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D. Computational Issues [13] F. Y. Shih and W.-T. Wong, “Fully parallel thinning with tolerance to

. . . boundary noise, Pattern Recognit.vol. 27, no. 12, pp. 1677-1695,
To compare the time performance, the algorithm has been imple- 1994, i ont PP

mented and tested on the SIMD parallel machines Connection Mgi4] R. Stefanelli and A. Rosenfeld, “Some parallel thinning algorithms for

chine CM-200 with 4096 one-bit processing elements (PE’s) [17] and  digital pictures,”J. ACM vol. 18, no. 2, pp. 255-264, 1971.

MasPar MPP 12 000 with 4 096 four-bit PE’s [18], the implementation 15] S. Suzuki and K. Ab_e, “Binary picture t_hinning by an iterative parallel
. S - . . two-subcycle operationPattern Recognitvol. 10, no. 3, pp. 297-307,

being as intuitively efficient as possible. The comparisons were made  qg7

against the best parallel implementations of the Zhang and Suen, Waigs] H. Tamura, “A comparison of line thinning algorithms from a digital

and Zhang, Chirt al,, and Holt and Stewart [7] which were available geometry viewpoint,” irProc. 4th Int. Conf. Pattern Recognitiph978,

to us at the moment we wrote this paper. The thinning algorithms were _ PP 7h15?—7|19- _ . el ik

tested on the 64 64 digtal pattens °,"“hideogram. A and “+* 17} Iechnea St Commecton Veching oge Ch2gg; T

The times, expressed in seconds, are shown in Table II. The analysis @] “Technical Summary, MasPar Machine Model MPP-12000,” Digital

the tables makes evident that the proposed two-subcycle algorithm and © Equipment Corporation, Maynard, MA, Ver. 1.0, Jan. 1992.

the Wang algorithm outperform the remaining. Nevertheless, the avi9] ESEF;-_Wangcand Y-tY- IZhSEgng, “A7fjft ?Zg fLaXibllegggnning algorithm,”

; ; ; ; rans. Computvol. 38, pp. —745, May .

tef::g\;/\e/a%(;ma?;(t)?it:ﬁg:(lgz)e" /o(/g-rl? g,{/lt_geog ':r?d(:);gf;) i:gol\:tahsr;;) I(:\r/]vzra:t]arbo] T.Y.Zhang and C. Y. Suen, “Afast parallel algorithm for thinning digital

: \ ] s ] patterns,"Commun. ACMvol. 27, no. 3, pp. 236-239, 1984.

ticular, we observe in our experiments that the number of iterations

required by the proposed algorithm is equal to about the half of the

maximum width of the input picture; a characteristic of the proposed

parallel algorithm which makes it near optimal.

V. CONCLUDING REMARKS A Fast Implementation of 3-D Binary Morphological

. - . , Transformations
In this paper, we have reported a new parallel thinning algorithm with

two subcycles, characterized by templates of dimension 3 x4 and 4 x 3 Nikos Nikopoulos and loannis Pitas

for the first subcycle, while a 3 x 3 template is used in the second. The

algorithm has been tested on different patterns and the results compared

with those obtained by applying other algorithms of analogous natureAbstract—This paper proposes a fast algorithm for implementing the

We achieve better results according to the degree of 8-connectedi@sé operation of Minkowski addition for the special case of binary three-

(perfect skeleton), accuracy, degree of erosion, stability under pattdffensional (3-D) images, using 3-D structuring elements of arbitrary size
. . s . d shape. The application of the proposed algorithm for all the other mor-

rotation, and boundary noise sensitivity. Timings taker_l on the CM-2QU,|ogical transformations is straightforward, as they can all be expressed

and MasPar MPP-12 000 also show the time complexity to be very lasterms of Minkowski addition. The efficiency of the algorithm is analyzed

for the proposed algorithm. and some experimental results of its application are presented. As shown,
the efficiency of the algorithm increases with the size of the structuring el-
ement.
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structuring elements of specific shape or size, although the use of struc-
turing elements of arbitrary size and shape can be very interesting in
several applications [4]. For large structuring elements, decomposition
in small structuring elements can be applied [3], [6], which is gener-
a_lly compu_tationally intensive. One_of the most in_teresting and effi- AOB={ceZVbeB,a—be A} @)
cient algorithms for the fast calculation on conventional computers of
the basic morphological operations for 2-D images is presented in [4].
However, that algorithm cannot be extended directly to 3-D images,
because chain coding has not an equivalent in three dimensions. = (A9 3 B)“. (8)

The present paper proposes a fast algorithm for implementing the
basic operation of Minkowski addition for the special case of binanyis well known that all morphological transformations, from the sim-
3-D images (volumes), using 3-D structuring elements of arbitrapfest (dilation, erosion, opening, closing) to the more complex ones, are
shape and size. Basically, it introduces a suitable modification of thased on Minkowski addition and Minkowski subtraction [1]. More-
approach [4] that enables its extension in the 3-D case. The use of thisr, as derived from (8), Minkowski subtraction can be reduced to
algorithm for all other morphological operations is straightforwardylinkowski addition. Therefore, in order to implement any morpholog-
as they can all be expressed in terms of Minkowski addition. Qaal transformation, it suffices to implement the Minkowski addition.
conventional computers, this algorithm can provide a substantialThe algorithm presented in the next section is based on the following
reduction of the execution time in comparison to the correspondiegsily proven theorem [4], which introduces an alternative way for cal-
time when the definition is used, even to less than the one twentiethcimating Minkowski addition.
case of large structuring elements. 1) Theorem: Let X be a subset oZ* andSurf(X) C X the set

In the following, the theoretical background of the proposed algof all surface points of{. Also, let B C Z* be an arbitrary struc-
rithm is presented first and the algorithm itself is described subgering element made of connected componens, B»,-- -, B,, and
guently. Its computational complexity is analyzed and some expefor eachi € [1;n] letd; be an arbitrary point included iB;. Then, the
mental results of its application are given. following relation holds:

={a+b:a€ Abe B} (6)

Il. THEORETICAL BACKGROUND X&B= U Xy, | U (Surf(X) B). 9)

In this section, we shall give first some notations and then we shall ieltin]

present a theorem on which the algorithm is based. In this paper, we ar@SSuming 26-connectivity in a 3 x 3 x 3 neighborhood, the set
concerned about binary 3-D images. A digital binary 3-D imagea 9w/ (X) practically includes all the voxels of that have at least
mapping defined on a certain domadh C Z* and taking its values ©ne nonfeature voxel (0-voxel) in their 26-neighborhood. The above

in {0;1} : theorem is an extension in the 3-D case of the corresponding theorem
for the 2-D case that is proved in [4]. This extension is mathematically
D, — {0;1} trivial since the proof is based on set theory. Specifically, it suffices
{ p — I(p) @ 1o changez® with Z* and the notion of contour with that of surface.

Therefore, the proof of the theorem was deliberately omitted.

whereZ® denotes thdigital 3D spaceandp denotes an arbitrary point
(voxel)belonging toD;. The definition domainD; of I is generally Il. A LGORITHM DESCRIPTION
an orthogonal parallilepid. In the framework of MM, we are interested

in the set of feature voxels (volume elements) of a binary 3-D imaggoIdition of a 3-D objeck with a 3-D structuring elemerit, based on
i.e. the voxels with value 1 (1-voxels), which is usually regarded as We assume that is stored in a 3-D imagé defined ir71 2 domain
point set (in the case of the set being transformed), or as a vector s¢et

: . : - Bi ina3D i ined i i
(in the case of thetructuring elemen{1]. A 3-D structuring element 7'(3-D array),B is stored in a 3-D imagé;; defined in a domain

o ; . . . D, and the outpuf{ & B is written in a 3-D imagd’ defined in a
fof:l;nsgmlarlcy ;E represented by a 3-D binary imdgedefined in a domainD;. The algorithm includes three steps: surface tracking and
Ip .

. - encoding, structuring element encoding, and output calculation. Each
Let B be a subset d*, considered as a vector set. We dernBtthe g 9 g P

JT . . .. step is described in detail subsequently.
transposed set dB, that is its symmetric set with respect to the origin P q y

O = (0,0) :

In this section, we introduce an algorithm for calculating Minkowski

A. Surface Tracking and Encoding

B={-b:be B} ) This step aims at finding the sgurf (X), that is the set of surface
voxels of X, and coding it in a way suitable for the output calculation

We denoteB, the translated of seB with respect to the vector €  Step. The proposed object surface coding is a novel one, specialized

73 - for this algorithm. The object surface is represented by voxel lists. We
assume thaburf (X) consists of.(X) different connected surfaces
B, ={b+x:b€ B} (3) 5.+ Sn(x)- The number of connected surfaces can be equal or
greater than the number of connected componenis, afepending on
We also denot&© the complement of seB: whether there are connected components with internal “holes” or not.

o 3 EachS;. i € [1;n(X)] is coded as a list aVs, structures, wheré/s,
B"={beZ :b¢ B} ) is the number of voxels belonging . Each structure corresponding
Let 4 andB be two subsets d&°. Their Minkowski additiondenoted to S; contains the position (coordinates) of the corresponding voxel
A B, and theiMinkowski subtractiondenotedd © B, are given by ps, ;. i € [1; Ng,] of S; and an array of links/;(ps; ;) € [1;26],
1 € [1;1(ps,,;)] to other voxels of; in its 26-neighborhood. The index
j ofthe voxels, ; denotes the order in which itis detected to belong to
ApB={zxeZ3eB.ax—bec A} (5) S: during the tracking of the connected surfétewhich is explained
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below in detaill(ps,, ;) denotes the number of links corresponding to  * {p:(B)}:cp1;n(m) - array of sizen(B) of arbitrary voxels (vec-
the voxelps, ;. Alinkis in fact the direction? € [1; 26] of movement tors), such thap;(B) € B;, Vi € [1;n(B)], whereB,; is the
from the current voxel to the voxel being linked. These links are a key respective connected componentif
point in achieving the efficiency of the algorithm. The following rules Tpe encoding of the structuring element is achieved with a similar
are employed. procedure as that of tracking and encoding thesef (X ). The differ-
« The first voxelps, 1 of eachS; is not linked from another voxel. €nce is thatwe do not discriminate between surface and internal voxels
« Each of the other voxelgs, ;, j € [2; Ns,] is linked from only and that, instead of forming the encoding.$irf (X'), we put each

one other voxel 0f;. 1-voxel encountered in array(B) and, if needed, in one of the arrays
« Each voxel can have links to more than one other voxels, or t(B). d € [1:26]. Also, we easily update the other elements of the
none. encoding during the scanning.

Surface tracking and encoding are achieved efficiently in onc? lculati
scanning of D;, by using a “burning” procedure to track each™ Output Calculation
connected surface and determine the links between its voxels an@utput calculation implements (9). We assume that is initial-
by utilizing proper labeling of 1-voxels to avoid repetitions in valugzed with zero values. Thus, we need only to set the 1-voxel3 of
checking. During the global scanning, if a 1-voxel is reached, theRirst, we form the set);c[1,.(sy X,,(s) by assigning the value 1 to
if it is an internal voxel it is labeled with a label 3, whereas, if it is ahe voxels ofD,, belonging to the sefl,c x Uici.n(sy (p+pi(B)).
surface voxel it is the first voxel of a new connected surface, which igext, we form the setSurf(X) @& B by propagatingB along the
subsequenly tracked using a “burning” procedure before continuingxels of Surf(X), which, as it is easily proven, is equivalent to
the global scanning from the first voxel of the tracked connectegtsigning the value 1 to the voxels @f;, belonging to the set
surface. During the “burning” procedure all the voxels of the curret,c;i.n(xy [Upeamy (ps,1 + p) + Ujelting,l  Yielnis, ;)]
connected surface are labeled with a label 2 to ensure that the @&Adz@si J.)(B)](PSZ-,J' + Edz(Psi » T p)]. As it is obvious from

surface voxel with value 1 that will be encountered during globghe |ast expression, we make use of the fact that, when propagating

scanning will belong to a new connected surface. B from a surface voxel to another surface voxel in its neighborhood,
The "burning” procedure that tracks a connected surface is achieygé need only to add the voxels of the setf ,(B), whered is the

via a FIFO stack filled with voxels belonging to it. The first voxel ofgirection (the link) from the first voxel to the second. This leads to

the connected surface is labeled with a label 2 and initializes the Ik extremely fast calculation 6furf(X) ¢ B. Considering also the

stack. We proceed by extracting voxels from the stack until it is empfyct that only the sefurf (X ) is used, instead of the entife, we can

(by the time we try to extract a voxel). For each voxel extracted froRye an idea of the efficiency of the presented algorithm.
the stack, we examine the 1-voxels in its 26-neighborhood: If we en-

counter a surface voxel with value 1, it is a voxel belonging to the same
connected surface that has not already been linked. Thus, we add a link IV. ALGORITHM ANALYSIS
to it from the current voxel extracted from the stack, we label it with
a label 2 and we put it in the FIFO stack; if we encounter an internal The efficiency of the above algorithm is the result of processing as
voxel with value 1, we label it with a label 3. When the stack is emptfew voxels as possible during each step of the algorithm, especially in
all the voxels of the current connected surface have been tracked #rgjoutput calculation step, as previously explained. Although the step
coded and the global scanning is continued. of surface tracking and encoding and the step of structuring element
At the end of this step, one optional further simple scanninfppf encoding (in case of structuring elements with large size) can require a
may be necessary in case the input 3-D imagghould be left un- significant percentage of the overall operations, the output calculation
changed. That s, all 1-voxels, which have been labeled during the figéep is very efficiently performed, in comparison to the number of op-
scanning, are restored to value 1. erations needed when implementing the Minkowski addition by using
its definition. The same stands for the case when we use the above
mentioned algorithm for implementing the dilation or erosion. Also,
B. Structuring Element Encoding since the time needed for the surface tracking and encoding step for a
specific 3-D image is constant, it is expected that the overall time of
In order to achieve efficient output calculation, an appropriate el three steps becomes comparatively much smaller as the size of the
coding of the structuring elemeft is also required. As it will be seen structuring element increases.

in the third step, it is important to find and keep the s#tsf ,(B) of In the following, the computational complexity is measured with the
the surface voxels aB in each directionl € [1; 26] given by number of accesses to a voxel of a 3-D image, either for examining its
Surf,(B) = {p € B: p+ ita & B) (10) value, or for assigning a new value (basic operations). From the above

description, we can easily show that an upper bound for the number of
basic operation®d s performed by the algorithm is (notincluding the
whereil, is the vector from a voxel to the voxel in its 26-neighborhoodteps of restoring the labeled 3-D images to their initial values)

in directiond. The encoding includes the following elements. Nio =N + (27 + n(B)) x N} + (26 + 5'(B)) x Ns + N/,

 n(B): the number of connected componentsof + (274 n(X)) x s(B) — n(X) x 5'(B) (11)

» s(B): the size ofB, i.e., the number of 1-voxels d8.

e {s5q4(B .26]: the size of the set§ B).

. f{g).);;e;rr‘:; of size(B) of all voxifaﬁéd(sle():tors) oBB whereN; is the(number of voxels of, N} is the number of 1-voxels
< . ) . AT n(X) oo . 2

e {44(B)}acpi2q: arrays of respective sizey(B) of the voxels Of £- Vs = 3= N, is the number of voxels ofurf (X), Ni,
(vectors) of the setSurf ,(B). is the number of voxels dfz, ands’(B) = max;c(1;,26) $:(B). The

« flags: avariable whose value is OFf does not contain its center, "Umber of basic operation$y, performed by a trivial implementa-

or, otherwise, the label (i.e. the number) of the connected corIr'1c-’n of Minkowski addition using its definition (6) is
ponent of B holding the center. Ngo = N1+ (Nr, +5(B)) x Nj (12)
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definition is used, even for a small structuring element of size 3 x 3
x 3. This fact reveals also the gain obtained by using the proposed al-
gorithm in an application where, e.g., a 3-D image needs to be dilated
successively by different small structuring elements; in such an appli-
cation, the surface tracking and encoding step, whose execution time
dominates over that of the output calculation step for small structuring
elements, needs to be performed only once at the beginning of the al-
gorithm.

V. CONCLUSION

In this paper, we presented a very efficient algorithm for the imple-
mentation of Minkowski addition for the special case of 3-D sets rep-
resented by binary 3-D images, using 3-D structuring elements. It can
easily be modified for the implementation of all the other morpholog-
ical transformations. The algorithm does not pose any restrictions on
the shape or the size of the structuring elements. The efficiency of the
algorithm was analyzed and some results of its application were pre-
sented. As it was made obvious, the efficiency of the algorithm is sig-
nificant for 3-D structuring elements larger than 5 x 5 x 5.

It is stated in the introduction that the presented algorithm is a suit-
able extension in the 3-D case of the algorithm presented in [4]. This ex-
tension was not trivial and required a new approach (novel surface and
structuring element encoding scheme and respective new structuring
element propagation rules). This approach is the contribution of this

0.8 \
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[2
(3]

0.2

E\e\

3x3x3 5x5x5 7x7x7 9x9§9 11st11x11 13x13x13 15x16x15 17x17x17 [4]

ize of

Fig. 1. (a) Execution times of the dilation of a 128 x 128 x 128 binary 3-D
image with structuring elements (SE) of different grid size. For every grid size, (6]
the SE is the union of three rhombuses having their center on the center of the
grid and their corners on the edges of the grid and being parallel texthez,

za planes respectively, : execution time using the presented algorithtin.

part oft; corresponding to the output calculation step otdy.execution time

using the definition of Minkowski addition (on a Silicon Graphics Indy MIPS
R4400 200 MHz workstation running IRIX 5.3) and (b) comparison between
the above execution times.

since we need to perform an entire scanning and, for every 1-voxel

of I, to scanlz and assign 1 at the appropriate voxel of the oufput
for each 1-voxel of 5. Usually, in (11) and (12) the terms related with
N} are the most significant. For structuring elements larger than 5 x 5
x5,itis27+ n(B) < N,, + s(B), which explains the efficiency of
the presented algorithm.

In Fig. 1, we graphically present some experimental results of the
application of the presented algorithm in the calculation of the dila-
tion of a 128 x 128 x 128 binary 3-D image with a structuring element
having nontrivial shape, for different structuring element grid sizes. We
compare the execution time of the proposed algorithm and of that using
the definition of Minkowski addition (6). As derived from the exper-
imental results, for a small structuring element of size 3 x 3 x 3 the
overall execution time is comparable for the two cases. The efficiency
of the algorithm is obvious for structuring elements of size 5 x 5 x 5 or
larger. Undoubtedly, the larger the structuring element, the greater the
gain if the present algorithm is used. The execution time of the output
calculation step only is much smaller than that of the case when the

\\ paper.
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