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D. Computational Issues

To compare the time performance, the algorithm has been imple-
mented and tested on the SIMD parallel machines Connection Ma-
chine CM-200 with 4096 one-bit processing elements (PE’s) [17] and
MasPar MPP 12 000 with 4 096 four-bit PE’s [18], the implementation
being as intuitively efficient as possible. The comparisons were made
against the best parallel implementations of the Zhang and Suen, Wang
and Zhang, Chinet al., and Holt and Stewart [7] which were available
to us at the moment we wrote this paper. The thinning algorithms were
tested on the 64 × 64 digital patterns “X,” “hideogram,” “A,” and “H.”
The times, expressed in seconds, are shown in Table II. The analysis of
the tables makes evident that the proposed two-subcycle algorithm and
the Wang algorithm outperform the remaining. Nevertheless, the av-
erage computation time (AT) of the proposed algorithm is lower than
the Wang algorithm (≈60% on CM-200 and≈85% on MasPar). In par-
ticular, we observe in our experiments that the number of iterations
required by the proposed algorithm is equal to about the half of the
maximum width of the input picture; a characteristic of the proposed
parallel algorithm which makes it near optimal.

V. CONCLUDING REMARKS

In this paper, we have reported a new parallel thinning algorithm with
two subcycles, characterized by templates of dimension 3 × 4 and 4 × 3
for the first subcycle, while a 3 × 3 template is used in the second. The
algorithm has been tested on different patterns and the results compared
with those obtained by applying other algorithms of analogous nature.
We achieve better results according to the degree of 8-connectedness
(perfect skeleton), accuracy, degree of erosion, stability under pattern
rotation, and boundary noise sensitivity. Timings taken on the CM-200
and MasPar MPP-12 000 also show the time complexity to be very low
for the proposed algorithm.
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A Fast Implementation of 3-D Binary Morphological
Transformations

Nikos Nikopoulos and Ioannis Pitas

Abstract—This paper proposes a fast algorithm for implementing the
basic operation of Minkowski addition for the special case of binary three-
dimensional (3-D) images, using 3-D structuring elements of arbitrary size
and shape. The application of the proposed algorithm for all the other mor-
phological transformations is straightforward, as they can all be expressed
in terms of Minkowski addition. The efficiency of the algorithm is analyzed
and some experimental results of its application are presented. As shown,
the efficiency of the algorithm increases with the size of the structuring el-
ement.

Index Terms—Fast algorithm, image processing, mathematical mor-
phology, 3-D binary morphological transformations.

I. INTRODUCTION

Over the last two decades, mathematical morphology (MM) has
proven itself as a powerful image processing and analysis tool [1], [2].
A plethora of successful applications of MM in different fields have
been presented in the bibliography. A problem arised from the early
stages of MM was the high computational complexity of the basic
morphological transformationsdilation anderosion[1]. This problem
has hindered the application of MM in three-dimensional (3-D) image
processing and analysis, which is very promising, since the basic
theory of MM is based on set theory and can be easily extended to
three and higher dimensions.

Many different techniques have been proposed for implementing the
basic morphological operations more efficiently than by using their
definition. Many of them involve the use of parallel computers or spe-
cialized hardware. Other techniques are restricted to two-dimensional
(2-D) images [4], [5]. Also, most techniques are applicable only for
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structuring elements of specific shape or size, although the use of struc-
turing elements of arbitrary size and shape can be very interesting in
several applications [4]. For large structuring elements, decomposition
in small structuring elements can be applied [3], [6], which is gener-
ally computationally intensive. One of the most interesting and effi-
cient algorithms for the fast calculation on conventional computers of
the basic morphological operations for 2-D images is presented in [4].
However, that algorithm cannot be extended directly to 3-D images,
because chain coding has not an equivalent in three dimensions.

The present paper proposes a fast algorithm for implementing the
basic operation of Minkowski addition for the special case of binary
3-D images (volumes), using 3-D structuring elements of arbitrary
shape and size. Basically, it introduces a suitable modification of the
approach [4] that enables its extension in the 3-D case. The use of this
algorithm for all other morphological operations is straightforward,
as they can all be expressed in terms of Minkowski addition. On
conventional computers, this algorithm can provide a substantial
reduction of the execution time in comparison to the corresponding
time when the definition is used, even to less than the one twentieth in
case of large structuring elements.

In the following, the theoretical background of the proposed algo-
rithm is presented first and the algorithm itself is described subse-
quently. Its computational complexity is analyzed and some experi-
mental results of its application are given.

II. THEORETICAL BACKGROUND

In this section, we shall give first some notations and then we shall
present a theorem on which the algorithm is based. In this paper, we are
concerned about binary 3-D images. A digital binary 3-D imageI is a
mapping defined on a certain domainDI � Z

3 and taking its values
in f0; 1g :

I
DI ! f0; 1g

p ! I(p)
(1)

whereZ3 denotes thedigital 3D spaceandp denotes an arbitrary point
(voxel)belonging toDI : The definition domainDI of I is generally
an orthogonal parallilepid. In the framework of MM, we are interested
in the set of feature voxels (volume elements) of a binary 3-D image,
i.e. the voxels with value 1 (1-voxels), which is usually regarded as a
point set (in the case of the set being transformed), or as a vector set
(in the case of thestructuring element) [1]. A 3-D structuring element
B can similarly be represented by a 3-D binary imageIB defined in a
domainDI � Z

3:

LetB be a subset ofZ3; considered as a vector set. We denote�B the
transposed set ofB; that is its symmetric set with respect to the origin
O = (0; 0) :

�B = f�b: b 2 Bg: (2)

We denoteBx the translated of setB with respect to the vectorx 2
Z

3 :

Bx = fb+ x : b 2 Bg: (3)

We also denoteBC the complement of setB:

B
C = fb 2 Z3 : b 62 Bg (4)

LetA andB be two subsets ofZ3: TheirMinkowski addition, denoted
A�B; and theirMinkowski subtraction, denotedA	B; are given by

A�B = fx 2 Z3: 9b 2 B; x� b 2 Ag (5)

= fa+ b: a 2 A; b 2 Bg (6)

A	B = fx 2 Z3: 8b 2 B; x� b 2 Ag (7)

= (AC �B)C : (8)

It is well known that all morphological transformations, from the sim-
plest (dilation, erosion, opening, closing) to the more complex ones, are
based on Minkowski addition and Minkowski subtraction [1]. More-
over, as derived from (8), Minkowski subtraction can be reduced to
Minkowski addition. Therefore, in order to implement any morpholog-
ical transformation, it suffices to implement the Minkowski addition.

The algorithm presented in the next section is based on the following
easily proven theorem [4], which introduces an alternative way for cal-
culating Minkowski addition.

1) Theorem: Let X be a subset ofZ3 andSurf (X) � X the set
of all surface points ofX: Also, letB � Z

3 be an arbitrary struc-
turing element made ofn connected componentsB1; B2; � � � ; Bn and
for eachi 2 [1;n] let bi be an arbitrary point included inBi: Then, the
following relation holds:

X �B =
i2[1;n]

Xb [ (Surf (X)�B): (9)

Assuming 26-connectivity in a 3 × 3 × 3 neighborhood, the set
Surf (X) practically includes all the voxels ofX that have at least
one nonfeature voxel (0-voxel) in their 26-neighborhood. The above
theorem is an extension in the 3-D case of the corresponding theorem
for the 2-D case that is proved in [4]. This extension is mathematically
trivial since the proof is based on set theory. Specifically, it suffices
to changeZ2 with Z3 and the notion of contour with that of surface.
Therefore, the proof of the theorem was deliberately omitted.

III. A LGORITHM DESCRIPTION

In this section, we introduce an algorithm for calculating Minkowski
addition of a 3-D objectX with a 3-D structuring elementB; based on
(9). We assume thatX is stored in a 3-D imageI defined in a domain
DI (3-D array),B is stored in a 3-D imageIB defined in a domain
DI and the outputX � B is written in a 3-D imageI 0 defined in a
domainDI : The algorithm includes three steps: surface tracking and
encoding, structuring element encoding, and output calculation. Each
step is described in detail subsequently.

A. Surface Tracking and Encoding

This step aims at finding the setSurf (X); that is the set of surface
voxels ofX; and coding it in a way suitable for the output calculation
step. The proposed object surface coding is a novel one, specialized
for this algorithm. The object surface is represented by voxel lists. We
assume thatSurf (X) consists ofn(X) different connected surfaces
S1; � � � ; Sn(X): The number of connected surfaces can be equal or
greater than the number of connected components ofX; depending on
whether there are connected components with internal “holes” or not.
EachSi; i 2 [1;n(X)] is coded as a list ofNS structures, whereNS

is the number of voxels belonging toSi: Each structure corresponding
to Si contains the position (coordinates) of the corresponding voxel
pS ;j ; j 2 [1;NS ] of Si and an array of linksdl(pS ;j) 2 [1; 26];
l 2 [1; l(pS ;j)] to other voxels ofSi in its 26-neighborhood. The index
j of the voxelpS ;j denotes the order in which it is detected to belong to
Si during the tracking of the connected surfaceSi; which is explained
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below in detail.l(pS ;j) denotes the number of links corresponding to
the voxelpS ;j : A link is in fact the directiond 2 [1; 26] of movement
from the current voxel to the voxel being linked. These links are a key
point in achieving the efficiency of the algorithm. The following rules
are employed.

• The first voxelpS ;1 of eachSi is not linked from another voxel.
• Each of the other voxelspS ;j ; j 2 [2;NS ] is linked from only

one other voxel ofSi:
• Each voxel can have links to more than one other voxels, or to

none.

Surface tracking and encoding are achieved efficiently in one
scanning ofDI ; by using a “burning” procedure to track each
connected surface and determine the links between its voxels and
by utilizing proper labeling of 1-voxels to avoid repetitions in value
checking. During the global scanning, if a 1-voxel is reached, then,
if it is an internal voxel it is labeled with a label 3, whereas, if it is a
surface voxel it is the first voxel of a new connected surface, which is
subsequenly tracked using a “burning” procedure before continuing
the global scanning from the first voxel of the tracked connected
surface. During the “burning” procedure all the voxels of the current
connected surface are labeled with a label 2 to ensure that the next
surface voxel with value 1 that will be encountered during global
scanning will belong to a new connected surface.

The “burning” procedure that tracks a connected surface is achieved
via a FIFO stack filled with voxels belonging to it. The first voxel of
the connected surface is labeled with a label 2 and initializes the FIFO
stack. We proceed by extracting voxels from the stack until it is empty
(by the time we try to extract a voxel). For each voxel extracted from
the stack, we examine the 1-voxels in its 26-neighborhood: If we en-
counter a surface voxel with value 1, it is a voxel belonging to the same
connected surface that has not already been linked. Thus, we add a link
to it from the current voxel extracted from the stack, we label it with
a label 2 and we put it in the FIFO stack; if we encounter an internal
voxel with value 1, we label it with a label 3. When the stack is empty,
all the voxels of the current connected surface have been tracked and
coded and the global scanning is continued.

At the end of this step, one optional further simple scanning ofDI

may be necessary in case the input 3-D imageI should be left un-
changed. That is, all 1-voxels, which have been labeled during the first
scanning, are restored to value 1.

B. Structuring Element Encoding

In order to achieve efficient output calculation, an appropriate en-
coding of the structuring elementB is also required. As it will be seen
in the third step, it is important to find and keep the setsSurf d(B) of
the surface voxels ofB in each directiond 2 [1; 26] given by

Surf d(B) = fp 2 B: p+ ~ud 62 Bg (10)

where~ud is the vector from a voxel to the voxel in its 26-neighborhood
in directiond: The encoding includes the following elements.

• n(B): the number of connected components ofB:

• s(B): the size ofB; i.e., the number of 1-voxels ofB:
• fsd(B)gd2[1;26]: the size of the setsSurf d(B):
• A(B): an array of sizes(B) of all voxels (vectors) ofB:
• fAd(B)gd2[1;26]: arrays of respective sizesd(B) of the voxels

(vectors) of the setsSurf d(B):
• flagB : a variable whose value is 0 ifB does not contain its center,

or, otherwise, the label (i.e. the number) of the connected com-
ponent ofB holding the center.

• fpi(B)gi2[1;n(B)]: array of sizen(B) of arbitrary voxels (vec-
tors), such thatpi(B) 2 Bi; 8i 2 [1;n(B)]; whereBi is the
respective connected component ofB:

The encoding of the structuring element is achieved with a similar
procedure as that of tracking and encoding the setSurf (X):The differ-
ence is that we do not discriminate between surface and internal voxels
and that, instead of forming the encoding ofSurf (X); we put each
1-voxel encountered in arrayA(B) and, if needed, in one of the arrays
Ad(B); d 2 [1; 26]: Also, we easily update the other elements of the
encoding during the scanning.

C. Output Calculation

Output calculation implements (9). We assume thatDI is initial-
ized with zero values. Thus, we need only to set the 1-voxels ofDI :

First, we form the set[i2[1;n(B)] Xp (B) by assigning the value 1 to
the voxels ofDI belonging to the set[p2X [i2[1;n(B)] (p+pi(B)):
Next, we form the setSurf (X) � B by propagatingB along the
voxels of Surf (X); which, as it is easily proven, is equivalent to
assigning the value 1 to the voxels ofDI belonging to the set
[i2[1;n(X)] [[p2A(B) (pS ;1 + p) + [j2[1;N ] [l2[1;l(p )]

[p2A (B)](pS ;j + ~ud (p ) + p)]: As it is obvious from

the last expression, we make use of the fact that, when propagating
B from a surface voxel to another surface voxel in its neighborhood,
we need only to add the voxels of the setSurf d(B); whered is the
direction (the link) from the first voxel to the second. This leads to
the extremely fast calculation ofSurf (X)� B: Considering also the
fact that only the setSurf (X) is used, instead of the entireX; we can
have an idea of the efficiency of the presented algorithm.

IV. A LGORITHM ANALYSIS

The efficiency of the above algorithm is the result of processing as
few voxels as possible during each step of the algorithm, especially in
the output calculation step, as previously explained. Although the step
of surface tracking and encoding and the step of structuring element
encoding (in case of structuring elements with large size) can require a
significant percentage of the overall operations, the output calculation
step is very efficiently performed, in comparison to the number of op-
erations needed when implementing the Minkowski addition by using
its definition. The same stands for the case when we use the above
mentioned algorithm for implementing the dilation or erosion. Also,
since the time needed for the surface tracking and encoding step for a
specific 3-D image is constant, it is expected that the overall time of
all three steps becomes comparatively much smaller as the size of the
structuring element increases.

In the following, the computational complexity is measured with the
number of accesses to a voxel of a 3-D image, either for examining its
value, or for assigning a new value (basic operations). From the above
description, we can easily show that an upper bound for the number of
basic operationsNBO performed by the algorithm is (not including the
steps of restoring the labeled 3-D images to their initial values)

NBO =NI + (27 + n(B))�N
1
I + (26 + s

0(B))�NS +NI

+ (27 + n(X))� s(B)� n(X)� s
0(B) (11)

whereNI is the number of voxels ofI; N1
I is the number of 1-voxels

of I; NS = n(X)
i=1 NS is the number of voxels ofSurf (X); NI

is the number of voxels ofIB ; ands0(B) = maxi2[1;26] si(B): The
number of basic operationsN 0

BO performed by a trivial implementa-
tion of Minkowski addition using its definition (6) is

N
0

BO = NI + (NI + s(B))�N
1
I (12)
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(a)

(b)

Fig. 1. (a) Execution times of the dilation of a 128 × 128 × 128 binary 3-D
image with structuring elements (SE) of different grid size. For every grid size,
the SE is the union of three rhombuses having their center on the center of the
grid and their corners on the edges of the grid and being parallel to thexy; yz;

zx planes respectively.t : execution time using the presented algorithm.t :
part oft corresponding to the output calculation step only.t : execution time
using the definition of Minkowski addition (on a Silicon Graphics Indy MIPS
R4400 200 MHz workstation running IRIX 5.3) and (b) comparison between
the above execution times.

since we need to perform an entire scanning ofI and, for every 1-voxel
of I; to scanIB and assign 1 at the appropriate voxel of the outputI 0

for each 1-voxel ofIB : Usually, in (11) and (12) the terms related with
N1

I are the most significant. For structuring elements larger than 5 × 5
× 5, it is27+ n(B)� NI + s(B); which explains the efficiency of
the presented algorithm.

In Fig. 1, we graphically present some experimental results of the
application of the presented algorithm in the calculation of the dila-
tion of a 128 × 128 × 128 binary 3-D image with a structuring element
having nontrivial shape, for different structuring element grid sizes. We
compare the execution time of the proposed algorithm and of that using
the definition of Minkowski addition (6). As derived from the exper-
imental results, for a small structuring element of size 3 × 3 × 3 the
overall execution time is comparable for the two cases. The efficiency
of the algorithm is obvious for structuring elements of size 5 × 5 × 5 or
larger. Undoubtedly, the larger the structuring element, the greater the
gain if the present algorithm is used. The execution time of the output
calculation step only is much smaller than that of the case when the

definition is used, even for a small structuring element of size 3 × 3
× 3. This fact reveals also the gain obtained by using the proposed al-
gorithm in an application where, e.g., a 3-D image needs to be dilated
successively by different small structuring elements; in such an appli-
cation, the surface tracking and encoding step, whose execution time
dominates over that of the output calculation step for small structuring
elements, needs to be performed only once at the beginning of the al-
gorithm.

V. CONCLUSION

In this paper, we presented a very efficient algorithm for the imple-
mentation of Minkowski addition for the special case of 3-D sets rep-
resented by binary 3-D images, using 3-D structuring elements. It can
easily be modified for the implementation of all the other morpholog-
ical transformations. The algorithm does not pose any restrictions on
the shape or the size of the structuring elements. The efficiency of the
algorithm was analyzed and some results of its application were pre-
sented. As it was made obvious, the efficiency of the algorithm is sig-
nificant for 3-D structuring elements larger than 5 × 5 × 5.

It is stated in the introduction that the presented algorithm is a suit-
able extension in the 3-D case of the algorithm presented in [4]. This ex-
tension was not trivial and required a new approach (novel surface and
structuring element encoding scheme and respective new structuring
element propagation rules). This approach is the contribution of this
paper.
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