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Abstract

In this paper a modified class of Support Vector Machines (SVMs) inspired from the opti-

mization of Fisher’s discriminant ratio is presented, the so-called Minimum Class Variance SVMs

(MCVSVMs). The MCVSVMs optimization problem is solved in cases in which the training set

contains less samples that the dimensionality of the training vectors using dimensionality reduction

through Principal Component Analysis (PCA). Afterwards, the MCVSVMs are extended in order

to find nonlinear decision surfaces by solving the optimization problem in arbitrary Hilbert spaces

defined by Mercer’s kernels. In that case, it is shown that, under Kernel Principal Component Analysis

(KPCA), the nonlinear optimization problem is transformed into an equivalent linear MCVSVMs

problem. The effectiveness of the proposed approach is demonstrated by comparing it with the

standard SVMs and other classifiers, like Kernel Fisher Discriminant Analysis (KFDA) in facial

image characterization problems like gender determination, eyeglass and neutral facial expression

detection.

Index Terms

Support Vector Machines, Fisher’s discriminant analysis, Principal Component Analysis, kernel

methods, facial images.

I. I NTRODUCTION

Pattern recognition systems employing Support Vector Machines (SVMs) [1] have drawn much

attention due to their good performance in practical applications and their solid theoretical foundations.

The applications of SVMs span several disciplines such as object recognition [2], speech and speaker

recognition and verification [3], face verification, face detection and gender determination from facial

images [4]-[6] and spam mail identification [7].

In binary classification problems, SVMs try to find a separating decision hyperplane with the

maximum margin. The margin is defined as the minimum distance of the class sample distances to

the decision hyperplane. The property that distinguishes SVMs from other nonparametric techniques,
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like nearest-neighbor classification or neural networks, is that it is based on structural risk minimization

[1], [8], [9]. Typical pattern recognition methods attempt to minimize the misclassification errors on

the training set (empirical risk minimization). Instead, SVMs minimize the structural risk, that is the

probability of misclassifying a previously unseen sample drawn randomly from a fixed but unknown

probability distribution. If the Vapnik-Chervonenkis (VC)-dimension [10] of the family of decision

surfaces is known, the theory of SVMs provides an upper bound for the probability of misclassification

of the test set for any possible probability distributions of the data points [1]. The main reason that

has made SVMs so popular is that they consist of quadratic optimization problems which can be

solved very efficiently and it is guaranteed that they will find a global minimum.

Another aspect of SVMs is that they can be used in order to construct non-linear decision surfaces.

In order to find such surfaces a non-linear functionφ is firstly used in order to project the samples

to a very high dimensional feature space (this space has often the structure of aHilbert space),

where the vectors are linearly or near-linearly separable and a maximum margin hyperplane is found.

The decision surface can be found without having to compute explicitly the mappingφ, but by only

computing dot products in the Hilbert space by means of thekernel trick [8], as long as the mapping

φ satisfies the Mercer’s conditions [11], [12]. The interested reader may refer to [13] for details on

the geometry of Hilbert spaces (also referred as feature spaces).

The kernel trick procedure has been used to create the nonlinear generalizations of linear tech-

niques, like Principal Component Analysis (PCA) [14] into Kernel-PCA (KPCA) [15] for non-

linear component analysis, Fisher’s Linear Discriminant Analysis (FLDA) [16], [17] into Kernel-

Fisher’s Discriminant Analysis (KFDA) [18], [19] and recently into the so-called Complete Kernel

Fisher’s Discriminant Analysis (CKFDA) algorithm [20] for discriminant learning and recognition,

and Independent Component Analysis (ICA)[21] into Kernel-ICA [22] for signal separation. The

interested reader may refer to [8], [20], [23] and to references therein for details about kernel based

algorithms.
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In [18] a unified framework in terms of a nonlinearized variant of the Rayleigh coefficients has been

proposed and has been applied in order to formulate nonlinear generalizations of Fishers discriminant

analysis and oriented PCA with kernel functions. In order to overcome the fact that both calculation

and eigenanalysis of covariance matrices in arbitrary dimensional Hilbert spaces are generally ill-

posed problems, regularization parameters have been incorporated in the optimization problem.

An effort to merge Fisher’s discriminant and SVMs has been done in [6], where a modified class

of SVMs has been constructed, inspired by the optimization of the Fisher’s discriminant ratio [24].

In detail, motivated by the fact that the Fisher’s discriminant optimization problem for two classes is

a constraint least-squares optimization problem [6], [23], [18], the problem of minimizing the within-

class variance has been reformulated, so that it can be solved by constructing the optimal separating

hyperplane for both separable and nonseparable cases. In the face verification problem, the modified

class of SVMs has been applied successfully in order to weight the local similarity value of the elastic

graphs nodes according to their corresponding discriminant power for frontal face verification [6]. It

has been shown that it outperforms the typical maximum margin SVMs [6].

In [6], only the case where the number of training vectors was larger than the feature dimensionality

was considered (i.e., when the within-class scatter matrix of the samples is not singular). In this

paper the method is extended in problems where the feature vector dimensionality is larger than the

number of available samples, forming in that way the proposed Minimum Class Variance Support

Vector Machines (MCVSVMs). It will be proven that the solution of MCVSVM problems in such

cases can be found through PCA dimensionality reduction.

Afterwards, in order to define non-linear decision surfaces obtained through the MCVSVMs op-

timization, the problem will be generalized in dot product Hilbert spaces. It will be proven that the

non-linear MCVSVMs problem is equivalent to a linear one, subject to an initial KPCA embedding of

the training data. The proposed methods have been inspired from the recent advances in solving the

Fisher’s discriminant optimization problem in cases where the training set contains less samples than
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the feature dimensionality [20], [25], [26], where it has been proven that, under KPCA, the KFDA

is reformulated into an equivalent linear FLDA. Moreover, we will show that MCVSVMs have both

the advantages of FLDA and SVMs. That is, MCVSVMs consider class distribution characteristics in

their optimization problem but at the same time ensures separability. In contrast to FLDA that does

not ensures separability and to maximum margin SVMs that take into consideration only the samples

that are in the class boundaries.

The proposed methods have been applied to facial image characterization problems like gender

determination, eyeglass and neutral state detection. The experiments indicate the power of the proposed

approach against other techniques like maximum margin SVMs [1] and CKFDA [20]. As will

be shown in the paper in small sample size problems (e.g., image classification problems) the

MCVSVMs should be defined and solved in spaces defined from PCA or KPCA embeddings. The

motivations to apply the proposed method in image processing applications and especially to facial

image characterization problems is that PCA and KPCA spaces have been proven very rich in

information for the specific applications and that classifiers and feature extraction methods based

on the minimization of within-class-variance (e.g., FLDA and KFDA) have been very successfully

applied. This was firstly shown in the pioneer work of Turk and Pentland [27] and Kirby and Sirovich

[28] where PCA has been applied for facial feature extraction, face recognition and face detection.

Since then, PCA plus LDA classifiers has been used for facial image retrieval [16] and face recognition

[17]. Moreover, PCA plus two-class LDA classifiers have been used for eyeglass detection, in [17].

This is similar to the proposed approach where a PCA plus MCVSVMs classifiers have been tested

for eyeglass detection.

In order to capture nonlinearities in facial image modelling KPCA has been widely used. In [29]

KPCA plus SVM classifiers have been used for recognition. This is very similar to our approach

where KPCA plus MCVSVMs have been used in various facial image characterization applications.

Moreover, in [20] it has been proven that the KFDA is equivalent to firstly applying KPCA and
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afterwards performing LDA. Moreover, it has been shown that this scheme is very successful for

facial feature extraction and face recognition. In [30] Gabor-based KPCA spaces have given very

good results in face recognition. Finally, one of the best gender determination algorithm is the one

presented in [4], where SVMs have been applied directly to facial images.

Summarizing the contributions of this paper are:

• The presentation of the MCVSVMs in their general form, for the cases where the training set

contains more samples than the dimensionality of the samples and for the cases where the training

set contains less samples than the samples dimensionality.

• The generalization of MCVSVMs in arbitrary Hilbert spaces, using Mercer’s kernels in order to

define non-linear decision surfaces.

• The theoretical and experimental investigation of the relationship of MCVSVMs with SVMs and

CKFDA.

The rest of this paper is organized as follows. The problem will be outlined in Section II. In

Section III, the linear case of MCVSVMs is treated for the case where the number of the training

vectors is smaller than the samples dimension. In Section IV the problem will be defined and solved in

reproducingHilbert spacesin order to find the non-linear decision surfaces. In Section V, a discussion

is carried out about the relationship of the proposed decision surfaces with maximum margin SVMs,

CKFDA, and the surfaces proposed in [6]. The experimental results are discussed in Section VI.

Finally, conclusions are drawn in Section VII.

II. PROBLEM STATEMENT

Let a training set with finite number of elementsU = {xi, i = 1, . . . , N}, be separated into two

different classesC+ and C−, with training samplesxi ∈ <M and labelsyi ∈ {1,−1}. The simplest

way to separate these two classes is by finding a separating hyperplane:

wTx + b = 0 (1)
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wherew ∈ <M is the normal vector to the hyperplane andb ∈ < is the corresponding scalar term of the

hyperplane, also known as bias term [6]. The decision whether a test samplex belongs to one of the

different classesC+ andC− is taken by using the linear decision functiongw,b(x) = sign(wTx + b),

also known as canonical decision hyperplane [1].

A. Fisher’s Linear Discriminant Analysis

The best studied linear pattern classification algorithm for separating these classes is the one that

finds a decision hyperplane that maximizes the Fisher’s discriminant ratio, also known as Fisher’s

Linear Discriminant Analysis (FLDA):

max
w,b

wTSbw
wTSww

, (2)

where the matrixSw is the within-class scatter matrix defined as:

Sw =
∑

x∈C−
(x−mC−)(x−mC−)T +

∑

x∈C+

(x−mC+)(x−mC+)T , (3)

mC+ andmC− are the mean sample vectors for the classesC+ andC−, respectively. The matrixSb

is the between class scatter matrix defined in the two class case as:

Sb = NC+(m−mC+)(m−mC+)T + NC−(m−mC−)(m−mC−)T (4)

whereNC+ andNC− are the cardinalities of the classesC+ andC−, respectively andm is the total

mean vector of the setU . The solution of the optimization problem (2) can be found in [24]. It

can be proven that the corresponding separating hyperplane is the optimal Bayesian solution when

the samples of each class follow Gaussian distributions with same covariance matrices [24]. The

decision hyperplane that is derived from the FLDA optimization problem (2) does not separate the

data, using the FLDA hyperplane, even though the training samples are linearly separable [24]. This

fact is illustrated in Figure 1, where it is shown that FLDA leads to a decision hyperplane that does

not separates the data even though the data are indeed linear separable. The SVM and MCVSVM

solution, that will be presented in the following, find a decision hyperplane, which in this case the

two solutions coincide, that separates linear the data.
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Fig. 1. An FLDA decision hyperplane that cannot separate linearly the data even though the data are linear separable. The

MCVSVMs and SVMs solutions lead to a hyperplane that fully separates the data

B. Support Vector Machines (SVMs)

In the SVMs case, the optimal separating hyperplane is the one which separates the training data

with the maximum margin [1]. The SVMs optimization problem is defined as:

min
w,b

1
2
wTw (5)

subject to the separability constraints:

yi(wTxi + b) ≥ 1, i = 1, . . . , N. (6)

C. Minimum Class Variance Support Vector Machines (MCVSVMs)

In [6], inspired by the maximization of the Fisher’s discriminant ratio (2) and the SVMs separability

constraints, the MCVSVMs have been introduced. Their optimization problem is defined as:

min
w,b

wTSww, wTSww > 0 (7)

subject to the separability constraints (6). It is required that the normal vectorw satisfies the constraint

wTSww > 0. A detailed discussion about this constraint will be given in Section V. It is interesting

to note here that, since the matrixSw is positive semi-definite (i.e.,∀w ∈ <M , wTSww ≥ 0) and, in

particular, if the within-class scatter matrixSw is not singular, then@w ∈ <M : wTSww = 0. Thus,
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whenSw is invertible, no solutions withwTSww = 0 can be found. Figure 2 describes pictorially

the solution of the optimization problems of SVMs, MCVSVMs and FLDA wherem2
C+,w,m2

C−,w

andσ2
C+,w, σ2

C−,w are the means and the variances of the classesC+ andC−, respectively along the

projection w. As can be seen from the case illustrated in Figure 2 the SVMs solution does not

take into consideration the class distribution and results to a non-robust solution. On the other hand

the solution of the MCVSVMs takes into consideration both the samples in the boundaries and the

distribution of the classes and gives a robust solution. FLDA gives a robust solution in this problem,

as well. Now, by examining Figures 1 and 2 we have a first experimental indication that MCVSVMs

is a compromise between SVMs and FLDA.

(a) (b) (c)

Fig. 2. Illustration of the SVM, MCVSVM and FLDA optimization problems (a) search for a directionw, such that

the projected samples are separable with the maximum possible marginρ; (b) search for a directionw, such that samples

projected onto this dimension are separable and the variances (σ2
C+,w andσ2

C−,w) of the projected samples is minimized;

(c) search for a directionw, such that the distance of the centers of the classes projected onto this dimension (mC+,w and

mC−,w) is maximized while the variances (σ2
C+,w andσ2

C−,w) of the projected samples is minimized;

In the case where the training vectors are not linearly separable the optimum decision hyperplane is

found by using thesoft marginformulation [6], [1] and solving the following optimization problem:

min
w,b,ξ

wTSww + C
N∑

i=1

ξi, wTSww > 0 (8)

subject to the separability constraints:

yi(wTxi + b) ≥ 1− ξi , ξi ≥ 0, i = 1, . . . , N (9)
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whereξ = [ξ1, . . . , ξN ] is the vector of the non-negative slack variables andC is a given constant

that defines the cost of the errors after the classification. Larger values ofC correspond to higher

penalty assigned to errors. The linearly separable case can be achieved when choosingC = ∞.

The solution of the minimization of (8), subject to the constraints (9), is given by the saddle point

of the Lagrangian:

L(w, b,α, β, ξ) = wTSww + C

N∑

i=1

ξi −
N∑

i=1

αi[yi(wTxi + b)− 1 + ξi]−
N∑

i=1

βiξi (10)

whereα = [α1, . . . , αN ]T andβ = [β1, . . . , βN ]T are the vectors of the Lagrangian multipliers for

the constraints (9). The Karush-Kuhn-Tucker (KKT) conditions1 [34] imply that for the saddle point

of w, α,β, b, ξ the following hold:

∇wL|w=wo
= 0 ⇔ Swwo = 1

2

∑N
i=1 αi,oyixi

∂L
∂b |b=bo

= 0 ⇔ αT
o y = 0

∂L
∂ξi
|ξi=ξi,o

= 0 ⇔ βi,o = C − αi,o

βi,o ≥ 0, 0 ≤ αi,o ≤ C, ξi,o ≥ 0, βi,oξi,o = 0

yi(wT
o xi + bo)− 1 + ξi,o ≥ 0, αi,o{yi(wT

o xi + bo)− 1 + ξi,o} = 0

(11)

the subscripto denotes the optimal case andy = {y1, . . . , yN} is the vector denoting the class labels.

If the matrixSw is invertible, i.e. feature dimensionality is less or equal to the number of samples

minus two (M ≤ N − 2), the optimal normal vectorw of the hyperplane is given by (11):

Swwo =
1
2

N∑

i=1

αi,oyixi ⇔ wo =
1
2
S−1

w

N∑

i=1

αi,oyixi. (12)

By replacing (12) into (10) and using the KKT conditions (11), the constraint optimization problem

1KKT conditions are necessary for a solution in nonlinear programming to be optimal. The necessary conditions for

inequality constrained problem were first published in the Masters thesis of W. Karush [31], although they became renowned

after a seminal conference paper by Harold W. Kuhn and Albert W. Tucker [32]. For SVM based optimization problems

the interested reader may refer the tutorial paper [33].
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(8) is reformulated to the Wolf dual problem:

maxα f(α) = 1T
Nα− 1

2αTQα

subject to0 ≤ αi ≤ C, i = 1, . . . , N, αTy = 0

where1N is a N -dimensional vector of ones and[Q]i,j = 1
2yiyjxT

i S−1
w xj . It is worth noting here

that, for the typical maximum margin SVMs problem [1], the matrixQ is [Q]i,j = yiyjxT
i xj . The

corresponding decision surface is:

g(x) = sign(wTx + b) = sign
(

1
2

N∑

i=1

αi,oyixT
i S−1

w x + bo

)
. (13)

The optimal thresholdbo can be found by exploiting the fact that for all support vectorsxi with

0 < αi,o < C, their corresponding slack variables are zero, according to the KKT condition (11).

Thus, for any support vectorxi with i ∈ S = {i : 0 < αi < C} the following holds:

yi(
1
2

N∑

j=1

yjαj,oxT
j S−1

w xi + bo) = 1. (14)

Averaging over these patterns yields a numerically stable solution for the bias term:

bo =
1
N

∑

i∈S

(
yi − 1

2

N∑

j=1

yjαj,oxT
j S−1

w xi

)
. (15)

As can be seen, an analytical solution for the optimal vectorwo is given only when the matrixSw

is invertible. In the following two Sections it will be shown that:

• solutions for the MCVSVMs can be found when the matrixSw is singular, which is the

typical case in small sample size problems (e.g., facial image classification problems) where

the dimensionality is much larger than the number of available samples (N ¿ M ),

• the MCVSVMs can be defined and solved in reproducing Hilbert spaces in order to find the

corresponding non-linear decision surfaces.

III. MCVSVM H YPERPLANES INSMALL SAMPLE SIZE PROBLEMS

WhenSw is singular, the optimal normal vectorw cannot be found directly from (12). In this case,

it will be proven that, through dimensionality reduction using PCA [27], the optimization problem (8)
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under the separability constraints (9) is reformulated into an equivalent one in a lower dimensional

space, where the MCVSVMs optimization problem can be solved.

Let the total scatter matrix be defined as:

St =
N∑

i=1

(xi −m)(xi −m)T = Sw + Sb. (16)

It can be proven thatSt is bounded, compact, self-adjoint and positive operator in<M [20]. Thus,

according to the Hilbert-Schmidt Theorem [35], its eigenvectors system is an orthonormal basis of<M .

Let B andB⊥ be the complementaryM -dimensional spaces spanned by the orthonormal eigenvectors

of St that correspond to non-zero eigenvalues and to zero eigenvalues, respectively. Thus, each vector

w ∈ <M can be represented asw = ϕ+ζ with ϕ ∈ B andζ ∈ B⊥ [25], [20]. Let the linear mapping

L : <M → B be defined as:

w = ϕ + ζ → ϕ. (17)

It will be shown below that the optimization problem (8) subject to the constraints (9) can be solved

in B instead of<M .

Theorem. Under the mappingL the optimization problem (8) subject to the constraints (9) is

equivalent to:

min
ϕ,b,ξ

ϕTSwϕ + C
N∑

i=1

ξi, ϕTSwϕ > 0, ϕ ∈ B (18)

subject to the constraints:

yi(ϕTxi + b) ≥ 1− ξi , ξi ≥ 0, i = 1, . . . , N, ϕ ∈ B. ¤ (19)

A proof of the above Theorem can be found in Appendix I.

Thus, the above problem can be solved in a subspace isomorphic toB. In order to find this

subspace, the matrixΠ, with columns the orthonormal eigenvectors ofSt that correspond to non-null

eigenvalues will be used. The number of these eigenvectors isK ≤ N − 1. In case that the training

samples are linearly independent,K = N − 1. In many problems (e.g., facial image characterization

problems) it can be safely assumed that the initial training vectors are linearly independent [20], [27].
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Since the columns ofΠ form an orthonormal basis of<N−1, the spaceB is isomorphic to the space

<N−1, under the PCA transformΠ:

ϕ = Πη, η ∈ <N−1, (20)

which is an one-to-one mapping fromB to <N−1. Under this mapping the optimization problem (18)

is equivalent to:

min
η,b,ξ

ηT Śwη + C
N∑

i=1

ξi, ηT Śwη > 0, η ∈ <N−1 (21)

whereŚw is the within-class scatter matrix of the projected samples in<N−1 and is given býSw =

ΠTSwΠ. The separability constraints are reformulated as:

yi(ηT x́i + b) ≥ 1− ξi , ξi ≥ 0, i = 1, . . . , N, η ∈ <N−1 (22)

wherex́i = ΠTxi are the projected training vectors in<N−1. Thus, without losing any information

it is feasible to solve the constraint optimization problem in<N−1 and then move to<M using (20).

Although, the new total scatter matrix́St = ΠTStΠ, is not singular, the new within-class scatter

matrix Św may be still singular, containing one null eigenvector. This happens due to the fact that

in small sample size problems the rank ofŚt is N − 1 while the rank ofŚw is N − 2. Thus, in the

N−1 space théSw is not invertible and contains one eigenvector that corresponds to null eigenvalue.

The matrixŚw should become invertible in order to find the MCVSVMs hyperplane. There are two

alternatives to achieve this. In the first case, in order to satisfy the invertibility of the matrixŚw,

the matrixΠ is formed using theN − 2 eigenvectors ofSt. That is, along with the eigenvectors

that correspond to null eigenvalues only the eigenvector that corresponds to the lowest non-zero

eigenvalue is discarded. The alternative is to perform eigenanalysis to the singularŚw and to remove

the eigenvector that corresponds to null eigenvalue.

The optimization problem (21) subject to the separability constraints (22) can be solved using the

KKT conditions and the Wolf dual problem (13) having now as matrix[Q]i,j = 1
2yiyjx́iŚ−1

w x́j , since

the matrixŚw is not singular. The optimal normal vector in<N−2 is ηo = 1
2

∑N
i=1 αi,oyiŚ−1

w x́i. The
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final decision hyperplane in<M is given by:

g(x) = sign(wT
o x + bo) = sign(ϕT

o x + bo) = sign(ηT
o ΠTx + bo) =

= sign
(

1
2

∑N
αi,o=0 αi,oyixT

i ΠŚ−1
w ΠTx + bo

)
.

(23)

For the choice ofbo, a strategy similar to the one used Section II can be followed.

Summarizing the procedure, the training phase includes an initial projection of the training samples

to <N−2 usingΠ; the MCVSVMs optimization problem is solved in this reduced space; for the test

phase when a test vector arrives for classification, it should be first projected to<N−2 (usingΠ) and

finally classified using (23).

IV. MCVSVM N ONLINEAR DECISION SURFACES

In this Section, the optimization problem of the nonlinear MCVSVM decision surfaces will be

defined and solved. These decision surfaces are derived from the minimization of the within-class

variance in a dot product Hilbert spaceH subject to separability constraints. The spaceH will be

called feature space while the original<M space will be called input space [13].

Fig. 3. Illustration of the non-linear MCVSVMs. Search for a directionw in the feature spaceH, such that samples

projected onto this dimension are separable and the variances (σ2
Ck,w andσ2

Ct,w) of the projected samples are minimized.

Let us define the non-linear mappingφ : <M → H that maps the training samples to the arbitrary

dimensional feature space. In this paper, only the case in which the mappingφ satisfies the Mercer’s
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condition [1] will be considered. In the spaceH the within-class scatter is defined as:

SΦ
w =

∑

x∈C−
(φ(x)−mΦ

C−)(φ(x)−mΦ
C−)T +

∑

x∈C+

(φ(x)−mΦ
C+

)(φ(x)−mΦ
C+

)T (24)

the mean vectormΦ
C− is mΦ

C− = 1
NC−

∑
x∈C− φ(x) and the mean vectormΦ

C+
is mΦ

C+
= 1

NC+

∑
x∈C+

φ(x).

The problem (8), in the feature space is to find a vectorw ∈ H such that:

min
w,b,ξ

wTSΦ
ww + C

N∑

i=1

ξi, wTSΦ
ww > 0 (25)

subject to the constraints:

yi(wT φ(xi) + b) ≥ 1− ξi , ξi ≥ 0, i = 1, . . . , N. (26)

Figure 3 demonstrates the optimization problem in the feature space. The optimal decision surface

is given by the minimization of a Lagrangian similar to the one in the linear case (10). The KKT

conditions for the optimization problem (25) subject to the constraints (26) are similar to (11) (use

SΦ
w instead ofSw and φ(xi) instead ofxi). Since the feature space is of arbitrary dimension, the

matrix SΦ
w is almost always singular. Thus, the optimal normal vectorwo cannot be directly found

from:

SΦ
wwo =

1
2

N∑

i=1

αi,oyiφ(xi). (27)

It will be proven, as in the linear case, that there is a solution to the optimization problem (25) subject

to the constraints (26), by demonstrating that there is a mapping that makes this solution feasible.

This mapping is the Kernel PCA (KPCA) transform.

Let us define the total scatter matrixSΦ
t in the feature spaceH as:

SΦ
t =

N∑

i=1

(φ(xi)−mΦ)(φ(xi)−mΦ)T = SΦ
w + SΦ

b . (28)

wheremΦ = 1
N

∑
x φ(x). The matrixSΦ

t is bounded, compact, positive and self-adjoint operator in

the Hilbert spaceH. Thus, according to the Hilbert-Schmidt Theorem [35], its eigenvectors system is

an orthonormal basis ofH. Let BΦ andBΦ
⊥ be the complementary spaces spanned by the orthonormal
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eigenvectors ofSΦ
t that correspond to non-zero eigenvalues and to zero eigenvalues, respectively. Thus,

any arbitrary vectorw ∈ H, can be uniquely represented asw = ϕ + ζ with ϕ ∈ BΦ andζ ∈ BΦ
⊥.

It can be proven, using the same reasoning as in the linear case, that the optimal decision surface

for the optimization problem (25) subject to the constraints (26) can be found in the reduced space

BΦ spanned by the non-zero eigenvectors ofSΦ
t . The number of the non-zero eigenvectors ofSΦ

t is

K ≤ N − 1 thus, the dimensionality ofBΦ is K ≤ N − 1 and according to the functional analysis

theory [36] the spaceBΦ is isomorphic to the(N − 1)-dimensional Euclidean space<N−1. The

isomorphic mapping is:

ϕ = Pη, η ∈ <N−1, (29)

whereP is the matrix with columns the eigenvectors ofSΦ
t that correspond to non-null eigenvalues

and is an one-to-one mapping from<N−1 ontoB.

Under this mapping the optimization problem is reformulated as:

min
η,b,ξ

ηT S̃wη + C
N∑

i=1

ξi, ηT Śwη > 0, η ∈ <N−1 (30)

whereS̃w is the within-class scatter matrix of the projected vectors in<N−1 given byS̃w = PTSΦ
wP

(KPCA transform). The equivalent separability constraints are:

yi(ηT x̃i + b) ≥ 1− ξi , ξi ≥ 0, i = 1, . . . , N, η ∈ <N−1 (31)

where x̃i = PT φ(xi) are the projected vectors in<N−1 using the KPCA transform. For details on

the calculation of the projections using the KPCA transform someone can refer to [15]. Under the

projection to KPCA mapping, the optimal decision surface for the optimization problem (25) subject

to (26) inH can be found by solving the optimization problem (30) subject to (31) in<N−1. It is

very interesting to notice here that now the problem falls in the linear MCVSVMs case (i.e., a linear

MCVSVMs optimization should be solved) with dimensionalityK equal toN −1. The problem here

is that the matrix̃Sw may still be singular since the rank ofS̃t is at mostN − 1 and the rank of̃Sw

is at mostN −2. But, if the matrixS̃w is singular it contains only one null dimension. Thus, in order
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to satisfy the invertibility ofS̃w along with the null eigenvectors ofP, only one more eigenvector is

discarded, which corresponds to lowest non-zero eigenvalue (as in the linear case).

Now that S̃w is not singular the solution is derived in the same manner as in Section II. That

is, the optimization problem (30) subject to the constraints (31) can be found by solving the Wolf

dual problem (13) having as[Q]i,j = 1
2yiyjx̃T

i S̃−1
w x̃j . The optimal normal vector of this problem is

ηo = 1
2

∑N
i=1 αi,oyiS̃−1

w x̃i. The decision surface inH is given by:

g(x) = sign(wT
o φ(xi) + bo) = sign(ϕT

o φ(x) + bo) = sign(ηT
o PT φ(x) + bo) =

= sign
(

1
2

∑N
i=1 αi,oyiφ(xi)TPS̃−1

w PT φ(x) + bo

) (32)

for the optimal choice ofbo a similar strategy to Section II can be followed.

Summarizing, in order to find the optimal decision surface derived from the optimization problem

(25) subject to the constraints (26), the training samples should be projected to<N−2 using the KPCA

transform (matrixP) and solve a linear MCVSVMs problem there; for the test phase when a sample

x arrives for classification it should be first projected to<N−2 using the KPCA transform (matrix

P) and afterwards classified using (32).

V. RELATIONSHIP WITH OTHER DECISION SURFACES

In this Section a discussion about the relationship of the proposed approach with other classifiers

like SVMs [1], CKFDA [20] and the decision surfaces proposed in [6] will be given. This discussion

will also lead to some explanations about the constraintwTSww > 0 that has been employed in the

optimization problem (7).

A. Relation with SVMs

Let the within-class scatter matrixSw for a certain training set be invertible, then by lettingτ =

√
2S

1
2
ww the optimization problem (8) is equivalent to:

min
τ ,b,ξ

1
2
τT τ + C

N∑

i=1

ξi, (||τ ||2 > 0) (33)
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as can be seen the constraint||τ ||2 > 0 is equivalent towTSww > 0 in (7). The separability

constraints are:

yi(τTzi + b) ≥ 1− ξi , ξi ≥ 0, i = 1, . . . , N (34)

wherezi = 1√
2
S
− 1

2
w xi andS

1
2
w,S

− 1
2

w ∈ <M×M since the matricesSw,S−1
w are real and positive definite

matrices. Then, the solution of the optimization (8) subject to the constraints (9) is found by using

the Wolf dual problem (13) having as:

[Q]i,j = yiyj
1
2
xT

i S−1
w xj = yiyj(

1√
2
S
− 1

2
w xi)T (

1√
2
S
− 1

2
w xj) = yiyjzT

i zj (35)

which is a Wolf dual problem of the maximum margin SVMs [1].

It can be easily verified that the within-class scatter matrix of thezi is equal to1
2I whereI is the

M ×M identity matrix. From the above analysis it can be verified that the problem (33) subject to

the constraints (34) is equivalent to a maximum margin SVMs problem [1] in a transformed space

with within-class scatter matrix equal to12I. Thus, MCVSVMs converge to maximum margin SVMs

when the within-class scatter matrix of the data tends to1
2I. Hence all the useful theoretical properties

(i.e., minimization of the structural risk, unique solution) of the typical linear SVMs hold as well for

the MCVSVMs.

It should be noted here that, if the conditionwTSww = 0 holds for the normal vectorw, then

the previous analysis does not hold for the decision hyperplanes/surfaces that are defined by these

normal vectors (i.e., they cannot be fitted in the SVMs framework).

B. Relationship with Complete Kernel Fisher Discriminant Analysis

In this section, the relationship of the proposed decision hyperplanes/surfaces with the ones derived

through CKFDA [20] is analyzed. Moreover, we will indicate some important aspects of CKFDA

that has not been treated in [20]. Only the linear case will be considered, in our discussion, since the

non-linear case is a direct generalization of the linear one using Mercer’s kernels.
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As it has been proven in the Theorem in Section III, in order to solve the linear or the generalized

non-linear constraint optimization problems of MCVSVMs, the solution space can be mapped in

<N−1 using PCA or KPCA in the linear or the non-linear case, respectively. Afterwards, a linear

optimization problem is solved.

In the linear case, presented in Section III, in order to move from<N−1 to <N−2 we have removed

one column from the matrixΠ which is the eigenvector that corresponds to the lowest non-zero

eigenvalue ofSt. If this column is not removed fromΠ, thenŚw = ΠTSwΠ contains one eigenvector

ρ that corresponds to a null eigenvalue. Letυ ∈ <M beυ = Πρ, then, under the projection toυ, all

the training samples are separated without an error, whileυTSwυ = 0. In other words, the canonical

decision hyperplaneg(x) = sign(υTx− c) (wherec = (υTxi +υTxj)/2 with xi ∈ C+ andxj ∈ C−)

satisfies the separability criterion (6) while for the normal vectorυ, υTSwυ = 0 and υTStυ > 0.

That is,υ is a solution of the optimization problem (7) subject to separability constraints (6) if the

constraintυTSwυ > 0 has been removed. This fact is proven in Appendix II. Figure 4 describes

pictorially the effects of the vectorsw for the case,wTSww = 0 andwTStw > 0.

Fig. 4. Illustration of the effect of the projection to a vectorw with wT Sww = 0. If wT Stw > 0 is valid for the

vectorw then all the training vectors of the different classes are projected to one vector different for each class, while if

wT Stw = 0 all the training vectors are projected to the same point.

It is interesting to notice that the vectorυ is the one given by the irregular discriminant projection
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defined in [20], [25] in case of a two class problem. That is, the vectorυ is the solution of the

optimization problem:

maxw∈<M wTSbw (||w|| = 1)

subject towTSww = 0,

(36)

which is also a maximization point of the Fisher’s discriminant ratio:

J(w) =
wTSbw
wTSww

(37)

that makesJ(υ) → +∞. This interesting attribute of the irregular discriminant projections (i.e., the

ones that satisfywTSww = 0 while wTStw 6= 0) that provide perfect separability in the training

set has not been discussed in [20]. Summarizing the constraintwTSww > 0 is included in the

MCVSVMs optimization problem (7) and (8) due to the fact that:

1) The vectorsw, with wTSww = 0 cannot be fitted in the SVMs framework (Section V-A).

2) The interesting vectorw with wTSww = 0 that satisfies the separability criteria (6) can be

found by eigenanalysis only (Section V-B) and not by solving a quadratic optimization problem.

We can now conclude that MCVSVMs method is a compromise between FLDA and maximum margin

SVMs.

C. Relationship with the Decision Surfaces in [6]

Finally for completeness, a note about the decision surfaces proposed in [6] will be made. These

decision surfaces have been inspired by the solution of the linear case where the termxT
i S−1

w xj is

employed in the dual optimization problem (13). This term has been expressed as an inner product

of the form (S
− 1

2
w xi)T (S

− 1
2

w xj), sinceSw is a positive definite matrix (assuming that the original

within-class scatter matrix of the data is not singular). Then, in [6] instead of projectingxi using

φ, the transformed vectorS
− 1

2
w xi has been projected in the Hilbert space usingφ and the matrix

[Q]i,j = 1
2yiyjk(S

− 1
2

w xi,S
− 1

2
w xj) is used for solving the dual optimization problem, wherek(x,y) =

φ(x)T φ(y) is the kernel function. Of course, the decision surface provided in [6] is not the solution
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(a) (b) (c)

Fig. 5. a) The maximum margin SVM hyperplane; b) The hyperplane of FLDA; c) the MCVSVM hyperplane

of the optimization problem of MCVSVMs in Hilbert spaces (optimization problem (25) subject to

(26)).

VI. EXPERIMENTAL RESULTS

A. Experiments with Artificial Data

Artificial data have been used in order to show that the proposed MCVSVM hyperplanes and

surfaces are not so sensitive to outliers as the ones defined by the maximum margin SVMs. A

comparison of the linear maximum margin SVMs against the linear MCVSVMs in the separable case

is shown in Figure 5. The advantage of the MCVSVMs method is that it takes into account both

the class distribution statistics and the vectors that are in the boundaries, in contrast to the maximum

margin SVMs that considers only the vectors that lie in the boundaries.

In the case of a non-linear decision surface the suitability of the proposed approach against the

maximum margin SVMs can be seen in Figure 6. The SVMs approach totally failed to capture the

nonlinearity of the data (Figure 6a). The KFDA based surface (Figure 6b) that considers the class

distribution captured the nonlinearity of the data. The proposed MCVSVMs captured the underlying

non-linearity of the data (Figure 6c).
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(a) (b) (c)

Fig. 6. The optimal decision surface using second order polynomial kernel and (a) maximum margin SVM, (b) regular

CKFDA in [20] and (c) the proposed MCVSVM.

B. Experiments on Gender Determination using the XM2VTS database

Experiments were conducted using real data from the XM2VTS database [37] for testing the

proposed algorithm to the gender determination problem. The luminance information at a resolution

of 720×576 has been considered in our experiments. The images were aligned using fully automatic

alignment according to the eyes position coordinates that have been derived by the method reported

in [38]. The facial region has been detected using the face localization and normalization method

proposed in [39]. The resolution of the resulting ”face-prints” was85 × 156. As in the gender

determination experiments in [4], little or no hair information has been present in the training and

the test facial images. The power of the proposed approach is demonstrated against the maximum

margin SVMs [1] and the CKFDA framework proposed in [20].

A total of 2360 ”face-prints” (1256 males and1104 females images) have been used for our

experiments. For each classifier, the average error rate was estimated with five-fold cross validation.

That is, a five-way data set split with45 -th used for training and15 -th used for testing, with four

subsequent non-overlapping data permutations. The average size of the training set has been 1888

facial images (1005 male images and883 female images) and the average size of the test set has

been 472 images (251 male images and221 female images). The persons that have been included

in the training set has been excluded from the test set. The overall error rate has been measured as
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E = Ne

Nt
whereNe is the total number of classification errors for the test sets in all data permutations

andNt is the total number of the test images (hereNt = 4× 472).

A similar experimental setup has been used in gender determination experiments in [4], where it

has been shown that maximum margin SVMs outperform several other classifiers in this problem.

The interested reader may refer to [4] and to the references therein for more details on the gender

determination problem. For the experiments using the maximum margin SVMs, the methodology

presented in [4] has been used. That is, several kernels have been used in the experiments and the

parameterC has been set to infinity so that no training errors were allowed. The typical kernels that

have been used in our experiments have been polynomial and Radial Basis Functions (RBF) kernels:

k(x,y) = φ(x)T φ(y) = (xTy + 1)d (38)

k(x,y) = φ(x)T φ(y) = e−γ(x−y)T (x−y)

whered is the degree of the polynomial andγ is the spread of the Gaussian kernel.

The quadratic optimization problem of SVMs has been solved using a decomposition similar to

[5]. For the proposed method the original85×156 = 13260 dimensional facial image space has been

projected to a lower dimensional image space using the strategy described in Sections III and IV

and afterwards the quadratic optimization problem of MCVSVMs is solved. For CKFDA the regular

and the irregular discriminant projections are found using the method proposed in [20]. That is, two

classifiers were obtained, one that corresponds to regular discriminant information and another one

that corresponds to the irregular discriminant information. In the conducted experiments the irregular

discriminant information, even though it has no errors in the training set it has lead to over15%

overall error rate in the test sets. Thus, irregular discriminant information has not been used in the

CKFDA method.

The experimental results with various kernels and parameters are shown in Figure 7. As can been

seen in this Figure the error rates for the MCVSVMs are constantly lower than those achieved for

the other tested classifiers for all the tested kernels and parameters. Some of the support faces used
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TABLE I

THE BEST ERROR RATES OF THE TESTED CLASSIFIERS ATGENDER DETERMINATION.

Algorithm Overall % Male % Female %

MCVSVMs with Gaussian RBF kernel 2.86 2.19 3.5

MCVSVMs with cubic polynomial kernel 3.28 2.98 3.62

SVMs with Gaussian RBF kernel 4.4 3.48 5.43

SVMs with cubic polynomial kernel 4.4 3.48 5.43

Regular CKFDA with Gaussian RBF kernel 8.58 8.17 9

Regular CKFDA with cubic polynomial kernel 9.27 8.17 10.4

for constructing the non-linear MCVSVM surfaces are shown in Figure 8. The lowest error rates for

the tested classifiers are summarized in Table I. The best error rate for the MCVSVMs have been

2.86% while for SVMs have been4.4%. Confusion matrices for the best case of MCVSVMs and

SVMs can be found in Tables IV and V, respectively. Finally, statistical analysis of the results can

be found in Section VI-E.
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Fig. 7. Average error rates for gender determination using various kernels; a) polynomial kernel b) RBF kernel.
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(a) (b)

Fig. 8. Some of the Support faces used by the polynomial MCVSVMs of degree 3 a) Support men; b) Support women.

C. Eyeglass Detection using the XM2VTS database

The proposed algorithm has been also tested in eye-glass detection from facial images. The output

of the eye-glass detection can be used in order to assist eye-glass removal algorithms [40] and/or in

order to assist face verification systems in reducing their false rejections, by asking the client to remove

his eyeglasses during the verification procedure. The procedure described for the gender determination

experiments has been also followed in eyeglass detection. From the total of 2360 ”face-prints” of the

XM2VTS database,1518 are facial images with eye-glasses and the842 without eye-glasses. The

average size of the training set has been 1888 facial images (1215 images with eye-glasses and673

images without eye-glasses) and the average size of the test set has been 472 images (303 facial

images with eye-glasses and169 without eye-glasses).

Figure 9 shows the experimental results with various kernels and parameters. The best experimental

results for the tested classifiers are summarized in Table II. As can be seen, the proposed non-

linear MCVSVMs technique outperforms all the other tested classifiers in eyeglass detection as well.

Confusion matrices for the best case of MCVSVMs and SVMs can be found in Tables IV and V,

respectively. Finally, statistical analysis of the results can be found in Section VI-E.

D. Neutral Facial Expression Detection using Cohn-Kanade database

The final experiment illustrates the application of the MCVSVMs to the neutral facial expression

detection problem. Gabor-based feature have been used for this specific problem [30]. The recognition
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Fig. 9. Experimental results for eyeglass detection using various kernels; a) polynomial kernel b) RBF kernel.

TABLE II

THE BEST ERROR RATES OF THE TESTED CLASSIFIERS AT EYEGLASS DETECTION.

Algorithm Overall Error Rate%

MCVSVMs with Gaussian RBF kernel 1.6

MCVSVMs with 4-th degree polynomial kernel 1.6

SVMs with Gaussian RBF kernel 2.8

SVMs with 4-th degree polynomial kernel 3.4

Regular CKFDA with Gaussian RBF kernel 7

Regular CKFDA with 4-th degree polynomial kernel 7

of the neutral facial expression can be used in order to assist face verification algorithms [41], that,

in general, are sensitive to the change of facial expressions and ask the client to have a neutral facial

expression when using the verification system.

The Cohn-Kanade database [42] was used for the facial expression recognition in 6 basic facial

expressions (anger, disgust, fear, happiness, sadness and surprise) classes. This database, is anottated

with Facial Action Units (FAUs). These combinations of FAUs were translated into facial expressions,

in order to define the corresponding ground truth for the facial expressions. In order to form the dataset

to be used for the experiments, every image sequence available was taken under consideration, for
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every subject (96 subjects in total). One image for the neutral state and one image for the fully

intensed facial expression were chosen from each image sequence (first and last frame of the image

sequence respectively). Not all six facial expressions were present for every subject. For example a

subject may have three video sequences posing happiness and none posing sadness, thus creating 3

samples for the happiness facial expression and 3 samples for the neutral facial expression, but none

for the sadness facial expression. The chosen images were used to build the database, consisting of

704 images (equal number of samples for the neutral and fully expressive images). In Figure 10, a

sample of image sequences of one poser from this database, is shown.

The same procedure, as in the previous experiments, has been used for measuring the performance

of the tested classifiers. That is, from the total of 704 ”face-prints” of the Cohn-Kanade database the

352 are neutral facial images while the remaining352 are expressive images. The average size of the

training set has been 564 facial images (282 expressive and282 neutral images) and the average size

of the test set has been 141 images (70.5 neutral and70.5 expressive images).

Anger Disgust Fear Happiness Sadness SurpriseNeutral

Fig. 10. Neutral Vs Expressive Images of a poser of Kanade database

Figure 11 shows the results of the regular CKFDA, SVMs, and MCVSVMs approach for the

polynomial kernel and for various degrees. As can be seen MCVSVMs approach is constantly better

than SVMs and CKFDA for all the tested polynomial kernels. The lowest error rates are summarized

in Table III. The Confusion matrices for MCVSVMs and SVMs in neutral state detection can be

found in Tables IV and V, respectively. Finally, statistical analysis of the results can be found in

Section VI-E.
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Fig. 11. Experimental results for neutral detection determination using polynomial kernel with various degrees.

TABLE III

THE BEST ERROR RATES OF THE TESTED CLASSIFIERS FOR NEUTRAL STATE DETECTION.

Algorithm Overall Error Rate%

MCVSVMs with 4-th degree polynomial kernel 6

SVMs with 4-th degree polynomial kernel 7.9

Regular CKFDA 4-th degree polynomial kernel 14

E. Statistical Significance of Results

In order to calculate if the difference in performance is not just numerical but also statistically

significant, the McNemar’s test [43], [44] has been used. McNemar’s test is a null hypothesis statistical

test based on a Bernoulli model. If the resultingp-value is below a desired significance level (for

example, 0.02), the null hypethesis is rejected and the performance difference between two algorithms

is considered to be statistically significant. The McNemar’s test has been widely used in order to

estimate the statistical significance between recognition algorithms [20], [45]. We have used the best

cases of SVMs and MCVSVMs in all experiments in order to measure the significance and it has
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TABLE IV

CONFUSION MATRICES FOR THE BEST RESULTS OFMCVSVMS FOR A) GENDER DETERMINATION B)EYEGLASS

DETECTION C) NEUTRAL STATE DETERMINATION

labcl\labac male female

male 982 22

female 31 853

labcl\labac eyeglass no-eyeglass

eyeglass 1193 22

no-eyeglass 8 665

labcl\labac neutral expressive

neutral 268 14

expressive 20 262

TABLE V

CONFUSION MATRICES FOR THE BEST RESULTS OFSVMS FOR A) GENDER DETERMINATION B) EYEGLASS DETECTION

C) NEUTRAL STATE DETERMINATION

labcl\labac male female

male 969 35

female 48 836

labcl\labac eyeglass no-eyeglass

eyeglass 1172 43

no-eyeglass 10 663

labcl\labac neutral expressive

neutral 257 25

expressive 20 262

been calculated thatp ¿ 0.02. Thus, the difference in performance, for the best cases, is statistically

significant.

Apart from measuring the significance of the best results we have measured the significance in

terms of mean classification rate. To do so, we have used the method in [46]. We have measured

that there is statistical significant difference between the mean classification rate of SVMs and

MCVSVMs in the gender determination experiments for the tested parameters in the nonlinear case (all

polynomial kernels with degrees from 2 to 6 and RBF kernel parameters). This also holds for eyeglass

detection for all the tested parameters (all polynomials and RBF kernel parameters). According to

the presented experiments we could not conclude that the difference in performance, according to

mean recognition rate, between MCVSVMs and SVMs is statistical significant for the neutral state

recognition experiments.
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Finally, we have measured the sparseness of the MCVSVMs solution. A machine learning algorithm

yields a sparse result when, among all the coefficients that describe the model, only a small number

are non-zero [1], [47]. In statistical learning theory, sparsity is related to statistical robustness and fast

optimization. In order to have insights concerning the sparsity of the approaches we have measured the

minimum and maximum number of Support Vectors (SVs) in every experimental setup for SVMs and

MCVSVMs. For MCVSVMs the number of SVs is measured from the solution of their optimization

problem, i.e. after the application of PCA or KPCA. From the conducted experiments it has been

verified that MCVSVMs are as sparse as SVMs in the specific applications.

VII. C ONCLUSIONS

A novel class of decision hyperplanes and surfaces, the so-called MCVSVMs, inspired from the

Fisher’s discriminant ratio and SVMs has been proposed. Solutions for the MCVSVMs in cases when

the training set contains less and more samples that the feature dimensionality have been described.

Moreover, kernels have been employed in order to define MCVSVM nonlinear decision surfaces.

The relationship of MCVSVMs with SVMs and FDA has been discussed and it has been indicated

both theoretically and by using artificial data that MCVSVMs are a compromise between maximum

margin SVMs and FDA classifiers. It is believed that the proposed classifiers have the advantages

of both SVMs and FDA Finally, the described experiments have shown that the proposed class of

decision surfaces outperforms SVMs and CKFDA in gender determination, eyeglass and neutral state

detection from facial images. Topics for further research on this subject include the incorporation of

robust statistics [48], [49], [50] for the calculation of the within-class scatter matrix in order to cope

with the presence of possible outliers in the class distributions. Another potential topic for further

research is to meticulously study the generalization ability of the proposed classifiers by carefully

combining the results in [51], where the generalization ability of KPCA is discussed, with the results

in [52], where the generalization of soft-SVM classifiers is measured.
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APPENDIX I

PROOF OFTHEOREM IN SECTION III

SinceSb and Sw are both positive andSt = Sb + Sw, it is easy to verify that:ζTStζ = 0 for

ζ ∈ <M if and only if ζTSwζ = 0 andζTSbζ = 0 (or equivalentlyStζ = 0 if and only if Swζ = 0

andSbζ = 0). Let B andB⊥ be the complementary spaces spanned by the orthonormal eigenvectors

of St that correspond to non-zero to zero eigenvalues, respectively. SinceB⊥ is the null space ofSt

for everyζ ∈ B⊥ it is valid thatζTStζ = 0 (everyζ can be written, in a unique manner, as a linear

combination of the orthonormal eigenvectors ofSt that correspond to zero eigenvalues).

Since,St is a compact self-adjoint and positive operator in<M any w ∈ <M can be written as

w = ϕ + ζ. Hence,

wTSww = ϕTSwϕ + 2ζTSwϕ + ζTSwζ = ϕTSwϕ (39)

Using the previous facts the Lagrangian (10) can be written as:

L(w, b,α,β, ξ) = wTSww + C
∑N

i=1 ξi −
∑N

i=1 αi[yi(wTxi + b)− 1 + ξi]−
∑N

i=1 βiξi

= ϕTSwϕ + C
∑N

i=1 ξi −
∑N

i=1 αi[yi(ϕTxi + ζTxi + b)− 1 + ξi]−
∑N

i=1 βiξi.

(40)

If for someζ ∈ RM , ζTStζ = 0 then under the projectionζ, for all training vectorsxi,xj with xi 6=

xj thenζTxi = ζTxj . In other words, all the training vectorsxi fall in the same point under the

projection ζ. Thus, r = ζTxi is a constant∀ xi. Now, using the KKT conditionαT
o y = 0 the

following is valid:
N∑

i=1

αiyiζ
Txi =

N∑

i=1

αiyir = r

N∑

i=1

αiyi = 0. (41)
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Hence, the Lagrangian (40) can be written as:

L(w, b, α, β, ξ) = ϕTSwϕ + C
∑N

i=1 ξi −
∑N

i=1 αi[yi(ϕTxi + b)− 1 + ξi]−
∑N

i=1 βiξi. (42)

The optimum hyperplanewo ∈ <M can be written, in a unique manner, aswo = ϕo + ζo (ϕo ∈ B

andζo ∈ B⊥) and then using the chain rule it can be easily shown that:

∇wL|w=wo
= ∇ϕL|ϕ=ϕ

o
= 0 ⇔ 2Swϕo −

N∑

i=1

αiyixi = 0. (43)

Thus, the decision surface depends only onϕo ∈ B (an arbitrary vectorζo can be chosen). The

separability constraints (9) can be safely replaced by the separability constraints (18) and the Theorem

has been proven.

APPENDIX II

PROOF OFPROPOSITION1

Proposition 1. Let St andSw be the total scatter and the within-class scatter matrix of a training

set U = {x : x ∈ <M} with finite number of elements. If for someρ ∈ <M , ρTStρ > 0 and

ρTSwρ = 0 then the training samples under the projectionρ are separated without an error.

Proof: SinceSt = Sw + Sb is not singular and positive, it follows thatρTStρ = ρTSbρ > 0. Since,

ρTStρ the projection toρ all the training vectorsxi ∈ C+ fall in the same point,a = ρTxi and all

the training vectorsxj ∈ C− fall in the point c = ρTxj . SinceρTSbρ > 0, a 6= c. Hence, under the

projectionρ all the projected vectors are separated without an error.
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