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Abstract

Two well-known variants of the self-organizing map (SOM) that are based on order statistics are the marginal median SOM and the vector
median SOM. In the past, their efficiency was demonstrated for color image quantization. We employ the well-known IRIS and VOWEL data
sets and we assess the SOM variants’ performance with respect to the accuracy, the average over all neurons mean squared error between the
patterns that were assigned to a neuron and the neuron’s weight vector, the Rand index, the Γ statistic, and the overall entropy. All figures
of merit favor the marginal median SOM and the vector median SOM against the standard SOM. Based on the aforementioned findings, the
marginal median SOM and the vector median SOM are used to redistribute emotional speech patterns from the Danish Emotional Speech
database that were originally classified as being neutral to the emotional states of hot anger, happiness, sadness, and surprise.

Key words: Self-organizing map (SOM), Marginal Median SOM, Vector Median SOM, Emotional speech patterns, Danish Emotional Speech (DES) database.

1. Introduction

The neural networks constitute a powerful tool in pattern
recognition. They have been an active research area for the
past three decades due to their wide range of applications [1].
The self-organizing map (SOM) establishes a mapping from
the input data space onto a low dimensional lattice of nodes so
that a number of topologically ordered and well defined neuron
prototypes is produced. The nodes are organized on a map
and they compete in order to win the input patterns [2]. The
SOM is among the most popular neural networks. A number
of 5384 related papers are reported [3,4]. Recent applications
of SOM include exploratory analysis of high-dimensional data
[5,6], human posture classification [7], and clustering [8,9] to
mention a few.

We are interested in the class of SOM training algorithms
that employ multivariate order statistics, such as the marginal
median and the vector median [10]. These SOM variants as
well as the standard SOM, that is trained with the batch al-
gorithm (to be referred to as SOM hereafter), are applied to
pattern clustering. The novel contribution of this work is in
the assessment of SOM training algorithms in clustering with

∗ Corresponding author.
Email addresses: vmoshou@aiia.csd.auth.gr (Vassiliki

Moschou), jimver@aiia.csd.auth.gr (Dimitrios Ververidis),
costas@aiia.csd.auth.gr (Constantine Kotropoulos).

respect to the accuracy, the average over all neurons mean
squared error, the Rand index, the Γ statistic, and the overall
entropy. The superiority of the studied SOM variants against
the SOM is demonstrated by experiments carried out using the
well-known IRIS data and VOWEL data [11]. We also compare
the SOM variants under study with the SOM in the redistribu-
tion of emotional speech patterns from the Danish Emotional
Speech (DES) database [12], that were originally classified as
being neutral, into the emotional states of hot anger, happiness,
sadness, and surprise. The latter experiment is motivated by the
following facts. First, on the one hand, there are emotional fa-
cial expression databases such as the Action-Unit coded Cohn-
Kanade database [13] where the neutral emotional class is not
represented adequately. Accordingly, facial expression patterns
are not assigned to the neutral emotional class [14]. On the
other hand, for the emotional speech databases, there are ut-
terances regularly classified as neutral. Accordingly, when the
neutral class is not represented in one modality it is difficult to
develop multimodal emotion recognition algorithms using fea-
ture fusion. Second, it is frequent that the ground truth infor-
mation related to emotions provided by the human evaluators
is biased towards the neutral class. Therefore, the patterns clas-
sified as neutral might be needed to be redistributed among the
non-neutral classes to enable further experimentation.

The outline of this paper is as follows. Section 2 describes
briefly the standard SOM and the batch training algorithm, as
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well as the SOM variants tested, namely the marginal median
SOM (MMSOM) and the vector median SOM (VMSOM). In
section 3, we define mathematically the evaluation measures
employed, i.e. the accuracy, the average over all neurons mean
squared error, the Rand index, the Γ statistic, and the overall en-
tropy. This section also describes the Kuhn-Munkres algorithm
[15] and how it is used to calculate the SOM accuracy. In sec-
tion 4, the data, we worked on, are discussed. In section 5, the
experimental results for clustering the IRIS and VOWEL data
using the SOM, the MMSOM, and the VMSOM are demon-
strated. Furthermore, figures of merit are presented and dis-
cussed for the redistribution of neutral speech patterns into four
non-neutral emotional classes using the SOM, the MMSOM,
and the VMSOM on the DES data. Finally, conclusions are
drawn in section 6.

2. Self-organizing map and its variants

2.1. Self-organizing map (SOM)

The SOM forms a nonlinear mapping of an arbitrary D-
dimensional input space onto a low (usually 2 or 3) dimen-
sional lattice of nodes (the map). Each node is associated with
a weight vector w = (w1, w2, . . . , wD)T in the input space.
The SOM is trained iteratively and the weight vectors are up-
dated properly so that the nodes move to form clusters [16].
The SOM training algorithm has two steps: winner selection
and weight adaptation. In the winner selection step, the map
nodes (neurons) compete each other in order to be activated by
winning the input patterns. Only one neuron wins at each itera-
tion and becomes the winner or the best matching unit (BMU)
[17]. In the weight adaptation step, the weight vector of every
map neuron is updated by moving towards the input pattern.
The amount of adaptation depends on how close each neuron
is to the winner on the map. Hence, the map adapts to the input
patterns in an ordered fashion.

Let us denote by xj the jth D-dimensional input pattern and
by wi the ith D-dimensional weight vector. The weight vec-
tor initialization precedes both the winner selection and the
weight adaptation steps and is crucial for the algorithm perfor-
mance. Several initialization algorithms have been developed.
For example, the linear initialization algorithm calculates the
two eigenvectors that correspond to the two largest eigenvalues
of the covariance matrix of the input patterns, and defines the
hyperplane on which the neuron grid lies onto. The eigenvec-
tors can be calculated using the Jacobbi transformation algo-
rithm or the Givens and Householder reduction algorithm [18].
The sample initialization algorithm initializes the weight vec-
tors with random samples from the input data set, while the
random initialization algorithm with small random values [17].
In our experiments, the linear initialization algorithm was used.

The weight vectors wi define the Voronoi tessellation of the
input space [1,2,19]. Each Voronoi cell is represented by its
centroid that becomes the corresponding weight vector wi. In
the winner selection step, each input pattern xj is assigned to a
Voronoi cell based on the nearest neighbor condition. That is,

the BMU index, c(j), of the input pattern xj is defined by

c(j) = arg min
i
{‖xj − wi‖} (1)

where ‖.‖ denotes the Euclidean distance. Accordingly, the
SOM can be treated as a vector quantization method [20]. Due
to the fact that the input patterns xj are random vectors, the
quantization error ‖xj − wi‖ is also a random variable [21].
Furthermore, provided that the weight density is proportional to
the input density, the map can be regarded as a non-parametric
model of the input density P(x). When the number of neurons
is large, P(x) is approximately constant in the Voronoi region
of the neuron that has won the pattern [21].

The most important step of the SOM algorithm is the weight
adaptation. The neurons are related by a neighborhood func-
tion dictating the structure of the map (topology). The neigh-
borhood function determines how strongly the neurons are re-
lated to each other [1]. At each training step, the neuron up-
dating depends on the neighborhood function, whose purpose
is to correlate the directions of the weight updates of a large
number of neurons around the BMU [21]. The larger the neigh-
borhood the more rigid the SOM is. A variety of neighborhood
functions can be used. The neighborhood function can be de-
fined to be decreasing or constant around the winner neuron.
A Gaussian kernel can also be used. However, the latter kernel
is computationally demanding, due to the exponential function
that should be calculated. The Gaussian kernel can be approxi-
mated well by the bubble neighborhood function, which is sim-
pler. Using the bubble neighborhood function, every neuron in
the winner neighborhood is updated by the same proportion of
the difference between the neuron and the incoming pattern.
The Gaussian kernel was used for training in our experiments.
The Gaussian neighborhood around the winner neuron c(j) is
defined as [17]

hic(j)(t) = exp−d2
ic(j)/2σ2

t (2)

where dic(j) = ‖rc(j) − ri‖ is the distance between map units
c(j) and i on the map grid and σt is the neighborhood radius
at time t.

To update the winner neurons and their neighbors either a
Least Mean Squared (LMS) type adaptation rule [1] or a batch
algorithm can be employed. We are interested in the latter. In
the batch training algorithm, for a fixed training set {xj} of N
patterns, we keep record of the weight updates, but their ad-
justment is applied only after all training samples have been
considered. The algorithm does not depend on the order of
presentation of input patterns. The learning stops when a pre-
determined number of iterations is reached [21]. At each train-
ing iteration, the BMU of each pattern is determined. After-
wards, all neurons that belong to the BMU neighborhood are
updated. The updating rule of the ith weight vector wi is com-
puted as [1,17]

wi(t + 1) =

∑M
j=1 hic(j)(t) xj∑M

j=1 hic(j)(t)
(3)

where M denotes the number of patterns xj that have been
assigned to the ith neuron up to the tth iteration.
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The training is performed in two phases, namely the rough
training and the fine tuning phases. In the rough training phase,
large initial neighborhood radius σ0 is used, in order to have
a rigid SOM, that decreases through time. In the fine tuning
phase, the neighborhood radius is initially small and shrinks as
time passes [2,17]. This corresponds to first tuning the SOM
to the input data and then to fine tuning the map. Neurons
that belong to the BMU’s neighborhood are closer to the BMU
and are updated more than others. As the distance from the
BMU increases the updating quantity decreases. Concerning
the neighborhood, as its range is decreased, so does the number
of neurons whose weight update direction is correlated. As a
result, neighboring neurons will be specialized for similar input
patterns [21]. The topological information of the map ensures
that neighboring neurons on the grid possess similar attributes.
When the SOM utilizes an one-dimensional map and the degree
of neighborhood is zero, SOM equals to an online learning
variance of the k-means algorithm [22].

It must be mentioned that, due to neighborhood shrinking
that is performed through time, it is usual for a SOM to have
“dead” units. The “dead” units are neurons which subsequently
fail to be associated with any of the input patterns. The “dead”
neurons have a zero (or very low) probability to be activated
[21].

2.2. SOM variants based on order statistics

The SOM has some disadvantages, such as lack of robustness
against outliers and against erroneous choices for the winner
vector due to the linear estimators, e.g. (3) [10]. In order to
deal with these problems, variants of the standard SOM that
employ multivariate order statistics (OS) can be used.

The SOM variants that are based on multivariate OS differen-
tiate in the way they update the weight vectors. The MMSOM
updates the weight vectors using the marginal median, while
the VMSOM applies the vector median [10,19]. In contrast, the
SOM calculates the weighted mean of the input patterns, as can
be seen in (3). The MMSOM and the VMSOM treat efficiently
the outliers, because they inherit the robustness properties of
the OS [10,19]. The MMSOM has been successfully applied to
color image quantization [10] and document organization and
retrieval [24]. Another recent application of the MMSOM is in
grouping and visualization of human endogenous retroviruses
[25].

In subsections 2.2.1 and 2.2.2, Ri(t) denotes the input pat-
terns assigned to the ith neuron until the tth iteration and x(t)
denotes the input pattern assigned to the neuron at the tth iter-
ation.

2.2.1. Marginal median SOM
The MMSOM updates the weight vectors of the neurons

that belong to the neighborhood of the BMU. It calculates
the marginal median of all patterns assigned to a neuron.
The MMSOM relies on the concept of marginal ordering.
The marginal ordering of M input patterns x1,x2, . . . ,xM ,
where xj = (x1j , x2j , . . . , xDj)T , is performed by ordering

the pattern components independently along each of the D
dimensions [10,19]

xq(1) ≤ xq(2) ≤ · · · ≤ xq(M), q = 1, 2, . . . ,D (4)

with q denoting the pattern component index. The updated neu-
ron weights emerge from the calculation of the marginal me-
dian of the patterns indexed by the ith neuron weighted by a
factor that dictates the neighborhood. The marginal median is
defined by [26]

marginal median {x1,x2, . . . ,xM} =

=

⎧⎨
⎩(

x1(v) + x1(v+1)

2
, . . . ,

xD(v) + xD(v+1)

2
)T , if M = 2v

(x1(v+1), . . . , xD(v+1))T , if M = 2v + 1
(5)

where M denotes the number of patterns assigned to the neuron.
The ith neuron is updated by

wi(t + 1) = hic(x(t))(t) marginal median {Ri(t) ∪ x(t)}.
(6)

2.2.2. Vector median SOM
The VMSOM updates the weight vectors of the neurons that

belong to the neighborhood of the BMU. It calculates the vector
median of the patterns assigned to a neuron. The vector median
operator is the vector that belongs to the set of input vectors
assigned to the ith neuron, which is the closest one to all the
current input patterns. The vector median of M input patterns
x1,x2, . . . ,xM is defined by [27]

vector median {x1,x2, . . . ,xN} = xl

where l = arg min
k

N∑
j=1

|xj − xk|. (7)

The ith neuron is updated by

wi(t + 1) = hic(x(t))(t) vector median {Ri(t) ∪ x(t)}. (8)

3. Clustering evaluation measures

Five measures are employed in order to assess the perfor-
mance of the SOMs under study, namely the accuracy, the av-
erage over all neurons mean squared error, the Rand index, the
Γ statistic, and the overall entropy. Let
– Nf be the total number of classes the patterns are initially

grouped into according to the ground truth;
– Nc be the total number of clusters created by the SOMs;
– N be the total number of patterns;
– nij be the total number of patterns in cluster i that belong

to class j;
– ni. be the total number of patterns in cluster i;
– n.j be the total number of patterns that belong to class j;
– Mc be the number of combinations of two patterns that can

be taken out from the input data set;
Equations (9)-(12) indicate the relations between the afore-

mentioned variables:
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ni. =
Nf∑
j=1

nij (9)

n.j =
Nc∑
i=1

nij (10)

N =
Nc∑
i=1

Nf∑
j=1

nij (11)

Mc =
N(N − 1)

2
. (12)

3.1. Accuracy

Let T be the total number of patterns that compose the test
set and δ(x, y) be the delta Kronecker which equals 1 if x = y
and 0 otherwise. The accuracy of the assignment performed by
the SOM is defined as [28]

AC =
1
T

T∑
j=1

δ(g(xj),map(φ(xj))) (13)

where g(xj) is the true label of pattern xj , φ(xj) is the label
assigned to xj by the SOM or its variants, and map(vi) is
the optimal matching, which maps the label assigned to the
pattern onto the ground truth labels. The optimal matching can
be derived by the Kuhn-Munkres algorithm [15].

The problem solved by the Kuhn-Munkres algorithm is stated
as follows. Let us denote V = {vi} and U = {ui}, where
i = 1, 2, . . . , Nc with Nc being the number of nodes. Consider
a complete weighted bipartite graph G = (V

⋃
U, V ×U). The

weight of the edge (vi, ui) is denoted by ξ(vi, ui). The goal is
to find the optimal matching from V to U , that is the matching
with the maximum sum of the edge weights that belong to it.

Mathematically, given an Nc × Nc weight matrix Ξ, which
represents the graph G, a permutation π of 1, 2, . . . , Nc must
be found so that the following sum

Nc∑
i=1

ξ(vi, uπ(i)) (14)

is maximized. The resulted set of edges is the optimal matching.
A graph that is not complete, it must be forced to become a
complete one, by adding zeros for the non-existing edges in the
weight matrix Ξ.

Let us explain the use of the Kuhn-Munkres algorithm in the
calculation of the SOM clustering accuracy. The accuracy of
the assignment performed by the SOM is defined by (13). It is
assumed that the patterns must be clustered into Nc clusters.
That is, the number of nodes of the graph G is Nc. Ideally,
Nc should equal Nf . The weight ξ(vi, ui) assigned to the edge
(vi, ui) corresponds to the profit made out, if the label assigned
by the SOM is vi and the ground truth class label is ui. The
purpose is to maximize the profit. Obviously, if the two labels
are the same, the profit is maximized.

The input to the Kuhn-Munkres algorithm is a Nc × Nc

weight matrix Ξ. Let ξ(i, i) = 1, when i = 1, 2, . . . , Nc, and

ξ(i, j) = −1, when j = 1, 2, . . . , Nc and i �= j. Negative
profit is made out when the labels assigned by the SOM differ
from the actual ground truth labels (alternatively, a low profit
value could be used instead of −1). For the IRIS data, the
ground truth labels and the labels assigned by the SOM are 0,
1, and 2 (section 5), while for the VOWEL data the labels are
integers between 1-15. The weight matrix Ξ provided as input
to the Kuhn-Munkres algorithm for the IRIS data is shown
in Table 1. Rows represent the labels assigned by the SOM,
while columns represent the ground truth labels.

Table 1
Weight matrix Ξ provided as input to the Kuhn-Munkres algorithm for the
IRIS data set.

Labels u1 u2 u3

v1 1 -1 -1

v2 -1 1 -1

v3 -1 -1 1

The output of the algorithm is the optimal matching, repre-
sented by a Nc × Nc matrix OM . OM(i, j) equals 1 if the
edge (vi, uj) belongs to the optimal matching, otherwise it
equals 0. Table 2 shows the optimal matching OM derived
by the Kuhn-Munkres algorithm on the IRIS data. As it was
expected, if the actual ground truth label coincides with the
label assigned by the SOM, the corresponding edge belongs to
the optimal matching.

Table 2
The optimal matching OM derived by the Kuhn-Munkres algorithm on the
IRIS data.

Labels u1 u2 u3

v1 1 0 0

v2 0 1 0

v3 0 0 1

3.2. Average over all neurons Mean Squared Error (AMSE)

In order to set the definition of the AMSE, we must first
define the Mean Squared Error (MSE). The MSE of one neuron
is the mean value of the Euclidean distances between its weight
vector and all the patterns assigned to it. Mathematically, the
MSE of the neuron wi is calculated as follows:

MSEi =
1
M

M∑
j=1

‖xj[i] − wi‖2 (15)

where M is the total number of patterns assigned to the ith
neuron and xj[i] ∈ Ri(t) is the j-th pattern assigned to this
neuron. The average over all neurons MSE, which from now
on will be referred to as AMSE, is the average value of MSEi

for all the neurons of the map

AMSE =
1
K

K∑
i=1

MSEi (16)
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where K is the total number of the map neurons.

3.3. Rand index

The Rand index is a widely used cluster validity measure
in partitional structures [29]. In order to validate the clustering
structure C derived by the SOMs, a partition P of the data (i.e.
the ground truth) must be available. The Rand index indicates
the number of input patterns that are either from the same class
(according to P) but are not grouped into the same cluster
(according to C), or that are not from the same class but are
grouped into the same cluster. The Rand index is defined as
follows [29, p. 173-174]:

γ = 1 +
1

Mc

[
Nc∑
i=1

Nf∑
j=1

n2
ij −

1
2

Nc∑
i=1

n2
i. −

1
2

Nf∑
j=1

n2
.j

]
(17)

The Rand index admits values in the range [0,1]. High value
of the Rand index implies close agreement between C and P .
A perfect clustering (i.e. γ = 1) may not be achievable, when
C and P have different number of clusters/classes [29].

3.4. Γ statistic

The Γ statistic is a special case of Hubert’s Γ statistic [29].
It follows the idea of partitional structure validity. That is, the
ground truth of the data P must be available to be compared
with the clustering C derived by the SOM or its variants. Let
us define the following auxiliary variables:
– a = 1

2

∑Nc

i=1

∑Nf

j=1 n2
ij − (N/2);

– b = 1
2

∑Nf

j=1 n2
.j − 1

2

∑Nc

i=1

∑Nf

j=1 n2
ij ;

– c = 1
2

∑Nc

i=1 n2
i. − 1

2

∑Nc

i=1

∑Nf

j=1 n2
ij ;

– m1 = a + b;
– m2 = a + c;

The Γ statistic calculates the correlation between the two
partitions. It is defined as follows [29]:

Γ =
(Mc a − m1m2)

[m1m2 (Mc − m1) (Mc − m2)]1/2
(18)

Since the Γ statistic is a correlation coefficient, its value ranges
between -1 to 1. A high value of the Γ statistic implies high
correlation between C and P and thus a good clustering result.

3.5. Overall entropy (OE)

In order to define the OE, we must first define the cluster
entropy and the class entropy. The quality of a clustering struc-
ture C can be evaluated according to the ground truth labels
of patterns P . For each cluster, ci, the cluster entropy Eci

is
computed by [22]

Eci
= −

Nf∑
j=1

nij

ni.
log

nij

ni.
(19)

The overall cluster entropy Ec is given by the weighted sum
of the individual cluster entropies [22]

Ec =
1
N

Nc∑
i=1

ni. Eci
(20)

The cluster entropy reflects the quality of individual clusters in
terms of the homogeneity of the patterns in a cluster. It admits
values in the range [0,1]. Low values of the cluster entropy
indicate high homogeneity. However, the cluster entropy does
not measure the cluster compactness in terms of the number of
clusters generated. Some clustering algorithms might produce
many clusters, which leads to low cluster entropy values, but is
not usually desirable. For this reason, the overall class entropy
is used to measure how the patterns of the same class are repre-
sented by the clusters created. Similarly to the cluster entropy,
the overall class entropy El is defined as [22]

El =
1
N

Nf∑
j=1

n.j Elj (21)

where Elj is the class entropy for class j is given by [22]

Elj = −
Nc∑
i=1

nij

n.j
log

nij

n.j
(22)

The class entropy also admits values in the range [0,1]. The
overall entropy is defined as

OE = βEc + (1 − β)El (23)

with β ∈ [0, 1] functioning as a weight parameter that balances
cluster and class entropies. In our experiments, β was chosen to
be 0.5. Low OE values indicate better clustering performance
than high OE values.

4. Data

The well-known IRIS data was used in order to evaluate the
performance of the algorithms for clustering. The IRIS data
records information about 150 flower patterns [30]. Each pat-
tern is characterized by 4 features namely the sepal length, the
sepal width, the petal length, and the petal width. The pat-
terns are classified into 3 classes called Setosa, Versicolor, and
Virginica. The most important feature of the IRIS data is the
ground truth of the patterns, i.e. the actual class each pattern is
classified to.

It must be noted that the IRIS data set does contain outliers
for unsupervised learning, as can be seen in Figure 1. Accord-
ingly, this data set is appropriate for studying the role of the
outliers in clustering. This is not the case for supervised learn-
ing [31, p.346]. Furthermore, the IRIS data set is widely used
in clustering applications reported to bibliography [32].

In addition, the VOWEL data was also used for experiments.
The VOWEL data records information about the 11 steady state
vowels of British English, namely i, I, E, A, Y, a, O, o, U, u,
and e [11]. There are fifteen individual speakers, each saying
each vowel six times. For each utterance, 10 linear prediction
coefficients-derived log area ratios have been extracted. The

5



ground truth information, that is the vowel that corresponds to
each feature vector, is available.

Motivated by the observations made on IRIS and VOWEL,
we shall compare the SOM variants against the SOM for the re-
distribution of neutral emotional speech patterns from the DES
database [12] into non-neutral emotional states. We decided to
work on the DES database, because it is easily accessible and
well annotated. A number of 1160 emotional speech patterns
are extracted. Each pattern consists of a 90-dimensional feature
vector [33]. Each emotional pattern is classified into one of the
five primitive emotional states, such as hot anger, happiness,
neutral, sadness, and surprise. The ground truth for all patterns
is also available.
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Fig. 1. Petal width vs petal length for IRIS data.

5. Experimental Results

The performance of the SOM, the MMSOM, and the VM-
SOM on clustering was demonstrated through all the evaluation
measures. Two experiments were carried out. In the first exper-
iment we worked on the IRIS data. The training set consists of
120 randomly selected patterns, while the test set is composed
by the 30 remaining patterns. For the second experiment, the
VOWEL data was used. To create the training set, we use 44
feature vectors for each speaker, while the remaining 22 feature
vectors of each speaker are used for testing. The accuracy, the
AMSE, the Rand index, the Γ statistic, and the OE were mea-
sured using 30-fold cross validation for different map sizes. For
a high quality clustering, as the number of the map neurons in-
creases, the accuracy and the Γ statistic should increase, while
the AMSE, the Rand index, and the OE should decrease.

Tables 3, 4, and 5 summarize the accuracy, the AMSE, the
Rand index, the Γ statistic, and the OE of the SOM, the MM-
SOM, and the VMSOM, respectively, using different map sizes
on the IRIS data. The results presented are averaged over the
30 cross validations. The best performance concerning all eval-
uation measures is indicated in boldface.

As it can be noticed from Tables 3, 4, and 5, the MMSOM
yields the best behavior concerning all the evaluation mea-
sures compared to the SOM and the VMSOM. In detail, the
MMSOM yields the best accuracy (97.77%), the VMSOM

follows (97.22%), while the SOM has the worst behavior with
respect to the accuracy (94.44%). The best value for the Γ
statistic (0.9353) is measured for the MMSOM. The Γ statistic
values measured for the VMSOM and the SOM are 0.9177
and 0.8498, respectively. The same ordering between the three
SOMs stands also with respect to the Rand index. Furthermore,
the smallest AMSE is measured for the MMSOM (0.20). The
VMSOM yields a larger AMSE than the MMSOM (0.23), and
the SOM exhibits the worst performance with respect to the
AMSE (0.45). Finally, the smallest OE value is demonstrated
by the MMSOM (0.0458). The smallest OE values measured
for the VMSOM and the SOM are 0.0567 and 0.0765, respec-
tively. The best values for all the evaluation measures emerge
for a 4 × 4 map.

Table 3
Accuracy, AMSE, Rand index, Γ statistic, and OE of the SOM for different
map sizes on the IRIS data.
Neurons SOM

AC(%) AMSE Rand Γ OE

3 (2 × 2) 81.88 1.65 0.9884 0.6488 0.1302

4 (2 × 2) 82.22 1.66 0.9890 0.6427 0.1298

5 (3 × 2) 89.88 1.29 0.9928 0.7601 0.1228

6 (3 × 2) 91.66 1.25 0.9939 0.7807 0.1146

7 (4 × 2) 93.88 0.71 0.9955 0.8388 0.0876

8 (4 × 2) 83.66 1.17 0.9898 0.6281 0.1360

9 (3 × 3) 84.44 1.21 0.9904 0.6496 0.1396

10 (3 × 3) 84.88 1.13 0.9902 0.6553 0.1363

11 (4 × 3) 90.88 0.57 0.9936 0.7650 0.0952

12 (4 × 3) 91.11 0.53 0.9938 0.7729 0.0898

16 (4 × 4) 94.44 0.45 0.9958 0.8498 0.0765

Table 4
Accuracy, AMSE, Rand index, Γ statistic, and OE of the MMSOM for
different map sizes on the IRIS data.
Neurons MMSOM

AC(%) AMSE Rand Γ OE

3 (2 × 2) 88.88 0.53 0.9925 0.7287 0.1077

4 (2 × 2) 89.66 0.53 0.9925 0.7287 0.1077

5 (3 × 2) 96.44 0.33 0.9972 0.904 0.0515

6 (3 × 2) 96.55 0.34 0.9972 0.8988 0.0484

7 (4 × 2) 96.66 0.34 0.9974 0.9106 0.0489

8 (4 × 2) 96.44 0.23 0.9973 0.9024 0.0461

9 (3 × 3) 97.00 0.26 0.9977 0.9150 0.0507

10 (3 × 3) 96.11 0.25 0.9969 0.8888 0.0491

11 (4 × 3) 96.66 0.23 0.9975 0.9112 0.0541

12 (4 × 3) 96.44 0.22 0.9973 0.9005 0.0510

16 (4 × 4) 97.77 0.20 0.9982 0.9353 0.0458

The Student t-test for unequal variances [18] has been used
to check whether the difference between the mean accuracies
achieved by the following algorithm pairs (SOM, MMSOM),
(SOM, VMSOM), and (MMSOM, VMSOM) is statistically
significant at the 95% level of significance in a 30-fold cross
validation experiment with a 4× 4 map. The same assessment
has also been performed for the AMSE, the Rand index, the
Γ statistic, and the OE. It was proven that the differences are
statistically significant.
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Table 5
Accuracy, AMSE, Rand index, Γ statistic, and OE of the VMSOM for
different map sizes on the IRIS data.
Neurons VMSOM

AC(%) AMSE Rand Γ OE

3 (2 × 2) 89.88 0.53 0.9932 0.7455 0.1152

4 (2 × 2) 88.66 0.56 0.9923 0.7234 0.1140

5 (3 × 2) 95.55 0.41 0.9965 0.8749 0.0681

6 (3 × 2) 94.55 0.42 0.9957 0.8432 0.0647

7 (4 × 2) 93.88 0.35 0.9957 0.8465 0.0694

8 (4 × 2) 96.55 0.29 0.9973 0.9031 0.0588

9 (3 × 3) 96.44 0.28 0.9972 0.8971 0.0584

10 (3 × 3) 96.33 0.31 0.9971 0.8931 0.0534

11 (4 × 3) 95.88 0.26 0.9969 0.8841 0.0585

12 (4 × 3) 96.22 0.25 0.9971 0.8959 0.0598

16 (4 × 4) 97.22 0.23 0.9977 0.9177 0.0567

The superiority of the MMSOM and the VMSOM compared
to the batch SOM is demonstrated on the VOWEL data set for
different map sizes in Tables 6 - 8. The experimental findings
reveal that VMSOM yields the best clustering.

Table 6
Accuracy, AMSE, Rand index, Γ statistic, and OE of the SOM for different
map sizes on the VOWEL data.
Neurons SOM

AC(%) AMSE Rand Γ OE

110 44.04 1.49 0.9078 0.2228 0.5893

120 46.75 1.45 0.9048 0.2318 0.6067

130 49.20 1.4022 0.9066 0.2536 0.5841

140 51.16 1.35 0.9102 0.2690 0.5666

150 53.75 1.31 0.9121 0.2916 0.5506

160 52.58 1.25 0.9096 0.2769 0.5573

170 55.87 1.22 0.9144 0.3131 0.5247

180 57.54 1.22 0.9175 0.3314 0.5133

Table 7
Accuracy, AMSE, Rand index, Γ statistic, and OE of the MMSOM for
different map sizes on the VOWEL data.
Neurons MMSOM

AC(%) AMSE Rand Γ OE

110 53.54 1.02 0.9113 0.2920 0.5455

120 55.12 1.01 0.9122 0.3039 0.5274

130 56.33 0.99 0.9135 0.3183 0.5188

140 57.37 0.98 0.9161 0.3340 0.5046

150 59.62 0.95 0.9198 0.3596 0.4786

160 58.20 0.95 0.9168 0.3330 0.5044

170 58.87 0.95 0.9172 0.3435 0.4918

180 61.45 0.94 0.9215 0.3679 0.4761

As it can be noticed form Tables 4, 5, 7, and 8 both the MM-
SOM and the VMSOM have similar values that do not change
significantly with the map size, concerning all the evaluation
measures. In contrast, the SOM values (Tables 3 and 6) change
significantly with the map size compared to the MMSOM and
the VMSOM. This fact can be explained by the number of
“bad” neurons of each SOM. Let us denote by µ, σ, and M
the mean number of patterns, the standard deviation, and the
exact number of patterns that a neuron wins during training.

Table 8
Accuracy, AMSE, Rand index, Γ statistic, and OE of the VMSOM for
different map sizes on the VOWEL data.
Neurons VMSOM

AC(%) AMSE Rand Γ OE

110 58.62 1.12 0.9169 0.3424 0.5019

120 59.83 1.07 0.9182 0.3558 0.4887

130 61.95 1.03 0.9213 0.3765 0.4715

140 62.95 1.02 0.9227 0.3896 0.4556

150 64.79 0.97 0.9272 0.4185 0.4375

160 66.20 0.96 0.9290 0.4294 0.4286

170 66.45 0.96 0.9290 0.4319 0.4239

180 66.83 0.93 0.9298 0.4383 0.4150

The “bad” neurons are those for which the following inequal-
ity holds: M < µ − σ. Tables 9 and 10 present the number of
“bad” neurons of each SOM for different map sizes on the IRIS
and VOWEL data, respectively. It is obvious that the number
of “bad” neurons for the SOM gets very large with increasing
map size, causing the significant difference of its performance
compared to the SOM variants. For both the MMSOM and the
VMSOM, the number of “bad” neurons is smaller for all map
sizes, which explains their superior objective figures of merit
than those of SOM.

Table 9
Number of “bad” neurons for different SOM sizes for the IRIS data.
Neurons SOM MMSOM VMSOM

3 (2 × 2) 2 2 0

4 (2 × 2) 2 2 0

5 (3 × 2) 4 3 0

6 (3 × 2) 4 3 0

7 (4 × 2) 4 2 1

8 (4 × 2) 7 2 0

9 (3 × 3) 7 2 0

10 (3 × 3) 7 2 0

11 (4 × 3) 7 5 2

12 (4 × 3) 8 5 1

16 (4 × 4) 8 4 5

Table 10
Number of “bad” neurons for different SOM sizes for the VOWEL data.

Neurons SOM MMSOM VMSOM

110 33 20 5

120 34 22 13

130 46 30 18

140 54 35 21

150 58 40 23

160 68 55 33

170 71 53 35

180 74 63 36

Figure 2 depicts the 4 × 4 maps created for the IRIS data
by the VMSOM, the MMSOM, and the SOM, respectively.
The numbers indicate the class in which each neuron has been
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Fig. 2. Labeling of the 4 × 4 maps created for IRIS data by (a) the VMSOM, (b) the MMSOM, and (c) the SOM.

assigned to. The numbers correspond to the ground truth classes
as follows: 0 is assigned to class Setosa, 1 to class Versicolor,
and 2 to class Virginica. The empty neurons that have not been
assigned any label are “dead” neurons. As it can be noticed,
the SOM contains more “dead” neurons than MMSOM and
VMSOM and cannot represent data well. The maps created
by the SOM variants are more representative, due to their OS
properties. The latter have less “dead” neurons and the clusters
defined on the map are well separated. However, “dead” units
are inevitable for a SOM [21].

The SOMs were also applied to the redistribution of emo-
tional speech patterns extracted from the DES database. The
primitive emotional states are anger, happiness, neutral, sad-
ness, and surprise. Our purpose is to redistribute the emotional
speech patterns that were originally classified as neutral into
the other four emotional states. That is, to find out which class
is closer to the neutral one and how each training algorithm
acts on the data. The training set consists of all the non-neutral
patterns and the test set consists of all the neutral patterns. The
average assignment ratio was estimated using 15-fold cross val-
idation.

Table 11 demonstrates the average assignment ratio of the
neutral patterns that are labeled as angry, happy, sad, and
surprised by each SOM. As it can be seen, all the algorithms
classify the neutral patterns as sad with a very high percent-
age. This means that sadness resembles the neutral state more
than the other emotional states. The largest re-assignment ratio
is measured for the MMSOM (61.86%), the next larger ratio
is provided by the VMSOM (61.51%) and, finally, the SOM
yields the lowest one (58.27%). Anger is the second closer to
neutrality emotion, happiness follows and, finally, surprise is
the least similar to neutrality, according to the SOM and the
VMSOM. The MMSOM yields a slightly different ordering.
According to the MMSOM, happiness is the second closer to
neutrality, anger follows, and surprise resembles neutrality the
least.

The Student t-test for unequal variances has also found that
the differences in the average assignment ratio per emotion are
statistically significant at the 95% level of significance in a 15-
fold cross validation experiment with a 17 × 8 map.

Figure 3 depicts a partition of the 2D feature domain that has
been resulted after selecting the five best emotional features by

Table 11
Average ratio of neutral emotional speech patterns assigned to non-neutral
emotional classes using the SOM variants.

Emotion Average assignment ratio (%)

SOM MMSOM VMSOM

Sadness 58.27 61.86 61.51

Anger 13.87 14.02 15.00

Happiness 13.56 14.81 13.62

Surprise 13.16 9.59 9.82

the Sequential Forward Selection algorithm and applying Prin-
cipal Component Analysis (PCA) in order to reduce the dimen-
sionality from five dimensions (5D) to two dimensions (2D)
[33]. Only the samples which belong to the interquartile range
of the probability density function for each class are shown. It
can be seen that the neutral emotional class does not possess
any overlap with the surprise, while such overlap is observed
for sadness, anger, and happiness. Therefore, the results shown
in Table 11 comply with the sample space depicted in Figure 3.
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Fig. 3. Partition of the 2D domain into five emotional states derived by PCA.
The samples which belong to the interquartile range of each pdf are shown.
The big symbols denote the mean of each class. The ellipses denote the 60%
likelihood contours for a 2-D Gaussian model.
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6. Conclusions

Two variants of the self organizing map, the MMSOM and
the VMSOM, that are based on order statistics, have been stud-
ied. These variants have been successfully used in color quan-
tization, document organization and retrieval, and in grouping
and visualizing human retroviruses. We presented experimen-
tal evidence for their clustering quality by using the accuracy,
the average over all neurons mean squared error, the Rand in-
dex, the Γ statistic and the overall entropy as figures of merit.
The assessment was first conducted on the well-known IRIS
and the VOWEL data sets. Motivated by the superiority of the
SOM variants that are based on order statistics, we investigated
their application in the redistribution of emotional neutral pat-
terns to non-neutral emotional states. We demonstrated that the
redistribution is consistent with the sample feature space.
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