appearance of old paintings. Five digital color restoration techniques,
which can be used to simulate the original appearance of paintings, are
presented. Although a small number of color samples is employed in the
restoration procedure, simulation results indicate that good restoration
quality can be attained.

Index Terms—Enhancement, painting, restoration.

I. INTRODUCTION

Varnish oxidation is a phenomenon that can seriously degrade the
visual appearance of old paintings. Dirt, smoke, and other deteriora-
tions can further degrade the appearance of paintings. The result is that
colors appear faint and the painting appears brown or black. This is par-
ticularly true for icons or church murals, where candle smoke degrades
icon colors. In many cases, this degradation can affect the artistic value
of a painting. The removal of this oxidation layer is performed by con-
servation experts. It is a time-consuming process which does not guar-
antee success. Indeed, the prevailing environmental conditions as well
as the chemical properties, which are exhibited by the wide spectrum
of different varnishes, render the selection of the appropriate cleaning
process quite difficult.

In many cases, a trial and error approach is implemented, where
chemical cleaning substances are applied (in small regions, or “sam-
ples”, of the painting) in order to select the most appropriate substance
to be used to clean the entire painting. Digital image processing tech-
niques can be used to simulate color restoration by obtaining an esti-
mation of the original visual appearance of a painting, without exten-
sive chemical cleaning treatment of its surface. In this context, Volterra
filters have been utilized to extract the original color information, by
utilizing sample painting regions, in the RGB color space, before and
after chemical cleaning [1].

Let us assume that several uniformly colored regions of the painting
have been cleaned chemically and that the respective digital image
patches have been digitized. These constitute the clean color image
data setsi; i = 1; . . . ; N . We can also digitize the same regions before
cleaning, or dirty regions having the same paint. These data form the
“dirty” image dataxi; i = 1; . . . ; N . Our aim is to find the color trans-
formations = f(x) from these sample data and, subsequently, apply
it to the entire image. Most image acquisition systems (e.g. scanner or
camera devices) produce RGB data values. However, the RGB color
space does not possess perceptional uniformity. That is, numeric color
differences between two colors do not accurately represent the per-
ceived color differences [2]. This fact indicates that other color spaces
might be more appropriate, at least for the purposes of color image
processing applications. TheCIELABcolor space exhibits good corre-
spondence between perceived and actual color differences and device
independence [3]. Therefore, we shall work in the CIELAB domain.

The rest of this paper is structured as follows. In Section II the math-
ematical foundation of the restoration methods is given. Experimental
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results are presented in Section III. Finally, some conclusions regarding
the overall restoration performance are presented in Section IV.

II. RESTORATIONAPPROACHES

We assume that a number of color painting patches have already been
cleaned. They should have uniform chromaticity and should be repre-
sentative of the painting colors. Finally, similar colors to the ones of
these clean samples should also exist in the dirty or oxidized parts of
the painting. Both the clean samplessi; i = 1; . . . ; N andxi; i =
1; . . . ; N are digitized. Little or no assumptions are made about the
painting surface degradation model. In the following, a model func-
tion f is derived for the inverse of the degradation process. It should be
clear that a limited number of patches will be utilized in order to ap-
proximate this phenomenon. Their numberN depends on the number
of the representative colors in the painting. The pixel color is denoted
by x = [x1 x2 x3]

T , wherex1; x2 andx3 correspond to theL�; a�

andb� CIELAB color space coordinates, respectively. IfN cleaned re-
gions are available,N corresponding regions from the oxidized part
of the image should be selected. Let the vectorsm̂s andm̂x , with
i = 1; . . . ; N , represent the sample mean of theith clean and oxidized
region, respectively. Furthermore, letm̂s andm̂x denote the3 � N

sample mean matrices of the clean and oxidized regions, respectively,
where

m̂s = [m̂s m̂s � � � m̂s ]

m̂x = [m̂x m̂x � � � m̂x ] (1)

and let�m̂ denote their differencêms � m̂x. For each degraded ob-
servationx, an estimatês = f(x) of the reference colors should be
obtained. Themean square error (MSE)will be utilized, which is de-
fined as follows:

MSE '
1

N

N

n=1

ksn � ŝnk
2 =

1

N

N

n=1

(sn � ŝn)
T (sn � ŝn) (2)

where the operatork � k denotes the Euclidean norm.

A. Sample Mean Matching

A straightforward approach can be formulated by classifying first
each pixelx of the oxidized region of the painting, to one of theN
color clustersm̂x . The color vectorx is classified to theith color
clusterm̂x , with i = 1; . . . ; N if kx � m̂x k < kx � m̂x k, for
all i 6= j. Subsequently, an estimates of the original color can be
formulated as

ŝ = x+�m̂i (3)

where�m̂i denotes theith column vector of�m̂. Although this ap-
proach is rather simple in terms of modeling the oxidation process, it
can perform adequately when the number of color samplesN is high.

B. Linear Approximation

Another choice for the approximation function is

f(x) = (A+ I)x (4)

whereI is the3� 3 identity matrix andA = [a1 a2 a3]
T is a3� 3

coefficient matrix. The displacement vectord = s�x can be expressed
as

d = Ax: (5)
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Fig. 1. (a) Clean and (b) oxidized region of the test image. Restoration performance results of the (c) sample mean matching, (d) linear approximation, (e) ICP
approximation, and (f) white point transformation methods.

The coefficient matrixA can be computed by polynomial regression
[3]

[f�m̂gi1 f�m̂gi2 � � � f�m̂giN ]T = m̂
T

x
ai: (6)

C. Iterative Closest Point Approximation

Theiterative closest point (ICP)algorithm is an efficient method for
the registration of two 3-D data sets [4]. Let us suppose that two 3-D
vector setsfxi : i = 1; . . . ; Ng, fsi : i = 1; . . . ; Ng are given, and
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TABLE I
MSE COMPARISON OF THE PRESENTED

METHODS

that each vectorxi corresponds to one vectorsi. The ICP algorithm
can be utilized to estimate one3 � 3 rotation matrixR and a3 � 1
displacement vectord, in order to provide an approximation function
f of the following form:

f(x) = Rx+ d: (7)

The number of operations required by the ICP algorithm can be high,
since computation cost is, approximately, of the orderO(N2). This
presents a serious problem, if the data set size is large. For this pur-
pose, fast implementations of the ICP algorithm can be implemented to
perform the matching. Morphological Voronoi tesselations have been
utilized to reduce the computational cost, which is associated with the
search for the closest point at each iteration [5].

It should be noted that ICP performance depends on the value of the
initial registration vector. It is quite probable that ICP may lead to a
local minimum.

D. White Point Transformation

Another approach is based on the fact that an object may look dif-
ferent, under different lighting conditions [2]. Assume that a clean
sample and its oxidized version are viewed under the same lighting
conditions. We assume that if we illuminate a clean samples with a
“brownish” light source we can obtain the dirty samplex. The light
source is characterized by its reference whitewXY Z . Thus, the dif-
ference in appearance can be attributed solely to the different white
point characteristics used by the color transformation required to ob-
tain CIELAB values. In the discussion that follows, vectors with the
index XYZ refer to CIEXYZ tristimulus values. LetsLAB denote a
vector of CIELAB values, which correspond to a clean sample, and let
xXY Z denote a vector that contains the tristimulus values of the corre-
sponding oxidized sample.

For the restoration, a white point vectorwXY Z should be deter-
mined which should yield an estimate of the clean sample, that is

ŝLAB = TfxXY Z ;wXYZg (8)

whereTf�; �g denotes the nonlinear transformation from CIEXYZ to
CIELAB. Given the sample mean vectorsm̂x of the oxidized sam-
ples, the error can be expressed as

e = m̂s � Tfm̂x ;wXY Zg: (9)

The instantaneous error functionE = tr(eT e) can be minimized with
respect towXY Z , to yield a solution for the white point vector, by

function minimization routines. Although this represents a sub-optimal
solution, it can yield satisfactory results, with little computational load.

White point transformation is extensively used in calibration prob-
lems [3]. Since the white point contains information about the spectral
qualities of an illuminant, it may model more accurately the degrada-
tion process, compared to the other methods presented in this paper.
Furthermore, only three parameters should be estimated, which can
lead to fast implementations, despite the fact that the transformation
Tf�; �g is nonlinear; lookup tables can be used for this purpose.

E. RBF Approximation

Radial basis functions networks have been used successfully as uni-
versal approximators [6], [7]. An arbitrary mappingf : Rp ) R can
be approximated as follows:

f(x) '

M

m=1

wm�(kx� tmk) (10)

wheref�(kx� tmk) j m = 1; . . . ;Mg is a set ofM arbitrary func-
tions, which are known asradial basis functions, with corresponding
centerstm and weightswm. Of course, if the unknown function is a
mapping of the formf : Rp ) Rq, (10) can be utilized to perform
approximation on each one of theq dimensions separately. For our pur-
poses, let�(�) denote the nonnormalized Gaussian function, i.e.,

�(kx� tmk) = g(x; tm;�
�1
m ) (11)

where ��1m represents the inverse covariance matrix of themth
Gaussian and

g(x; tm;�
�1
m ) = exp �

1

2
(x� tm)T��1m (x� tm) : (12)

Our goal, is the RBF approximation of the unknown functionf : R3 )
R3; s = f(x). The functionf can also be written as

f(x) = [f (1)(x) f (2)(x) f (3)(x)]T (13)

wheref (i); i = 1; 2; 3 is thei-th color component off . Thus

f (i)(x) '

M

m=1

w(i)
m g(x; t(i)m ;�(i)

m ): (14)

The parameters ofM Gaussian functions should be estimated, for each
one of the three color components. Estimation may be performed by a
steepest descent algorithm, in order to minimize the total squared error
[6]. If the data set sizeN is large, the computational requirements can
be greatly reduced, if the inverse covariance matrix�

(i)
m takes a diag-

onal form. If the computational cost is still high, the inverse covariance
matrix can be set equal to1=�(i)m

2
I, where1=�(i)m

2
is the variance of

themth Gaussian function for theith color component. However, these
simplifications may limit the overall network restoration performance.

III. SIMULATION RESULTS

The techniques presented in Section II were applied on ten dirty
and oxidized Byzantine paintings, in order to assess restoration
performance. A representative example is presented here. The use
of CIELAB acquisition devices (e.g. spectrophotometers) is not
recommended, since they are expensive and have limited spatial
resolution which may not be available. A high quality RGB camera
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was used for color acquisition. The camera was positioned to point
to the center of the painting. The illuminant light beam formed a 45�

angle with the painting surface. The experiment described here was
carried out on a painting whose right-hand half region was chemically
cleaned. Regions of the cleaned and oxidized parts are depicted in
Fig. 1. Five regions on each part were selected, with sizes ranging
from 5 � 5 to 16 � 16 points, depending on the uniformity of the
sample. CIEXYZ were obtained from the camera RGB values with
the use of a color transformation matrix which corresponds to a
reference white withX = Y = Z = 1 CIEXYZ tristimulus values
[8]. The choice of the specific matrix implicitly defines the illuminant
properties. Ten color patches used had size15 � 15 pixels, because
this number represented fairly well the painting gamut. Sample mean
values of each region were estimated and consequently utilized to
restore the oxidized image, with the methods described in Section
II. Restoration results are depicted in Fig. 1. Subjective evaluation
was performed on a number of gamma-corrected SGI workstations.
Six restoration experts with no visual impairments were asked to
evaluate similarity of the restored images, when compared to the
chemically cleaned one. The evaluation was rather easy since the
chemically restored right hand part and the digitally restored left
part of the painting could be viewed simultaneously. Hardcopies of
these images, from a Tektronix Phaser dye sublimation printer, were
also produced for comparison and were seen by the experts in the
same controlled room light conditions.Mean opinion scores (MOS)
indicated satisfactory performance, especially for the white point and
linear approximation methods, with the former slightly outperforming
the latter. Quantitative comparison was performed as well. An estimate
of the mean square errorE[(m̂s � m̂ŝ)

T (m̂s � m̂ŝ)] was used as
a quantitative criterion for assessing color restoration performance.
Results are summarized in Table I.

Subjective evaluation may seem at variance with the claim of good
perceptual uniformity of the CIELAB color space, since the RBF
method had the second best MSE and the worst perceived quality. This
is due to the fact that RBF exhibited good training and poor general-
ization capabilities. However, the figures of Table I do not reveal the
over-fitting characteristics of each method. Thus, the RBF networks
used approximated quite well the unknown restoration function at the
points of the data set, but could not interpolate satisfactorily. This is
not a shortcoming of RBF networks, but rather a consequence of the
small data set size used in real-life experiments. On the other hand,
white point transformation, and linear approximation yielded good
approximation and interpolation performance, due to the underlying
“smoothing” nature of each method. Additionally, computational
requirements of these two methods is low, in comparison to the RBF.
Although sample mean matching exhibited adequate performance
in a subset of the image set used, performance was not consistent.
This behavior is rather predictable: this approximation method is not
characterized by good generalization performance.

Finally, ICP approximation did not produce acceptable results, in
terms of visual quality. This should be attributed to the fact that oxi-
dation “moves” color vectors toward the origin (black color), which is
an operation that condenses the clean vector space. Since the ICP can
not account for scaling between the two vector sets, simulation results
were predictable.

The effectiveness of the presented methods, depended strongly on
the size of the data used, as well as the size of the color space region
they occupied. Of these two factors, the latter one is of the highest sig-
nificance. If the gamut covered by the available samples is very lim-
ited, poor restoration performance will be obtained, regardless of the
number of samples used. In particular, this is applicable to the case of
sample mean matching. On the other hand, white point transformation
is much less dependent on the samples gamut range.

IV. CONCLUSION

A number of digital restoration techniques that can be used to recover
the original appearance of old paintings, with little chemical processing
of the paintings' surfaces, were presented in this paper. Simulations per-
formed on a number of different paintings indicated that satisfactory
results can be obtained. The best techniques are the linear approxima-
tion and the white point transformation. In addition to the advantages
mentioned above, all examined methods have small computational re-
quirements. Therefore, they are useful tools to restoration experts and
to art historians.
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