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Region-Based Image Watermarking
Athanasios Nikolaidis and Ioannis Pitas, Senior Member, IEEE

Abstract—We introduce a novel method for embedding and de-
tecting a chaotic watermark in the digital spatial image domain,
based on segmenting the image and locating regions that are ro-
bust to several image manipulations. The robustness of the method
is confirmed by experimental results that display the immunity of
the embedded watermark to several kinds of attacks, such as com-
pression, filtering, scaling, cropping, and rotation.

Index Terms—Chaos, copyright protection, correlators, feature
extraction, image segmentation, signal detection.

I. INTRODUCTION

PROTECTION of multimedia information has attracted a
lot of attention during the last few years. The aim of such

methods is to protect the copyright of broadcast or publicly ex-
posed multimedia data. Attackers have the freedom to obtain
copies of copyrighted electronic material via the Internet and
manipulate them at will. The most popular method to protect
copyright information is watermarking. The main requirements
for an acceptable technique of watermarking are [1], [2] as fol-
lows.

1) Imperceptibility: the watermark should not be easily no-
ticed by simple visual inspection.

2) Key uniqueness: different keys should produce different,
statistically independent watermarks.

3) Noninvertibility: it should not be computationally fea-
sible to find the watermark by possessing a watermarked
image.

4) Image dependency: a single key produces a single water-
mark; however, this watermark should be adapted to the
image content.

5) Reliable detection: the watermark should be efficiently
detected for any value of false alarm probability up to a
certain threshold.

6) Robustness: the watermark should be efficiently detected
after most common signal processing operations.

Usually a tradeoff is necessary between watermark imper-
ceptibility and robustness. Most of the proposed techniques
easily meet the imperceptibility demand. However, most of them
do not consider simultaneous robustness to several kinds of
attacks. Many of them focus on robustness against JPEG or other
compression techniques, noise addition, and lowpass filtering
[3]–[5], while others only attempt to face geometric distortions
efficiently [6]. None of them has covered the entire range of dif-
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ferent processing attacks at the same time, except when resorting
to the original image [7]. These techniques are either applied
in the spatial digital image domain or in some image transform
domain (e.g., DCT, DFT, DWT, etc.). In [8], a set of attacks is
proposed that any watermarking scheme should survive.

Previous methods have failed in providing robust behavior
under many commonly considered attacks mainly, because they
attempted to face the image, audio or video signal in a global
sense, without exploiting their local characteristics. In the case
of image watermarking, employing spatial characteristics is
essential for ensuring immunity to geometric transformations.
When a watermark is embedded on the entire image, scaling,
rotation or cropping will result in the destruction of the wa-
termark because no reference points exist that would lead in
finding the amount of scaling, rotation or cropping. The use of
an image transform, with the exception of the Fourier trans-
form, will suffer the same problems. The Fourier transform is
theoretically rotation, translation and scale invariant, but the
robustness to filtering or compression depends on the range of
frequencies that are used for watermarking.

In this paper, we propose the use of salient spatial features
resulting from image segmentation, so that they will be used as
reference for compensating usual geometric attacks. Image seg-
mentation is a powerful image processing tool that can provide
us with useful information about the spatial image content. The
produced regions are arranged according to their size and the
largest of them are selected for watermark embedding. The se-
lected regions are approximated by ellipsoids, by using a neural
network technique. Most likely this representation will not be
seriously distorted after image manipulation and, thus, the or-
dering of the regions will not be affected either. The bounding
rectangle of each region is used for watermark embedding. The
parameters of this rectangle include its center coordinates, ori-
entation, width and height. These characteristics prove signifi-
cantly immune to the considered attacks, and ensure robustness
to many geometric distortions. A local search for a small range
of values for each of the previously referenced parameters is
sufficient for watermark retrieval. Finally, the use of a certain
chaotic system that produces trajectories of controlled lowpass
properties is suggested in order to preserve the robustness of
the method to manipulations such as filtering, noise addition
and compression. This choice is preferred to the use of a usual
pseudo-random number generator, because the latter produces
uniformly distributed trajectories that have a white spectrum and
cannot withstand lowpass filtering.

An approach that is somehow related to our method was pro-
posed in [9], where the core of the technique was to find image
points that could be warped according to their distance to spe-
cific line segments that form the watermark. However, the cost
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of producing a theoretically infinite set of different line patterns
in the detection stage, together with the questionable promi-
nence of the selected points to be warped, render this technique
unsuitable. The main weak aspect of the technique [9] is that the
chosen pattern is completely random and does not take any spa-
tial properties into consideration. Another method that tries to
face the problem of geometric attacks is presented in [10], where
a template consisting of a fixed number of points is inserted in
the DFT domain of the image. However, these points can easily
be distorted by calculating the local mean value and standard de-
viation of the coefficients and change accordingly the strength
of the predominant DFT coefficients. In [11] a block-based at-
tack-resilient watermark decoder is proposed, that is based on a
sliding correlator window that is scaled, rotated, and translated
until the maximum correlation to the original pseudo-random
watermark is found. This implies an increased computation time
because of the complete ignorance about the spatial localization
of the watermark that results in a multidimensional search space
of quite many parameters spanning a wide range of values. The
approach presented in [12] suggests a scheme that modifies only
the blue channel of a color image for imperceptibility reasons.
Each watermark bit is embedded in many positions to ensure
robustness. However, these positions are randomly chosen ac-
cording to the watermark key and, thus, the immunity of their
luminance values to attacks is not ensured.

This paper is organized as follows: Section II presents the
watermarking requirements and the techniques that are used to
meet them. Section III presents the adaptive-means clustering
and region approximation technique, which is used as a prepro-
cessing step for the determination of the spatial constraints to be
used in the embedding and detection stages. In Section IV, the
general class of chaotic watermarks is presented together with
adaptations for digital images, followed by an explanation of
the connection between the spatial features and the watermark
to be embedded on the image. Section V presents the watermark
detection procedure. Simulation results for several watermarked
image manipulations are presented and explained in Section VI.
Finally, conclusions are drawn and future work is addressed in
Section VII.

II. TECHNIQUE OUTLINE

The current paper aims at providing a watermarking tech-
nique that faces the image copyright protection problem from
the viewpoint of selecting only interesting image regions for em-
bedding. We perform region-based image watermarking for the
following reasons.

1) This watermarking technique is consistent with the
object-based coding/description approach followed in
MPEG4 and MPEG7 (although the proposed method is
described for still images only).

2) In some cases, only certain image regions have to be pro-
tected (e.g., in portraits). However, more regions than the
required ones can be used to embed the same prototype
watermark after the proper adaptation to each region, thus
enhancing the performance of the detection stage. If any
of these regions are cropped and pasted to another image,
the respective watermark should remain intact.

3) The output of certain region segmentation techniques can
be proven robust to certain geometrical transforms and
other image processing operations. The outline of the de-
veloped technique is as follows.

• Feature selection: This stage is concerned with the
preprocessing that is necessary to extract the spatial
image characteristics that are needed for the water-
mark embedding/detection stage.

—Image segmentation: In this step, a clus-
tering technique based on the well-known
ICM (iterated conditional modes) method is
used, having a minimum number of required
parameters. The employed technique is a
variation of the one proposed in [13], where
both spatial constraints and local intensity
variations are used in order to enhance the per-
formance of the classic -means algorithm.
This technique provides a segmentation of
the image into a rather small number of large
regions that are suitable for watermarking.
—Feature detection: After the image has been
segmented, its inner segments are sorted in the
order of decreasing area (measured in number
of pixels) and the largest of them are selected
for the watermarking process. The selected re-
gions are afterwards coarsely approximated by
ellipsoids that are constructed by employing
a neural network technique. The orientation,
center and dimensions of the bounding rectan-
gles of these ellipsoids are finally used as input
for watermark embedding.

• Watermark embedding/detection:
—Chaotic watermark embedding: A chaotic
watermark that is constructed by Peano-scan-
ning of a one-dimensional (1-D) chaotic tra-
jectory [14] is embedded according to the geo-
metric information arising from the previous
stage. The watermark is embedded to each of
the bounding rectangles corresponding to the
selected regions of the previous stage.
—Chaotic watermark detection: A watermark
detector based on the correlation of a water-
mark template with the possibly watermarked
and processed image is proposed. This detector
acts on the regions segmented from the wa-
termarked and processed image. Consequently
the robustness of the localization of the spa-
tial features after various attacks on the water-
marked image ensures the robustness of the de-
tection process. In this way, only small local
searches in the geometric parameter space are
required to find the correct position of the em-
bedded watermark.

III. A DAPTIVE -MEANS CLUSTERING AND REGION-BASED

SPATIAL FEATURE DETERMINATION

The first stage of the proposed technique concerns finding a
segmentation or clustering technique that will provide us with
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a robust region representation under image processing, in the
sense that it will not be seriously affected by usual geometric
image manipulations (e.g., rotation, translation, compression,
filtering). Many classes of segmentation techniques have been
studied to this end and extensive experimentation has been made.
Morphological watershed techniques [15]–[17], for instance,
produce oversegmentation, because they are very sensitive to
local luminance changes and, thus, catchment basins are very
densely constructed. This is against our need for producing large
regions that cover a significant percentage of the total image
area. Region-growing methods start up from seed pixels and
advance based on luminance similarity of neighboring pixels to
each growing region. This, however, may result in noncompact
regions. Split-merge techniques [18], provide rather coarse
region estimates, which are very prone to changes in luminance.
This results in many regions either being split to others of quite
smaller size, or merged to regions of quite larger size, because of
the hierarchical nature of this method. Finally, histogram-based
techniques are not reliable because, if constant split values are
chosen on the histogram, they will produce noncompact regions
and many spurious pixels. Furthermore, the method will not
be robust against attacks, because after manipulation the peaks
correspond to different greylevels on the histogram.

The technique which was chosen after experimentation as the
most robust one is a multilevel implementation of the adaptive
clustering methodproposed in [13].This is a variationof the ICM
algorithm that was introduced by Besag [19]. This technique
works well especially on images containing objects with smooth
surfaces. The algorithm may not be optimal in the case of some
textured images, because no clear distinction between objects is
possible in this case. However, the merging step that completes
the algorithm may provide a set of regions that do not correspond
to real objects. This is of no concern to us, because we do not need
a representation that is as detailed as possible. The merging step
serves to provide a final segmentation containing a quite reduced
number of regions that are approximately as large as required.
A modified approach of the clustering technique is presented
in [20] for color images, where first-order and second-order
derivatives are incorporated. We will not employ this refined
technique, because we need an output that is not too sensitive
to changes in discontinuities and homogeneity constraints.

The initial image is first subsampled by a factor that depends
on its original size. A classical -means algorithm is then
performed on the luminance component of the decimated
image version. The initial values for the cluster centers are
not randomly defined, as in the classical implementation.
They are chosen among the most prominent image histogram
peaks over a sufficient neighborhood of histogram values. This
ensures that the segmentation algorithm will converge always
to the values that provide a classification that is as close to the
original as possible, since any possible attack would affect the
image greylevels in a way that will translate the peak values.
Even though the peak values may be modified after certain
attacks, they are only used to produce the region seeds and do
not change segmentation results significantly.

Let denote the number of clusters in which the image pixels
are to be classified. The classical-means algorithm provides
a coarse segmentation estimate which is noisy, because spurious

pixels are assigned to different clusters and image regions that
are somehow interrelated may be disconnected. We wish to ob-
tain a smoothened segmentation output containing a rather small
number of large regions that would be suitable for spatial wa-
termark embedding. The approach in [13] presents an adaptive
method that takes under consideration both similarity potentials
between current and neighboring pixel cluster assignments, as
well as greylevel relation between current pixel and possible cen-
ters. The second constraint, when employed alone, describes the
classical -means algorithm. The similarity potentials are de-
fined in such a way that two neighboring pixels are more likely
to belong to the same cluster than to different clusters, especially
when they are 4-neighbors. The distance metric employed in our
case is the Euclidean one. Bayes theorem can provide us with a
model of thea posterioriprobability density function that de-
scribes the desiredsegmentation.By maximizing this probability
with respect to the cluster center, each pixel is assigned to a cer-
tain cluster. By choosing proper values for the potential param-
eter , we can achieve a segmentation result that is noise free and
contains regions having quite smooth borders.

After the ICM step, a region merging process according to the
mean value similarity between adjacent regions is employed in
order to eliminate useless small regions. We consider that a re-
gion should be eliminated if it covers an area that is less than
a certain percentage of the total image area (e.g., 10%). A seg-
mentation result is shown in Fig. 1. Fig. 1(a) shows the original
image of size 800 800 and Fig. 1(b) shows the final segmenta-
tion result, after the small region elimination stage. The number
of clusters is and the potential parameter is . The
several regions (which are seven in this case) are represented by
different grey levels.

After the segmentation process, the resulting regions are or-
dered according to their size, excluding the ones that are on
the image boundaries, in order to avoid problems arising from
image cropping along borders. The largest regions are preferred
for watermarking, in order to preserve as much of the watermark
power as possible. These regions also tend to be more robust as
far as their size, shape and orientation are concerned. Fig. 1(c)
shows the two largest regions of the above referenced image, ex-
cluding the regions lying at the image borders. Certainly there
are images (e.g., landscape images) for which it would not be
suitable to exclude border regions. Cropping can be either sym-
metric or nonsymmetric. Some rows or columns may be cut
away, provided that at least one of the initially watermarked re-
gions is not affected.

We propose a robust representation of the selected regions by
ellipsoid approximation. The resulting ellipsoids are more easily
described than the regions themselves, by means of their center
coordinates, width, height and orientation. In addition, since the
embedded watermark is a rectangular pattern, we choose to use
the bounding rectangle of each ellipsoid for watermark embed-
ding/detection. An -trimmed Mean Radial Basis Function net-
work as defined in [21] was employed in order to approximate
each selected region by an ellipsoid. Each region corresponds
to a hidden unit of the network. The marginal data samples are
first ordered according to their Mahalanobis distance

(1)
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Fig. 1. Segmentation and region approximation by ellipsoid. (a) Original image. (b) Segmentation result. (c) Two largest regions of the segmented image.
(d) Ellipsoid approximation of the regions in (c).

where is the marginal data sample, is the center of theth
cluster (or, equivalently, theth hidden unit of the network), and

is its covariance matrix. After ordering the samples, a per-
centage of themcanbetrimmedawayfrombothendsof thedata
distribution. The center and covariance matrix of the new data set
canbecomputed.Thesedeterminetheellipsoidapproximationof
each region. A result is shown in Fig. 1(d). We can notice that
the ellipse describes mainly the body of each region.

Once the trimmed ellipsoidal approximation is known, its ori-
entation and its bounding rectangle can easily be computed [22,
p. 393]. The rectangle defines the area where the watermark
is to be embedded or detected. Knowledge of the center coor-
dinates, dimensions and orientation of the bounding rectangle
compensates for cropping, scaling and rotation of the water-
marked image, respectively. These parameters are the output of
the segmentation stage and are going to be used in both water-
mark embedding and detection stages.

IV. WATERMARK CONSTRUCTION ANDEMBEDDING

In Section III, we developed a method of locating robust re-
gions, so that they can be used as reference areas for water-
mark embedding. The robustness is addressed by the fact that
the metrics which are used in the segmentation stage result in a
geometric representation by ellipsoids that cannot be heavily al-
tered after commonly referenced image processing operations.
We choose to construct a watermark based on a chaotic tra-
jectory [23], because of its controlled lowpass properties. This
cannot be accomplished using a usual pseudo-random sequence,
because this type of sequence produces noisy-like binary water-
marks that would very easily be distorted by lowpass filtering

or JPEG compression. The chaotic sequence we use contains
a parameter that controls how fine the details of the produced
watermark are. It is also cryptographically more secure than a
pseudo-random one, because it is not invertible and the original
watermark cannot be reconstructed without knowing the appro-
priate key. The first step to construct such a watermark, is to
produce a sequence of real numbers by using a mapping func-
tion , of the form

(2)

where is the Renyi map [14], is the current it-
eration, and is the parameter that controls the chaotic behavior
of the system.

The number of iterations is arbitrary and can be adapted to
our needs. The system theoretically produces trajectories of an
infinite period. The decision on whether the trajectory presents
regular or chaotic behavior depends on the seed value.
The values of the produced trajectory oscillate inside an in-
terval that is related to . Thus, we can de-
fine a threshold level in a way that, after
thresholding the sequence numbers, a bipolar sequence

is produced with approximately equal number of1 s
and 1 s. Parametercontrols the frequency characteristics of the
chaotic sequence, i.e., the frequency of the transitions
and . For and values close to 1, we get a chaotic
watermark with low number of transitions and, thus, lowpass
properties, whereas when the transitions are very fre-
quent, the lowpass properties degrade and the sequence reduces
to a pseudorandom one.
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However, the sequence we produced so far is 1-D. To embed
it in a digital image, we need to scan the image across the se-
quence in such a way that the lowpass properties are preserved.
The classic raster scan is not proper for this task because the
number of transitions is not under control in the vertical dimen-
sion. To avoid this, we use Peano scan order which has the prop-
erty that every point along the scan is topologically closer to the
previous and subsequent pixels than in the case of the raster scan
[24]. In addition, it is possible to use cellular smoothing to elim-
inate spontaneous transitions that emerge after the Peano scan
[23]. By using this technique, the output watermark has local
neighborhoods of 1 s (or1 s) that are more compact. The main
disadvantage of the Peano scan is that it only produces square

watermarks. Such a watermark can be anisotropically
scaled to nonsquare bounding rectangles.

In order to construct different watermarks we use a key K that
produces the seed value for the generation of a chaotic tra-
jectory. Keys of slightly different values provide trajectories that
have small cross-correlation due to the strongly chaotic system
under consideration, resulting in watermarks that provide both
better FAR (false alarm ratio) and FRR (false rejection ratio)
in the detection stage. This implies that the setof possible
keys that can produce distinct watermarks is quite large. This re-
duces the possibility of the watermark being tampered and also
ensures noninvertibility of the watermark, which is one of the
demands addressed in Section I. Thus, the corresponding key
cannot be extracted from the two-dimensional (2-D) watermark.

For the watermark embedding process we use the extracted
region characteristics defined in the previous section to embed
the produced watermark in a specific image area that will be
easy to detect even after certain intentional or unintentional
attacks. A prototype watermark serves as a reference pattern
which can be adapted according to the dimensions, center,
and orientation of the bounding rectangle of each selected
region before embedding. When the new region parameters
are computed in the detection stage, each potential prototype
watermark that is tested for presence in the watermarked and
possibly manipulated image, is again adapted to these param-
eters before applying the detector. The prototype watermark is
of size when Peano scan is used.

Before superimposing the watermark on the original image,
a visual masking stage is introduced. For this purpose, the vari-
ance is computed for every point of the original image
over a proper neighborhood of size

(3)

where is the mean value over the same neighborhood.
The local variance is then normalized according to its max-
imum value, and is compared against a threshold, which
is a function of the watermark power. If the variance exceeds
this threshold, this means that the local neighborhood contains a
large amount of texture or edge information, and the embedded
watermark can be invisible. Otherwise, the region is considered
to be homogeneous, having almost constant luminance, and is

not suitable for watermark embedding. The dependency of the
variance threshold on the watermark power is such that, if the
watermark power is increased, the threshold will also increase
nonlinearly, so that the watermark remains imperceptible. This
means that a trade off should be made, so that the watermark
is still both perceptually insignificant and recoverable to a rea-
sonable degree. Several sophisticated techniques of perceptual
watermarking that could alternatively be used are presented in
[25], [26].

If is the prototype watermark, then the scaled and rotated
watermark of size is embedded to the region .
The watermarked image is defined as

(4)

(5)

where is the embedding image area. Alternatively,can
become a function of the local variance:

(6)

where takes values in the range . is chosen to increase
monotonically with the variance. In our case, the watermark is
embedded in the spatial domain and, thus, the watermark power
is quantized to two integer values, 0 and , depending on the
variance value. The masking principle is, in fact, useful when
the watermark power is . Otherwise the watermark is
hardly visible even when embedded on the entire image region.

V. WATERMARK DETECTION

When a prototype watermark is to be detected inside a wa-
termarked and possibly manipulated image, the image has to be
first segmented, so that the salient features of the approximated
regions are derived, as was explained in Section III. These fea-
tures include the center coordinates, dimensions and orientation
of the bounding rectangle of each approximated region. A pro-
totype watermark of standard dimensions is constructed. After-
wards, this watermark is adapted to each embedding region by
scaling, centering, and rotating it according to the bounding rec-
tangle features. For each detection region , ,
where is the number of selected regions, the response of a hy-
pothesis testing detector is computed

(7)

where

(8)

with and
. and are the

number of pixels of the sets and , respectively. Thus, the
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TABLE I
DETECTORRATES FORSEVERAL ATTACKS ON VARIOUS IMAGES

detector expresses the differenceof two sample means. The
mean value and variance of the detector output are

(9)

In the case that the watermark is embedded on the entire embed-
ding region, the detector output is assumed to follow a normal
distribution. If the correct watermark is embedded on the image,
then the mean value is and the variance is

, where is the variance of
the initial image and is the variance of the watermark, as is
adapted for the certain region. Otherwise, if there is no water-
mark present, the mean value of the detector is and the
variance is , which is not signif-
icantly different than in the case the watermark is present, be-
cause the factor is very small and .
The detection is done over all regions where the watermark was
embedded, and the overall detector output is defined as the max-
imal detector output for all watermarked image regions. This is
expressed by

(10)

The detector output (10) must be compared against a proper
threshold that will inform us with a satisfying certainty
about the presence or the absence of the watermark. The distri-
bution of the resulting output is not anymore normal, both in the
case that no watermark is detected and in the case the correct wa-
termark is detected. The expected mean values are now greater
than 0 and , respectively. However, when searching for an ef-
ficient detection threshold, we will consider the approximating
distributions as normal, for simplicity reasons. Alternatively, the

median or mean value of the regional detection outputs can be
used. It should be noticed that after watermark embedding and
possible manipulation, the regions parameters may have slightly
changed. The error in rectangle height, width and center coordi-
nates estimation has been observed to be 3 pixels in the average
in the tested images of size either 800800 or 512 512. The
error in rectangle orientation estimation is 0.02 radians in the
average. Because the watermark is very sensitive to geometric
operations, a local search for each parameter is necessary to lead
us to the exact parameter values that were defined on the original
image prior to embedding. The total CPU time for detecting a
certain watermark at a certain position is about 1.4 s for a 512
512 image on a Silicon Graphics workstation with a R10000
processor and 256 Mbytes of main memory. Thus, a typical time
for detection including local search is about 4–5 min. This is
longer than methods that do not handle geometric distortions,
but certainly faster than resorting to exhaustive search. The de-
tection output in the result diagrams, is always calculated for the
correct dimensions, center and orientation of the watermark, and
for the region that provides the maximum output, for each key,
among all selected regions. The results are also normalized by
dividing the detector output by . As expected due to masking,
as well as due to the fact that the distribution is not normal any-
more, after normalization the output is different than 1.

In order to decide for an efficient detection threshold indi-
cating watermark existence for any considered attack case, we
follow an experimental approach. One-hundred watermarks are
embedded and detected after several attacks on both the orig-
inal and the respective watermarked images. Both of the exper-
imental distributions, for every image and every attack, are ap-
proximated by normal distributions. The average value of the
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Fig. 2. (a) Watermarked images. (b) Largest regions of the segmented images. (c) Ellipsoid approximation of the regions in (b). (d) Experimental distributions
of the normalized detector output.

means of each pair of distributions is considered a good detec-
tion threshold for the certain attack on the certain image. How-
ever, in order for the threshold to be applicable for many attacks
and images, the mean value of the acceptable thresholds is con-

sidered as the common threshold for watermark detection. This
threshold can be computed after performing the attacks for a
training set of images. This was the approach that was followed
in our experiments.
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Fig. 3. (a) Median 3� 3 filtered watermarked images. (b) Largest regions of the segmented images. (c) Ellipsoid approximation of the regions in (b).
(d) Experimental distributions of the normalized detector output.

From a different viewpoint, a multimodal fusion technique for
detection could be employed, where the image regions would
correspond to the various detection “experts” that can be em-
ployed in order to decide about the presence of a watermark.

Different weighting factors can be assigned to the several ex-
perts according to their significance in the detection process,
which is decided after the appropriate training. Properties such
as region compactness, size and distance from the image bound-
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Fig. 4. (a) Multiplicative Gaussian noise on watermarked images. (b) Largest regions of the segmented images. (c) Ellipsoid approximation of the regions in (b).
(d) Experimental distributions of the normalized detector output.

aries can be used to decide on the significance factors of the
several regions. This helps to compensate for cases when some
regions have been seriously distorted while others are not sig-
nificantly affected.

We choose not to use masking in the detection stage, because
the local variance may have changed significantly due to manip-
ulations. The response is thus computed over the entire expected
area of the embedded watermark.
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Fig. 5. (a) JPEG compressed watermarked images (quality 60%). (b) Largest regions of the segmented images. (c) Ellipsoid approximation of the regions in (b).
(d) Experimental distributions of the normalized detector output.

VI. EXPERIMENTAL RESULTS

We tested the robustness of our approach by applying sev-
eral processing attacks on numerous images. We present some
results on four of them, namely, “Lena,” “Baboon,” “Peppers”

(all of size 512 512), and “Southwell,” which is a 800 800
part of a painting by Hans Holbein the Younger.

The detection threshold was decided by considering several
attacks on two images acting as a training set, namely, “Lena”
and “Peppers.” The mean of the thresholds found for each attack
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Fig. 6. (a) Scaled watermarked images. (b) Largest regions of the segmented images. (c) Ellipsoid approximation of the regions in (b). (d) Experimental
distributions of the normalized detector output.

on each of these images, was defined as the common threshold.
Detection was performed over two or three regions for each
image. Table I shows the false acceptance ratio (FAR) and the
false rejection ratio (FRR) for several attacks on the training

set of images, as well as on the “Southwell” image, considering
a common threshold of 0.4871. The size of the prototype wa-
termark is 128 128, the watermark power is and the
chaotic parameter is . The normalized threshold vari-
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Fig. 7. (a) Rotated watermarked images. (b) Largest regions of the segmented images. (c) Ellipsoid approximation of the regions in (b). (d) Experimental
distributions of the normalized detector output.

ance for masking was chosen . Peano scan as well
as subsequent cellular smoothing were employed before embed-
ding the watermark in order to retain its lowpass properties. The
fact that some of the embedding regions are rather small, results

in somehow increased values for FAR or FRR after some ma-
nipulation. An attempt to assess the minimum size of input data
set that ensures a certain probability of false alarm during de-
tection can be found in [27].
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Fig. 8. (a) Cropped watermarked images. (b) Largest regions of the segmented images. (c) Ellipsoid approximation of the regions in (b). (d) Experimental
distributions of the normalized detector output.

Figs. 2–8 illustrate sample results of the region approxima-
tion and watermark detection procedure on two of the images
under concern, “Southwell” and “Baboon.” The PSNR level
considering the total watermarked area was 41.18 dB for the

first image and 40.39 dB for the second one, stating that the dis-
tortion imposed by the watermark was hardly noticeable. The at-
tacks studied were 3 3 median filter, multiplicative Gaussian
noise having standard deviation , JPEG compression
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of quality 60%, scaling by a factor 1.25 for both dimensions,
rotation by 12 and, finally, asymmetric cropping to a size of
600 700 for “Southwell” and to 400 450 for “Baboon.”
In Figs. 2(a)–8(a) the final images after being watermarked and
attacked are shown. In Figs. 2(b)–8(b) the two largest regions
for each image are shown. Figs. 2(c)–8(c) show their respective
ellipsoid approximations. Finally, Figs. 2(d)–8(d) show the ex-
perimental distributions for detecting 100 different watermarks
on the original image undergone the attack, and on the correctly
watermarked image undergone the same attack. The vertical
axis shows the number of watermarks that give a certain detector
output, and the horizontal axis shows the detector output values.
Similar results were obtained for the other images under test.
The results denote the fact that though the geometric handling of
the prototype watermark ensured the robustness of the method to
certain geometric manipulations, notably rotation, scaling, crop-
ping, and translation, the watermark proved to be robust to other
attacks like compression and filtering. However, nonaffine geo-
metric distortions, like the one introduced by Stirmark, could
not be coped efficiently, since they distort the image regions and
their parameters. Thus, the correct position of the watermark is
impossible to recover after such an attack.

VII. CONCLUSIONS ANDFUTURE WORK

In this paper, we developed a method for embedding and de-
tecting chaotic watermarks in large images. An adaptive clus-
tering technique is employed in order to derive a robust region
representation of the original image. The robust regions are ap-
proximated by ellipsoids, whose bounding rectangles are chosen
as the embedding area for the watermark. The prototype water-
mark used for embedding is chosen to be a chaotic one, modified
in such a way as to retain certain lowpass properties. The wa-
termark is geometrically adapted before embedding, using the
orientation, center coordinates and dimensions of the bounding
rectangle. A hypothesis testing detector is employed in order to
decide about the presence of a potential watermark. A visual
masking technique is added in order to avoid annoying artifacts
imposed by the embedded watermark. Experimental results dis-
play the robustness of the method for a variety of images. Future
directions of the current work include development of more ro-
bust techniques for salient feature extraction, improvement of
the watermark detection stage performance, as well as exami-
nation of alternative chaotic generators that may perform better
than the one employed in this work.
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