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Abstract

This manuscript introduces a novel system for content-based identification of image

replicas. The proposed approach utilizes image resemblance for deciding whether a

test image has been replicated from a certain original or not. We formulate replica

detection as a classification problem and show that we can optimize efficiency on

a per query basis by dynamically solving a reduced mutliclass problem. In this

perspective, we investigate the effective coupling of multidimensional indexing and

machine learning approaches for achieving replica detection through the training

of classifiers with distortions expected in a replica. Visual descriptors are indexed

using an R-tree based multidimensional structure for fast image retrieval. Cases un-

successfully handled by the R-tree are resolved by a multiclass classifier operating

on the transformed feature space that results from the application of Linear Dis-

criminant Analysis (LDA) and Principal Component Analysis (PCA). Experimental

results shows that the proposed system can identify replicas with high accuracy and

facilitate a wide range of applications such as copyright protection, content-based

monitoring, content-aware multimedia management, etc.
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hashing, fingerprinting, copyright protection, content-based monitoring, linear

discriminant analysis (LDA), R-tree indexing.

1 Introduction

Recent technological advances in the area of multimedia content distribution

have resulted in a major reorganization of this trade. Valuable digital art-

works can be reproduced and distributed arbitrarily, sometimes without any

control by their owners. The identification of replicated data is considered an

important issue for a number of applications such as copyright infringement,

digital rights management, multimedia management using content-aware net-

works, aired content monitoring and filtering (e.g., tracking of child pornog-

raphy content), etc. Among the various types of multimedia content, images

are a particularly valuable asset and will be the focus of this manuscript.

The approaches that have been proposed for robust image identification are

watermarking and, recently, image replica detection algorithms.

Watermarking is the technique of imperceptibly embedding information within

the host image content [1]. Although watermarking has attracted considerable

interest from both industry and academia, it bears certain deficiencies that

pose limitations on its use. The requirement of embedding information in a

digital image before it is made public, automatically excludes images that are

already in the public domain and need to be copyright protected. Another
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inherent watermarking drawback is the fact that it is an active technique

i.e., it modifies the content of the images to be protected. Although these

modifications are in general invisible, they do exist and might create problems

in certain content categories like medical images, where quality requirements

are extremely high.

In order to overcome these inherent watermarking deficiencies, the scientific

community started to investigate robust image identification from a content-

based perspective. Replica detection, also referred as replica recognition, near-

replica detection, perceptual or robust hashing [2], content-based copy detec-

tion [3], and multimedia fingerprinting aims at identifying all images that

have been reproduced from a source original through the application of in-

tentional or unintentional manipulations. It is based on image similarity and

relies on the assumption that images shares plenty of information with their

replicas and yet contains enough information to be discriminated from any

other non-replica image. The type and severity of manipulations that should

be successfully handled by a replica detection system depend on the target

application.

The major benefit of such an approach stems from the fact that no additional

information should be embedded within the image content, thus eliminating

the invisibility constraint inherent to watermarking systems. On the other

hand, the fact that the response speed and efficiency of a replica detection

scheme is largely affected by the size of the original/reference image dataset,

can be considered as the disadvantage of such an approach. All the above

make replica detection an important alternative to watermarking that found

applications on many types of multimedia data, such as video [4], [3] and

audio [5]. Although the problem formulation as described above, bears many
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similarities with content based image retrieval (CBIR), certain differences do

exist, that are detailed in Section 2.

Image replica detection research is still in its early stages, thus only few works

addressing tasks identical or slightly different to the one addressed in this

manuscript can be found in the literature. In order to tackle the replica de-

tection problem, existing works aim at a) optimizing the distance function

quantifying the perceptual similarity between two images [6], [7], b) extract-

ing highly representative and informative features for discriminating between

replicas and non-replicas [8],[9], or c) using machine learning techniques and

approaching the problem as a classification task [10], [11], [12].

In the first case, Qamra et al [6] present an enhanced perceptual distance

function (DPF) which adaptively chooses a different set of features according

to their discriminative power. The benefit of this approach is that unlike other

schemes that select that same features for all the images, DPF dynamically

activate features (with minimum difference) in a pair-wise fashion. In the same

direction Kim [7] use the ordinal measure of DCT coefficients as the feature

to represent images and the ordinal measures of AC coefficients for measuring

distance similarity. A scheme for the optimal selection of a similarity threshold,

based on the maximum a posteriori (MAP) criterion, is used to enhance the

efficiency of the employed distance function.

Concerning methods that focus on robust features extraction, Ke et al [9] use

PCA-SIFT [13], a local descriptor that has been shown to be more discrim-

inative and compact than the original SIFT[14], and features several charac-

teristics that are ideal for solving the image replica detection problem. Roy

and Chang [8] on the other hand, focus on finding a feature space where any
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two images in the database are well separated from each other and avoid any

undesired overlaps. More precisely, the original images are slightly modified in

order to increase their mutual separation within the feature space, while tak-

ing care that the perceptual difference between the original and the modified

image is kept to a minimum.

Finally, in the group of methods that approach the problem as a classifica-

tion task, Maret et al [10] propose a method where binary classifiers based

on Support Vector Machines are constructed for each original image and are

independently applied to decide whether a query image is a replica or not. A

variation of this system is described in [11] where indexing is used to perform

a coarse and rapid selection of the most likely originals and reduce the number

of classifiers that need to be applied. In a more recent work [12] the authors

improve their method by trying to estimate and efficiently describe the par-

tition of the image space that contains the replicas of a particular original

image.

Even though the systems introduced in the aforementioned papers are trying

to tackle the same replica detection problem, the proposed solutions, except

from the ones proposed in [10], [11],[12], rely mainly on the discriminative

power of the extracted features and the effectiveness of the employed distance

function. Thus, no particular attention is paid to the fact that having many

similarities with a classification problem, image replica detection might benefit

from the use of appropriately trained classifiers. In our work we try to take

advantage of this fact by searching for an optimal space where the projection

of visual features will enable the construction of more discriminant classifiers.

The proposed system operates upon a database of stored originals. Its novelty

stems from the fact that image similarity is dealt as a classification problem
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that employs a training scheme and a suitable feature space transformation in

order to increase the system robustness. It generates training images based on

the types of attacks that the system is designed to cope with, and during the

classification process it uses class statistic information to achieve maximum

separability between classes.

More specifically, each image is represented by a feature vector and a mul-

tidimensional indexing structure based on R-trees [15] is used for indexing

these vectors. The ”hyper-bounding boxes” employed by the R-tree are se-

lected using an attack-oriented training strategy that aims at modeling all

potential attacks that the system is designed to encounter. The structure re-

turns a relatively small set of images (ideally one) that are candidates for

being the original of the query image. In order to resolve cases where more

than one candidates are returned by the R-tree we introduce the dynamic use

of discriminant techniques. Each candidate original and its modified copies

are assumed to form a class. Linear Discriminant Analysis (LDA) [16] is ap-

plied in order to yield more discriminant image representations taking into

account class information. The resulting representations are expected to be

more easily separable, since the reduced number of classes involved facilitates

the estimation of a class-discriminant projection space. A classification func-

tion is subsequently applied on the projection space for selecting the image

corresponding to the original version of the query one, if such an image in-

deed exists. It must be noted that the manuscript is a largely extended and

improved version of [17] where the proposed approach was initially presented.

The rest of the manuscript is organized as follows. Section 2 provides a solid

definition of image replica detection and outlines its particularities with re-

spect to image retrieval systems. The proposed image replica detection system
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is described in Section 3. Section 4 describes the experiments conducted and

summarizes the performance evaluation results. Concluding remarks are drawn

in Section 5.

2 Problem Formulation

2.1 Image Replica Detection vs Content Based Image Retrieval

The goal of a query by example content based image retrieval system (CBIR)

is to return a set of database images that are related to the query image in a

broad sense of similarity [18]. On the other hand, an image replica detection

system (RDS) should retrieve a database image only if the query image is a

replica of this image, otherwise no image should be retrieved. Thus, the notion

of similarity in an RDS is considerably different than similarity in the sense

of general purpose CBIR. An RDS should be robust to malicious image ma-

nipulations and resilient to security attacks whereas such a requirement does

not generally apply to a CBIR system. Security attacks, either try to forge a

database image and cripple the system’s reliability, or produce false negatives

by exploiting information concerning specific attributes of the feature extrac-

tion algorithm. Moreover, unlike typical CBIR applications, retrieval of more

than one image is usually unacceptable for an RDS. Our intention is to briefly

review the techniques utilized in the field of CBIR and focus on the ones that

most coherently satisfy the aforementioned requirements. Afterwards we will

proceed with the enhancements introduced in this work for coping with issues

that are specific to RDS.

Let I and Iq denote an original and a query image respectively. The origi-
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nal images constitute the Original Image Set (database) SI . Additionally, we

define a result set SR corresponding to the images retrieved by the system

when queried with a specific image. The functionality of a CBIR system can

be formulated by the following function:

Q(SI , Iq) = SR, 0 < |SR| ≤ |SI |, (1)

where Q(SI , Iq) denotes querying SI with Iq. The cardinality |SR| depends on

the system settings and usually contains a specific number of images |SR| <<

|SI |, possibly sorted according to their visual resemblance with Iq. On the

other hand, the functionality of a replica detection system can be expressed

by the following function:

Q(SI , Iq) =





I, if Iq = R(I), I ∈ SI

∅, otherwise

(2)

where R(.) is an allowable replica generator function, i.e., a function producing

attacked images such as compressed, scaled, cropped, etc. Although common

techniques are utilized in both cases there are differences between their oper-

ational models, to be detailed subsequently.

2.2 Operational Models of Image Replica Detection and Image Retrieval Sys-

tems

Some of the elements that are typical to CBIR and are also fundamental for

RDS are a suitable a) Image Representation, where an image I is represented
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by a feature vector xI that is ideally of small dimension and retains all or most

of the original image significant information, b) Similarity Metric D(xI1 ,xI2),

that evaluates the resemblance between two images by measuring the distance

of their feature vectors xI1 and xI2 and c) decision strategy which sets the

rules by which the result set is selected. A few details regarding the decision

strategies that are most widely used in CBIR systems will help us identify the

one that most consistently adhere to RDS requirements.

Nearest Neighbor is the decision strategy used by a system attempting to an-

swer the question “which of the images included in the database resembles

most the query one”. According to Nearest Neighbor the system retrieves the

images that are found to be closer to the query, with respect to a specific

similarity metric. Returning an empty result set can only be made feasible by

imposing a dissimilarity threshold on the results. On the other hand, Range

query is a different strategy that incorporates a threshold on the level of sim-

ilarity between images, instead of specifying the cardinality of the result set.

Range queries can be envisaged as defining feature space neighborhoods N(I)

surrounding the feature vector of each image, thus answering the question

“which images resemble the query image up to a specified degree”. The shape

of the neighborhood is determined by the similarity metric and can be a a

hyper-parallelepiped (L1 norm), a hyper-sphere (L2 norm) or a hyper-ellipse

(Mahalanobis distance). The result set cardinality |SR| may vary since the

query image is likely to reside in more than one image neighborhoods. SR

might also be an empty set.

In the trivial case, the functionality requirements of an RDS are identical to

those of a range query based CBIR. However their difference, apart from se-

lecting the feature extraction method that best serves the purpose of each
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application, is in the way we define the image neighborhoods in the feature

space. In the case of image retrieval, similarity has ideally a semantic dimen-

sion and such a system should be able to retrieve images that depict conceptu-

ally similar scenes or objects as those included in the query image. In practice,

we define the feature space neighborhood NIR(I) of an image I on the ground

of any visual similarity scheme (e.g., color similarity, contour similarity), and

operate under the assumption that there is visual similarity between seman-

tically adjacent images. In the case of an RDS the images that are considered

similar to a certain image are only those that have resulted from this image

through some manipulation. As a consequence, the feature space neighbor-

hood NRD(I) of an image I should be ideally defined in such a way so that

R(I) ∈ NRD(I), where R(.) is a function generating all manipulated versions

of I.

Obviously, the different notion of similarity between an RDS and a CBIR

system, introduces new issues that can not be confronted efficiently by simply

selecting a robust feature extracting scheme and a more “tight” neighborhood

in a range query decision strategy. Learning techniques, that employ training

for finding optimal neighborhoods, and classification approaches, that make

dynamic use of discriminant techniques to achieve better class discrimination,

are the solutions introduced in this work for tackling these issues.
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3 Proposed Replica Detection System

3.1 System Overview

The process of engineering the proposed system can be separated into two

phases. The first deals with the database organization. Each time a new im-

age is added into the database it is subjected to a series of predefined ma-

nipulations. These manipulations are selected according to the system spec-

ifications and simulate all types of attacks that we wish the system to be

able to withstand. Feature vectors are extracted from each attacked version

resulting in a matrix (from here on called the training matrix Tr) consisting

of the feature vectors of the training replicas. The training matrix is used for

calculating an extent vector that is associated with the newly added original

image. Afterwards, the feature vector of the new image is indexed within a

multidimensional structure using the extent vector to set its neighborhood

boundaries for each dimension. The formulated hyper-rectangle corresponds

to the feature space neighborhood of I that will be used for range search. A

graphical representation of the database organization is depicted in Fig. 1.

The second phase implements the actual replica detection functionality, once

the database has been organized. An arbitrary image is submitted as a query

to the indexing structure and a set of candidate originals or an empty set

is returned. In order to select one of the competing candidates their feature

vectors are projected into a different space, that is determined by dynamically

applying LDA preceded by PCA. This is achieved by treating each candidate

original and its training replicas as a separate class. Finally, the system picks

the neighborhood (candidate original) whose center is closest to the query
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Fig. 1. Populating the image replica detection system: Training is employed for every

new original image. All images are indexed within an R-tree structured database.
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Fig. 2. Querying the image replica detection system: R-tree traversal produces a

number of candidate image classes. LDA generates a more discriminant feature

space where the classification function picks the source original image.

image in the projected space (see Section 3.5. If the query image is found to

reside outside the neighborhoods of the candidate originals the result is an

empty set. The way the queries are handled is demonstrated in Fig. 2.

3.2 Feature Extraction

Various feature extraction approaches have been proposed in the literature

each one carrying different advantages and disadvantages. Important advan-

tages include low dimensionality and computational cost, high discrimination

i.e., ability to distinguish between images that although share many visual

characteristics they depict different scenes/objects, and robustness i.e., ability

to extract very similar feature vectors for images that have been generated
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from the same original image using manipulations. Moreover, the particulari-

ties of the proposed scheme, outlined in Section 3.1, pose two additional con-

straints that limit the range of applicable feature extraction methods. Specif-

ically, the method should be able to describe an image using a unique, fixed

length vector of scalar values and estimate image similarity by calculating the

distance between the corresponding vectors. Other types of descriptors such

as, local descriptors combined with voting schemes that assess image similarity

by counting the number of point to point matches, are not readily “compati-

ble” with the proposed approach. Thus, a visual descriptor that would be ideal

for the proposed replica detection system should be discriminate, robust, of

low computational complexity and dimensionality and global in the sense that

a single vector should be enough to represent the image.

For the purposes of the proposed system we have investigated the suitabil-

ity of histogram-based color descriptors, tested [19] against common attacks

(i.e., cropping, compression, smoothing, rotation, additive noise and lumi-

nance change) in a replica detection setting. Moreover, we have investigated

the histogram-based descriptors provided by MPEG-7 standard and discussed

in [20] and [21]. These descriptors capture different aspects of color, texture

and shape, and have been widely used in a number of applications. The rea-

son for primarily investigating histogram-based descriptors is because they

satisfy most of the aforementioned requirements. Histogram-based descriptors

are known to be robust against a number of attacks (i.e., geometric trans-

formations, compression, filtering, etc), they are global, they have a relatively

low number of dimensions and their extraction is usually of low computational

cost. Details of the investigated descriptors are provided subsequently.

The normalized histogram of colors quantized according to the Macbeth Color
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checker chart [22] was found in [19] to outperform all other descriptors that

have been tested. The image colors were quantized to the 24 colors of the

Macbeth chart by assigning to each pixel the closest (in the Euclidean dis-

tance sense) chart color. Once the image colors have been quantized the 24-

dimensional descriptor that will be referred to as ColorHistogram is extracted

using the following equation:

HIi
=

NIi

NI

, i = 1 . . . Cp (3)

where NIi
is the number of pixels with color i, NI is the total number of pixels

in the Image I and Cp is the number of colors in the palette.

ColorLayout (CL) [23] is a compact descriptor that captures the spatial layout

of the dominant colors on a grid. An input image is divided into 64 (8 × 8)

blocks and their average colors are derived. These colors are transformed into

a series of coefficients by performing 8 × 8 DCT. The descriptor is extracted

by performing zigzag scanning and selecting a few low-frequency coefficients.

CL operates on the YCbCr color space and yields a resolution independent

18-dimensional representation of the image.

ColorStructure (CS) [24] aims at identifying localized color distributions using

an 8×8 structuring element. It counts the number of times a particular color is

contained within the structuring element as the structuring element scans the

image. It is defined using four different color quantization options with 184,

120, 64, and 32 bins. Each bin of the resulting histogram hm represents the

number of locations at which a pixel with color cm falls inside the structuring

element. The bin values are normalized by the number of locations of the
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structuring element and lie in the range [0.0, 1.0]. In our experimental study

we have tested the 32-dimensional version of CS descriptor.

ScalableColor (SC) [24] consists of a normalized histogram that does not take

any spatial information into account. It is initially computed in the Hue Satu-

ration Value (HSV) color space according to a uniform quantization (16 levels

in H, 4 levels in S and V) and subsequently converted through a Haar trans-

form in a 4-bit per bin representation, assigning higher significance to small

values. The resulting space is 256-dimensional and can be further reduced to

half by summing all pairs of adjacent vector elements. Despite the fact that

performing this process iteratively, histograms of 128, 64, 32 and 16 dimen-

sions can be obtained, we decided to use the 128-dimensional feature vector

for our experiments.

EdgeHistogram [25] represents the local distribution of edges in an image. The

image is first subdivided into sub-images and local edge histograms for each of

these sub-images is computed. Edges are broadly grouped into five categories:

vertical, horizontal, 45 diagonal, 135 diagonal, and isotropic (nonorientation

specific). Thus, each local histogram has five bins corresponding to the above

five categories. By partitioning the image into 16 sub-images we get a 80-

dimensional descriptor. For the purposes of our work the Canny algorithm

[26] was employed for performing edge detection.

HomogeneousTexture [27] is based on the use of Gabor filters and provides a

quantitative characterization of image texture. It is computed by first filtering

the image with a bank of orientation and scale sensitive filters and calculating

the mean and standard deviation of the filtered outputs in the frequency

domain. It exhibits scale and rotation invariance and the resulting feature
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space consists of 62 dimensions.

Finally, we have generated a 208-dimensional descriptor, named ScalableCol-

orEdgeHistogram (SCEH), by concatenating the 128-dimensional version of

ScalableColor with EdgeHistogram. The reason for testing this descriptor was

to evaluate the performance of a feature extraction approach mixing different

elements of perception.

3.3 Indexing Multidimensional Feature Vectors

Multidimensional indexing structures have been widely used for performing

fast search in large scale datasets. These structures can be classified in two

categories [28]. The first includes the so-called space partitioning methods,

which are based on kd-trees [29] and have been shown to perform well for point

data. These methods aim at automatically generating an optimal partitioning

of the entire multidimensional space yielding mutually disjoint sub-partitions.

The second category includes the data partitioning methods, which are based

on R-trees [15] and have been shown to perform well for hyper-rectangular

data. Data partitioning methods do not subdivide the entire space but evaluate

and store (possibly overlapping) hyper-rectangles that enclose the data to be

partitioned. From the overview of the proposed scheme (Section 3.1) it is

evident that data partitioning methods are more appropriate for constructing

customly-defined hyper-neighborhoods, determined using training data. An

experimental verification of this fact is provided in Section 4.3.2.

An R-tree [15] is a height-balanced tree with index records in its leaf nodes

(containing pointers to data objects). Typically, R-trees index spatial objects
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using their Bounding Boxes (BBs). When a query is submitted the R-tree re-

turns all records with BBs enclosing the query. In our case, since each image is

represented by a d-dimensional feature vector, an R-tree structure can be con-

structed by associating a hyper-BB with each original image in the database.

Selecting optimal hyper-BBs is crucial for the performance of the proposed

replica detection system. Indeed, if the hyper-BBs are too large many of them

overlap resulting in the retrieval of a large number of candidate originals and

rendering the subsequent application of linear discriminant techniques ineffec-

tive. On the other hand, if the hyper-BBs are too small a replica is likely to

fall outside the hyper-BB of its original image and will not be included in the

response. Therefore, we employ training to define the size of the corresponding

hyper-BB for each original image.

As already mentioned in Section 3.1 hyper-BBs are defined using an extent

vector. In order to determine the extent vector for each original image I, we

use the corresponding training matrix TI
r that contains the feature vectors ex-

tracted from the training replicas of I. More specifically, if xIk
r = [xIk

r,1, . . . , x
Ik
r,d]

is the feature vector of the r-th training replica of the original image Ik, the

hyper-BB for this image is defined by the vector cIk = [cIk
1 , . . . , cIk

d ] which

controls its extent for each dimension and is calculated as follows:

cIk
i = max

r
|xIk

r,i − xIk
i |, i = 1, . . . , d (4)

where xIk = [xIk
1 , . . . , xIk

d ] is the feature vector of the original image Ik. The

values that determine the boundaries for each dimension i are calculated by:
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BEIk
−,i = xIk

i − cIk
i , BEIk

+,i = xIk
i + cIk

i i = 1, . . . , d (5)

The goal of this procedure is to find a hyper-rectangle that encloses the feature

vectors of all training replicas. The feature vector of a replica generated by a

manipulation less severe than those used to build the R-Tree is expected to

be enclosed in the BB associated to its original.

An inherent drawback of R-tree based methods is the so-called dimensional-

ity curse which states that the computational gains in retrieval performance

degrades exponentially as a function of dimensionality. For this purpose, we re-

duce the dimensionality of the original feature space by projecting the initial

feature vectors (described in Section 3.2) on a fixed PCA (Principal Com-

ponent Analysis) basis. We pre-calculate this basis by finding the principal

components of the data space formed by the feature vectors corresponding

to the total amount of database images and their training replicas. Given the

large amount of samples, PCA manage to robustly detect the existing patterns

in data and reduce the dimensionality of the indexed feature vectors without

loosing much of the significant information. For the purposes of our work we

reduce the feature space dimensionality to 24 dimensions in all cases, except

for the ColorHistogram and ColorLayout descriptors that were left to their

original 24 and 18 dimensions respectively. Concerning the R-tree branching

factor, we have used M = 8 and m = 4, as the maximum and minimum

number of allowed entries (i.e., children) in a node.
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3.4 Achieving better class separability using Linear Discriminant Analysis

The fact that the R-tree may return more than one candidate images does

not allow the system to decide unambiguously on the true original image.

In such cases, in order to obtain a single result we propose the use of Lin-

ear Discriminant Analysis (LDA) [16] preceded by PCA. In the context of

the proposed replica detection system PCA-LDA is applied as follows. Let

I = {I1, I2, . . . , IK} be the set of images returned by the R-tree. Considering

that each image Ii and its training replicas define a class Ci, a set of classes

C = {C1, C2, . . . , CK} is dynamically formed every time a query is submitted.

PCA is employed to find the principal components of the data space formed by

the feature vectors corresponding to the images in I and their training repli-

cas. These components are used to reduce the dimensionality of the initial

feature vectors described in Section 3.2. Fishers discriminant criterion [30] is

subsequently employed to define a new feature space that ensures better class

separability between the classes of C than the original feature space.

The result of this analysis is a linear transformation matrix Wo that is used

to project the initial feature vectors to the new feature space. Since PCA-

LDA is applied after the R-tree traversal the number of classes is not known

in advance. Thus, a new matrix Wo has to be calculated every time a new

query is submitted to the system, each time resulting in a different projection

space. Although applying PCA-LDA on the fly may seem to hinder the process

from the viewpoint of computational efficiency, it is necessary for allowing

the proposed framework to achieve the best possible discrimination between

the candidate classes and optimize replica detection on a per query basis.

Moreover, as will be demonstrated in Section 4.3.7, the computational cost
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introduced by applying PCA-LDA prior to classification is marginal.

The reason for employing PCA prior to LDA is to maximize the discrimination

power of the final feature space. In pattern recognition problems (especially

in object and face recognition problems) PCA has been combined with LDA

in several cases. The motivation for combining PCA with LDA was initially

the singularity of the within class scatter matrix due to the Small Sample Size

(SSS) problems that occur when the number of the training samples is smaller

than the dimensionality of the samples [31], [32]. Theoretical work has been

developed which proves that the PCA step is necessary in order to train LDA in

SSS problems [33], [31], [32]. However, it has been also verified that by rejecting

some dimensions that correspond to the eigenvectors of the total scatter matrix

with small (in magnitude) eigenvalues (and not only the necessary ones so that

the within scatter matrix is invertible) the classification performance of LDA is

increased [34], [35]. One such approach has been introduced in [34], [36] as the

Enhanced Fisher’s Linear Discriminant (EFLD) method. EFLD aims to seek

a proper number of PCA components that balance between the need to keep

enough spectral energy of raw data and the requirement that the eigenvalues

of within-class scatter in the reduced PCA space are not too small. In our

case, we have adopted a similar approach where the number of retained PCA

components is the one that preserves 95% of the total variance.

An important consideration concerning the application of PCA on the data

corresponding to the candidate classes, is whether the number of available

samples is enough for learning the statistical properties of the dataset. As will

become apparent in the experimental section, the number of samples that need

to be handled by PCA-LDA in most of the cases is well above the number of

dimensions of the employed feature space, which is the condition for robustly

20



applying PCA. Indeed, if we accept that the average number of candidate im-

ages returned by the R-Tree is approximately 13 and taking into consideration

that 40 training replicas are generated for each original image (see Section 4),

the number of available training samples which is approximately 520 is well

above the number of feature vector dimensions, even for the SCEH descriptor

that exhibits the largest number of dimensions (208).

Moreover, our choice of applying LDA rather than some other state-of-the-art

approach for classification was driven by the special requirement of dynami-

cally resolving cases unsuccessfully handled by the R-tree. The power of the

proposed approach lies on maximizing the efficiency of discriminant classi-

fiers by only having to cope with a relative low number of classes. However,

this entails that training should always be performed on the fly based on the

candidate classes returned by the R-tree. On the other hand, in order for a

replica detection system to be useful in real applications it should be able to

exhibit low response time. This poses strict limitations on the computational

complexity of the employed training method. The complexity properties that

characterize LDA was the main reason for choosing this approach over other

state-of-the-art solutions. Indeed, the complexity of LDA training is domi-

nated by the calculation of the within class scatter matrix and its inverse,

which is O(d2n) with d being the feature space dimensionality and n the total

number of training samples. An important characteristic of this complexity is

that the multiplication factor of n depends on the number of feature space

dimensions. This is particularly desirable since d depends exclusively on the

system’s configuration settings and is not affected by the number of images

accommodated by a replica detection system. This is not the case for other

discriminative classification approaches. Let us consider for example the case
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of Support Vector Machines (SVM) which are considered to deliver state-

of-the-art performance in real world pattern recognition problems. Using the

standard training procedure the computational complexity of training depends

on the number of necessary support vectors nSV and is O(n·nSV +n3
SV ). Driven

by the theoretical result of Steinwart [37] who showed that nSV grows as a

linear function of n, it is clear that in contrast to the previous case the multi-

plication factor of n depends on the number of accommodated images. Since

the amount of images (and as a consequence n) that needs to be handled by

a replica detection system can be arbitrary big, we decided to opt for a classi-

fication approach the complexity of which behaves optimally with respect to

the number of accommodated images.

3.5 Classification Function

By projecting the members of C to the new feature space derived from the

maximization of Fisher’s criterion, we obtain Ć where better class separability

is expected. Since we require the system to strictly return one original image

or an empty set, we need to define a classification function that will deal with

this issue in the new feature space. For each class Ći representing a candidate

original Ii we calculate the mean vector ¯́xIi (class center) and a threshold T́Ii

that defines its new neighborhood as:

T́Ii
= max

r=1,...,Mi

(‖ x́Ii
r − ¯́xIi ‖2) (6)

where ||.||2 denotes the L2 norm. The response of our system to the query

image Iq is determined by the following function.
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D(Iq) =





∅, ‖ x́Iq − ¯́xIi ‖2> T́Ii
∀i ∈ [1, . . . , K]

Ir, r = arg mini(‖ x́Iq − ¯́xIi ‖2) & ‖ x́Iq − ¯́xIr ‖2< T́Ir

(7)

where Ir is the member of the database that is considered as the original of the

query image Iq. The reason for incorporating a threshold on the classification

function was to provide the system with a criterion for rejecting non-replica

images, which was also the reason for employing the SIFT variant of the system

detailed in the following section.

3.6 SIFT variant of the proposed system

In certain cases, histogram-based descriptors do not contain enough informa-

tion to discriminate between simply similar images and images that are con-

nected with a replica-original relation. As a consequence, a non-replica image

might be included in the neighborhood of a similar original image and be er-

roneously characterized as its replica. False replicas constitute a hard problem

for replica detection systems that can only be confronted using a highly dis-

criminative feature extraction algorithm. In order to overcome this deficiency,

we enhanced our system functionality by incorporating an additional module

that involves feature vectors generated using the SIFT [14] algorithm. SIFT is

based on detecting highly distinctive, scale and rotation invariant key-points

and describing them using 128-dimensional orientation histograms. The re-

sulting representation constitutes a Kx128 matrix, where K is the number of

identified key-points. Although, it is known to produce distinctive keypoints

that exhibit robustness against a substantial number of image manipulations,
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it was not possible to incorporate SIFT as the basic feature extraction scheme,

due to their high computational cost and non-compliance with the fixed-length

global representation requirement.

The reason for using SIFT is not to replace the main feature extraction scheme,

but to add a verification step before producing the final output. In more detail,

prior to reaching a final decision the SIFT feature extraction and matching

scheme [14] is used to assess the similarity between the query and the data-

base image that has been selected by the classification function. Similarity

assessment is performed by individually comparing the 128-dimensional fea-

ture vector of each keypoint from the query image to the feature vectors of all

keypoints of the selected original. A match is counted every time the Euclid-

ean distance between the feature vectors of two keypoints is below a certain

threshold determined by Lowe in [14]. Eventually, if the number of matches

exceeds a threshold, equal to one tenth of total number of keypoints identified

in the original image, the system response is validated as correct. Otherwise,

the system initial suggestion is rejected and the query image is characterized

as non-replica. Although the experimental results show that SIFT can be a

very effective countermeasure against falsely accepting non-replicas as replicas,

the total time required for executing a query with this setup is considerably

increased (see Section 4.3.7).

3.7 Security Considerations

Since the target applications of a replica detection system might include own-

ership identification and content-based media monitoring for legitimate use,

one should expect that intentional attacks originating from an adversary that
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tries to hinter its functionality would occur. Two different types of intentional

attacks can be encountered. The first aims at producing false negatives by

intentionally modifying the content of a protected image in order to go un-

detected (false negative attacks). The second type of attacks includes those

actions that generate false positives and cripple the reliability of system by

trying to forge, for example, a protected image through the modification of an

arbitrary image (false positive attacks). In accordance to Kerckhoff’s principle,

the attacker is expected to have full knowledge of the protection mechanism

details.

With respect to false negative attacks, the factor limiting the attacker ac-

tions is related to the amount of distortion that should be introduced in the

protected image in order to render it undetectable. The fact that our feature

vector is histogram-based, eases the task of an adversary in producing false

negatives since he knows the elements he should focus on in order to achieve

his goal. However, the fact that SCEH (which was experimentally selected as

being the most appropriate for our system, see Section 4.3.1) combines both

color and edge histograms, renders difficult the creation of a false negatives

with sufficient quality even if the algorithm details are known. Moreover, the

fact that the proposed system is constructed so as to be robust to a wide

range of manipulations (see Section 4) hinders the task of an adversary to

create false negatives without severely distorting the image. In what refers to

false positive attacks, the requirements are similar to those imposed by the

collision-free property of hash functions. This property refers to the fact that,

given an image I and a hash function g(·), it is computationally hard to find

a second image Í such that g(I) = g(Í). The fact that the SCEH detector

involves both color and edge information along with the fact that a final ver-
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ification step based on SIFT descriptors is utilized by our algorithm, makes

the creation of forged originals through the modification of a protected image

difficult and time-consuming.

4 Experimental Study

4.1 Test Set Characteristics

Prior to presenting the results, it is necessary to describe the particular char-

acteristics of the experimental testbed. Two images sets were used in exper-

iments. A sample of 2.232 color images were downloaded from the Internet

to compose the first set, from here on referred as the Monument set. Images

were selected so as to form 12 content categories, each containing different

views of a famous monument, as shown in Table 1. The rationale was to

construct a test set consisting of images featuring high perceptual and/or se-

mantic similarity within each category, Table 2 depicts samples from two of

these categories. This selection strategy was dictated by the high dependency

between the performance of a replica detection system and the level of visual

similarity among the database members. Evaluation against such a challenging

test set was performed in an effort to assess its behavior under an unfavorable

situation and introduce a sense of fairness compared to other technological

approaches (e.g., watermarking), whose performance is largely unaffected by

the image content. Moreover, in order to validate the efficiency of our system

on a much larger database we applied the optimally configured replica detec-

tion system on a portion of the Corel database containing 9.908 images. The

reason for choosing Corel as our second test corpus was to be in accordance
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Table 1

Monument Test Image Set
Monument Parthenon White Tower Liberty Sagrada Lighthouse Coliseum

Name (Greece) (Greece) Statue (USA) Familia (Spain) (Arbitrary Photos) (Italy)

#Images 343 78 71 247 56 128

Monument Eiffel Tower Piza Tower Pyramids Sphinx Duomo Big Ben

Name (France) (Italy) (Arbitrary Photos) (Egypt) (Florence-Italy) (England)

#Images 233 78 63 193 266 476

Table 2

Sample images from two content categories (Parthenon and Eiffel tower) in the

Monument test image set

with the aforementioned selection strategy, since this collection was originally

constructed to form groups of pictures depicting the same theme.

For training, we generated manipulated copies for each original image by

applying the following 40 transformations. a) Colorizing: Colorize the Red,

Green, and Blue channel by 10% by blending the fill color with each pixel

in the image, b) Contrast Changes: Increase or decrease the intensity differ-

ences between the lighter and darker elements using the default parameter

provided by ImageMagick, c) Cropping: Symmetrically remove the outer bor-

ders of an image to reduce its size by 5%, 10%, 20%, and 30% and then scale

the cropped image back to its original size, d) Despeckling: The amount of

speckle noise is reduced through ImageMagick’s despeckling operation while

preserving the edges of the original image, e) Downsampling: Downsample by

seven percentages 10%, 20%, 30%, 40%, 50%, 70%, 90%, f) Flopping: Create

a mirror image by reflecting the scanlines along the horizontal direction, g)

Color Quantization: Reduce the color palette to 256 colors, h) Framing: Four

27



framed images are produced by adding an outer frame covering 10% of the

total image area. A different frame color is utilized for each image, i) Rotation:

Rotation by 90o, 180o, and 270o, j) Scale up then down by a factor of 2,4, and

8. Respectively scale down then up by a factor of 2,4, and 8, k) Saturation

Change: Modulate the color saturation amplitude by 70%, 80%, 90%, 110%,

and 120%, l) Intensity Change: Modulate the image intensity by 80%, 90%,

110%, and 120%. These manipulations were initially proposed by Meng et al.

in [38].

4.2 Evaluation Metrics

For evaluating the performance of the proposed system, the false positive

and false negative rates were considered. In the context of an image replica

detection system a false positive occurs when a query image is erroneously

considered to be a replica of a certain image. Respectively, the system produces

a false negative when a query image that is a replica of a certain original is

not evaluated as such. Let Norg be the number of original images and Nnrep,

Nrep the number of non-replicas and replicas per original image respectively,

that are used for constructing the query image set. Let also T be the number

of cases that a replica is identified as such but is classified to a wrong original,

W be the number of cases that a non-replica is evaluated as a replica and

S the number of cases that a replica is considered as a non-replica. Then

false positive and false negative rates are defined as, FP = T+W
Norg ·Nrep+Nnrep

and

FN = T+S
Norg ·Nrep

. Recall (R) and Precision (Pr) are two other well established

metrics that are commonly used in the area of image retrieval but have been

also considered in image replica detection. Using the notations described above
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recall and precision are defined as, R = (Norg+Norg·Nrep+Nnrep)−(T+W+S)
Norg+Norg·Nrep+Nnrep

and

Pr = (Norg+Norg ·Nrep+Nnrep)−(T+W+S)
Ntotal

, where Ntotal is the total number of results

produced by the system.

Although, false positive and false negative rates were selected for measuring

the efficiency of the proposed system, in order to allow comparisons with

other schemes, recall and precision were also evaluated taking into account

that due to the adopted configuration Ntotal = Norg + Norg · Nrep + Nnrep

and thus R ≡ Pr. Receiver Operating Characteristic (ROC) curves that are

commonly used to represent the tradeoff between FP and FN were used for

measuring the system’s performance in experiments that involved a tunable

system parameter. The equal error rate (EER) i.e., the point of the ROC

where FP=FN was also used as an indicator of the system performance.

4.3 Experiments on the Monument Set

Out of the 2232 images included in the Monument set, we selected a set Sorg

of 2000 for populating the original image database while the remaining 232

formed the set Snrep of non-replicas. The query set SQ1 was constructed of

original images, test replicas and non-replicas. 200 images randomly chosen

from Sorg were used to compose the set of original images Sseed that was in-

cluded in the query set SQ1. These images were also used to generate the set

Srep of 8000 test replicas. This set was generated by applying the transfor-

mations described in Section 4.1 to the images in Sseed (40 transforms per

original image). Finally, Snrep was appended to the other test images resulting

in a query set containing a total of 8432 images, SQ1 = Sseed ∪ Srep ∪ Snrep.
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Fig. 3. a) Comparative diagram of all feature methods b) Auxiliary experiment

evaluating the overall system performance for the most prominent of the examined

descriptors

4.3.1 Evaluation of Feature Extraction Methods

For evaluating the performance of the various extraction methods presented

in Section 3.2, we used the R-tree to measure the average miss rate (i.e.,

the probability that the R-tree fails to retrieve the correct original) against

the average number of retrieved images. For generating the evaluation curves

we varied the extent of the R-tree hyper-neighborhoods by multiplying their

boundaries with a scaling factor σR. Retrieving a relatively small number

of candidates is crucial for the proposed system efficiency, since LDA will not

manage to attain good class discrimination on the feature space, if the number

of participating classes is large. Given the fact that it is far more important

for the R-tree not to miss any real replicas than to retrieve more than one

candidates, we are interested in the point where zero miss rate is achieved.

It is important to notice that the query set SQR used in this experiment

is different from SQ1 in the sense that non-replica images are not included,

SQR = Sseed ∪ Srep.
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As demonstrated in Fig.3a the average number of retrieved images for zero

miss rate differs substantially between the various types of features. The SCEH

descriptor, incorporating both color and edge elements, achieves the lowest av-

erage number of retrieved images (≈ 2.4) for zero miss rate and was adopted as

the feature extraction method throughout our experimental study. The supe-

riority of SCEH features was also verified on experiments involving the perfor-

mance of the complete image replica detection system. The ROCs depicted in

Fig.3b that compare the performance of the most prominent descriptors, prove

that SCEH outperforms the other features extraction schemes. The regulation

parameter used for drawing the ROCs of Fig.3b was a scaling factor σLDA

changing the classification neighborhoods formulated in the LDA-transformed

feature space by multiplying the class threshold T́Ii
used in equations (6) and

(7).

4.3.2 Data Partitioning vs Space Partitioning Methods and the Influence of

Training

In order to verify that data partitioning outperforms space partitioning in the

context of repica detection, we compared the performance of the basic rep-

resentatives from the two categories, namely R-tree and kd-tree. The same

experiment attempts to highlight the benefits of selecting optimal hyper-

neighborhoods using the training matrices Tr, as described in Section 3.3.

In order to do this we examine the case where no training is involved, i.e., a

constant extent value denoted as v is utilized for all feature dimensions n, and

for all database images. As in the previous case SQR was utilized for testing

and the average number of retrieved images required to achieve zero miss rate

was used as the performance criterion.
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Fig. 4. a) Data partitioning vs Space partitioning methods b) Replica Detection

Performance ROC using the SQ1 set

For generating the performance curve in the training case, we varied the extent

of the hyper-neighborhoods by multiplying the elements of the extent vector

cI
i with a scaling factor σR, while in the other case the value of v was modified.

The kd-tree performance curve was obtained by varying the threshold σkd of

the Euclidean distance between the query image and the ones already indexed

within the multidimensional structure. The results are depicted in Fig. 4a. It

is clear that although kd-tree performance (dashed-dotted curve) is superior

from the R-tree when no training is involved (dashed curve), it is considerably

outperformed by the R-tree constructed using the training samples of Tr (solid

curve). The solid curve shows that in order to construct a system with miss

rate 0% (which is crucial for obtaining small false negative rate), we should

allow the “trained” R-tree to retrieve approximately 2.4 images per query, on

average. For the other cases on the other hand, in order to achieve zero miss

rate the average number of returned originals should let to grow very large

(the two curves converge towards the horizontal axis very slowly).
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4.3.3 System performance when the training and query sets are identical

This experiment is aimed at measuring the performance of the proposed sys-

tem using σR = 1 for the R-tree. In this case, the tuning parameter used to

create the ROC presented in Fig. 4b. is the scaling factor σLDA described in

Section 4.3.1. The image set SQ1 that contains the same replica images as the

ones used for training, was used as a query set. The EER of 1.1% is obtained

when the regulation parameter σLDA is equal to one, which suggests that the

training has indeed selected optimal neighborhoods for the classification func-

tion of Section 3.5.

4.3.4 Employing a query set different than the one used for training

The fact that the set of images used for training was exactly the same with

the set of replicas included in the query set may lead to biased performance

evaluation. For assessing the system performance more rigorously, a query

set that includes manipulated images that were not used during training was

constructed. In order to produce the new query set we utilize Sseed and Snrep

but instead of Srep we used a different set of replicas that was generated by

exposing the original images of Sseed to the same type of attacks, but with

different attack parameters. The new attack parameters depicted in Table 3

(40 manipulations per original image), were chosen so that they reside inside

the parameter range used for constructing the training set. The resulting repli-

cas Śrep were combined with the original images and non-replicas in order to

produce the new query set, SQ2 = Sseed ∪ Śrep ∪ Snrep.

Fig. 5 depicts the R-tree retrieval performance as well as the overall system’s

performance when SQ2 is used. For comparison purposes the curves corre-
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Table 3

Manipulations used to construct the set of replicas Śrep utilized in the query set

SQ2

Framing Colozing Color Quantization Downsampling Contrast Change Cropping

9% 6% as previous 19%, 28%, 38% as previous 6%, 8%

41%, 52%, 80%, 88% 11%, 22%

Despeckling Flipping Intensity Change Rotation Saturation Change. Scaling

as previous vertical 93%, 98% 95o, 183o 75%, 85% 3, 5

108%, 116% 268o 95%, 115% 7
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Fig. 5. System Performance for query sets SQ1 and SQ2 a) R-tree retrieval perfor-

mance b) ROC curves for the overall system

sponding to SQ1 are also drawn. Examination of the R-tree performance in

Fig. 5a shows that unlike the case where the query images were the same as

those used for training, the R-tree is difficult to achieve a zero miss rate while

maintaining a relatively small number of retrieved images. Therefore, instead

of rendering PCA-LDA ineffective due to the increased number of participat-

ing classes, one can fix the size of the neighborhoods so that the miss rate

of the R-tree is acceptable but no zero. The miss rate was fixed to 0.027 and

the average number of images retrieved for this value is approximately 13.

Fig. 5b shows replica detection performance for SQ1 and SQ2 query sets. The

EER obtained for SQ2 is equal to 3.0%, not significantly worse from the one

obtained when using SQ1.
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Table 4

System Error Rates
WITHOUT-SIFT SIFT

SQ1 SQ2 SQ1 SQ2

FN 1.1% 3.0% 1.1% 3.2%

FP 1.1% 3.0% 0.58% 1.9%

4.3.5 Employing the SIFT module

In order to monitor the efficiency of our system against non-replica images we

used only Snrep for testing. The value of the scaling factor was set to σLDA = 1,

so as to tune our system to the operating point where EER is attained. The

experiments showed that 23.28% of the queries were erroneously identified as

replicas. This number is reduced to 3% when the SIFT variant is incorporated.

The overall impact of appending the SIFT module to the system is depicted

in Table 4. The decrease in the false positive rate (that stems mainly from

the drastic decrease of errors in case of queries with non-replicas) is obvious.

However, in the case of SQ2 the use of the SIFT module resulted in a small

increase (≈ 0.2%) of the false negative rate, which is nevertheless smaller than

the corresponding decrease of the false positive rate.

4.3.6 Combining PCA with LDA

The goal of this experiment was to verify the improvement in performance

introduced by employing PCA prior to LDA. Fig. 6. demonstrates the perfor-

mance curves for both query sets SQ1 and SQ2 with and without applying PCA.

One can see that in both cases the system performance benefits substantially

from the use of PCA.
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Fig. 6. Optimizing performance using PCA prior to LDA a) SQ1 Query Image Set

b) SQ2 Query Image Set

4.3.7 Computational Time

Table 5 presents the computational time spent during each phase of the query

procedure. All experiments were conducted on the Monument set using an In-

tel Pentium-M/Centrino processor, running at 1.86Ghz with 1.00 GB of RAM.

An average of 0.0305 sec is required by the overall system to handle a single

query, when the SIFT module is not incorporated, which can be considered

satisfactory even for real-time applications. Obviously, the time required for

traversing the R-tree is influenced both by the number of database images

and the amount of overlapping between their hyper-rectangles. Respectively,

LDA is more time consuming when the number of participating classes in-

creases. However, since R-tree is logarithmic to the number of indexed images

and taking into consideration that LDA operates only on the small number

of classes returned by the R-tree, it is safe to conclude that the increase in

computational time induced by the growing number of database images, will

not render the proposed system impractical even for large scale applications.

When the SIFT module is incorporated to the system the total execution time

for a single query increases to 11.756 sec. This amount of time is prohibitive
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Table 5

Query Execution Time (Monument database)
Query Image Set Time Required Per Query (sec)

R-tree LDA SIFT Total (NO SIFT) Total (SIFT)

SQ1 Query Image Set 0.003 0.015 11.738 0.018 11.756

SQ2 Query Image Set 0.005 0.038 11.815 0.043 11.858

Average 0.004 0.0265 11.776 0.0305 11.807

for real time applications but can be tolerated for applications like off-line

copyright infringement detection. Additionally, since the SIFT module always

operates on just two images (i.e., candidate original and query) the average

time consumed by this module is unaffected by the amount of database images.

4.4 Experiments on the Corel Image Set

After evaluating each module independently and fine-tuning the proposed

replica detection system, a portion of the Corel image collection was utilized

to inquire the efficiency of our approach when the number of database images

increases. From the Corel set we utilized 9.908 images depicting 120 different

themes. These images were divided into 9000 originals Sorg, and 908 non-

replicas Snrep. 2000 images were drawn from Sorg to form the seed image set

Sseed, while the same strategy was followed to construct Tr, SQ1 and SQ2,

consisting of 360000, 82908 and 82908 images respectively. The performance

curves for the Monument set are included in the diagrams to allow compar-

isons.

It is clear from Fig. 7a, that as the number of database images increases,

the feature space becomes more crammed and the efficiency of our system is

affected. Using SQ1, the average number of retrieved images returned by the R-

tree in order to achieve zero miss rate increases to 10 from the corresponding
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bigger image set a) R-tree retrieval performance b) Overall replica detection system

performance

2.4 in the Monument set case. Respectively, the curve showing the R-tree

performance for SQ2 shows that we will have to let the average number of

retrieved images grow at approximately 30 images for achieving a miss rate of

0.057.

Similar conclusions can be derived by inspecting the diagram of Fig.7b where

the performance curves of the overall system without incorporating the SIFT

module are depicted. The EER achieved for SQ1 is approximately 6.5 % and

it grows to 13% when the system is evaluated using SQ2. Although the depen-

dence of our system performance on the number of database images is clear,

recalling that both image sets were intentionally constructed to feature a high

degree of similarity between their members, it is reasonable to claim that

the proposed scheme can be safely used for detecting replicas with sufficient

accuracy.
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4.5 Performance Evaluation Review of Existing Replica Detection Systems

Comparing the performance of different methods addressing the same problem

is a difficult task particularly when the associated research community lacks a

standardized benchmarking methodology. Inconsistencies regarding the exper-

imental test-bed configuration, the utilized data set, the variety in robustness

tests and performance metrics need to be overcome before drawing safe conclu-

sions. This subsection is an effort to review the performance figures achieved

by different replica detection systems. However, readers should have in mind

that due to the different testbed configurations and sets of original images

used by the various authors the presented performance results are not directly

comparable and should be treated as such.

In their work, Qamra et al [6] utilize original and modified versions of copy-

right protected images for populating the test database. Training and querying

are both based on the same set of manipulations proposed by Meng et al in

[38]. The method’s efficiency is measured using recall and precision and the

equally balanced tradeoff is ≈ 0.82. On the other hand, Maret et al [10] choose

a configuration where only the original versions of the copyright protected im-

ages are included in the database. The set of modifications proposed in [38] is

used for training the classifier and for generating test replicas. Performance is

measured in terms of false positive and false negative rates and according to

the authors, the method is able to detect, on average, 92% of the replicas while

achieving a fixed false positive rate of only 1 ·10−4. An important limitation of

this system is that a different classifier is trained for every original image in the

database, thus, in the worst case scenario the query image has to be evaluated

against all classifiers before reaching a decision. As a consequence consider-
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able amount of time might be required for handling a query as the number

of database images grows. In some of their subsequent works [11], [12] the

authors try to alleviate this problem by employing multidimensional indexing

schemes. The database configuration that Ke et al [9] use in their system is

similar to that of [6] where original images and their modified versions coexist.

No training is required by the method and the authors employ two different

image manipulation sets for evaluating the performance. The manipulation set

of [38] and a more challenging set of transformations that includes cropping

by 50%, 70% and 90%, shearing by 5o, 10o and 15o, changes of intensity by

50% and 150% and changes in contrast (10 transformations per image). The

method achieves 99.85% recall and 100% precision and these figures decrease

to 98.40% and 99.86% for the more challenging manipulation set. However,

the number of features extracted from every image ranges from a few hundreds

to a few thousands and the time required for their extraction is considerably

large. A similar test-database configuration is adopted by Kim [7]. For train-

ing, the author uses a set that includes various modifications while a subset

of this set is used for testing. The evaluation experiments showed that the

system achieves, on average, 83% recall and 96% precision. Roy and Chang

in [8] implement a database containing only the original versions of copyright

protected images. For such a setup recall and precision coincide and the com-

mon figure provided by the authors is 96.8%. Synthetic training examples are

constructed by adding Gaussian noise in the feature domain and the query set

is produced using a subset of the Meng set [38] (9 transformations per image).

An important difference of this method compared to the other experimental

setups is that no non-replica images are included in the query set.

The proposed system adopts the configuration where only the original version
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Table 6

Performance Figures Review of Existing Replica Detection Systems
Method Image Database

Configuration

Image Manipu-

lation Set

Relation

between

Train and

Query

Set

Recall

(%)

Precision

(%)

Qamra

[6]

Original and Modi-

fied

Meng [38] Identical 82 82

Ke [9] Original and Modi-

fied

Meng [38] No Train-

ing

99.85 100

Meng Extension 98.40 99.86

Kim [7] Original and Modi-

fied

Miscellaneous Subset 83 96

Roy [8] Original Subset of Meng Identical 96.8 96.8

Proposed Original Meng Identical 98.73 98.73

Method (Monument) Different 95.79 95.79

Proposed Original Meng Identical 99.25 99.25

Method

(SIFT)

(Monument) Different 96.74 96.74

False False

Negative

(%)

Positive

(%)

Maret

[10]

Original Meng Identical 8 0.01

Proposed Original Meng Identical 1.1 1.1

Method Different 3.0 3.0

Proposed Original Meng Identical 0.65 0.58

Method

(SIFT)

Different 3.22 1.99

of the images are stored in the database. Performance figures for the Monu-

ment set have been calculated both in terms of false positive and false negative

as well as recall and precision metrics, taking into account that in the latter

case, due to the database configuration, the two metrics have the same value.

Tables 6 summarize the results obtained by the various methods evaluated in

terms of recall-precision and false positive-false negative rates respectively.
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5 Conclusions

In this manuscript, we describe a replica detection system that operates upon

a database of stored originals. Motivated by the fact that replica detection

has many common characteristics with a classification problem, we worked

towards the employment of proper training strategies for improving efficiency.

This training strategy is used to drive both image indexing conducted using

an R-tree and the construction of robust classifiers in a transformed feature

space generated by dynamically applying PCA-LDA on the candidate classes

produced by the R-tree. The power of our approach lies on maximizing the

efficiency of discriminant classifiers by only having to cope with a relative low

number of classes. Two very challenging image sets were used in our experi-

mental study. Although, the obtained performance figures reveal some depen-

dency on the size of the dataset, they can be considered rather satisfactory

for the purposes of replica detection.
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