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Abstract

This paper introduces the Discrete Modal Transform, a 1D and 2D discrete, non-
separable transform for signal processing, which, in the mathematical sense, is a gen-
eralization of the well known Discrete Cosine Transform (DCT). A 3D deformable
surface model is used to represent the image intensity and the introduced discrete
transform is a by-product of the explicit surface deformation governing equations.
The properties of the proposed transform are similar to those of the DCT. To illus-
trate these properties, the proposed transform is applied to lossy image compression

and the obtained results are compared to those of a DCT-based compression scheme.
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Experimental results show that DMT, which includes an embedded compression ra-
tio selection mechanism, has excellent energy compaction properties and achieves
comparable compression results to DCT at low compression ratios, while being in

general better than DCT at high compression ratios.

Key words: Signal transforms, Discrete Cosine Transform, 3D deformable models,

intensity surface, lossy compression, image decomposition, signal analysis.

1 Introduction

Intensive research has been carried out in the last decades on signal trans-
forms and this topic continues to be of great interest both with respect to its
theoretical aspects, as well as in terms of applications in the field of signal
processing. A one dimensional (1D) signal can be decomposed into a set of
transform coefficients by applying a one dimensional transform that employs a
set of basis functions. Similarly, a two dimensional (2D) signal, e.g. an image,
can be decomposed in terms of basis matrices, usually called basis images.
Image transforms have been used in several applications, such as image en-
hancement [1], restoration [2], description [3], filtering [4], data compression
[5], [6], feature extraction [7],[8] etc. Various transforms, such as the Discrete
Fourier Transform (DFT), the Discrete Cosine Transform (DCT) [9] and the
Wavelet Transform [10], have been proposed and applied in digital signal and
image processing literature. Among the applications mentioned above, com-

pression is perhaps the most prominent one.

The overall idea behind transform-based compression is to use a transform that
decorrelates the input signal and packs its total energy into a small number

of coefficients. There is no globally optimal transform for that purpose [6],



but the Karhunen-Loeve Transform (KLT) can be considered to be optimal
under certain circumstances, i.e. for a Gaussian source at any bit rate and bit
allocation strategy [11]. However, the computation of the KLT is expensive and
time consuming, since there is no special structure and it is signal-dependent.
Effros et al. [12] demonstrate both the failures and the successes of the KLT.
Other transforms, such as DCT [13]-[15], DFT [16], Hadamard Transform
[17], Slant Transform [18] are computationally faster than the KLT, while
exhibiting slightly worse performance than that of the KLLT, in terms of energy
compaction and decorrelation. Among them, DCT is the most widely used
for image compression. Indeed, DCT is incorporated in various image/video
compression standards, such as JPEG [13], MPEG 1/2 [19], H.261 [20], and

H.263 [21].

In this paper, we propose a new transform that was motivated by the technique
presented in [22]-[24] for analyzing non-rigid object motion, with application
to medical images. Nastar and Ayache [22] approximated the dynamic object
surface deformations using a physics-based deformable model. Based on the
same principle, we assume that a 2D signal (image intensity) can be repre-
sented by a surface in 3D, namely the intensity surface. The basic idea is to
warp a physics-based deformable surface model onto the intensity surface of
a target 2D image. We, then, utilize an intermediate step of the deformation
procedure, which is proven to be a discrete 2D transform that can decompose
the image into a class of basis images. In a similar manner, by exploiting a
deformable open curve (chain), one can form a 1D discrete transform in order

to represent a 1D signal by a set of 1D basis functions.

The proposed transform, named Discrete Modal Transform (DMT), is shown

to be a generalization of DCT, although it is non-separable and non-orthonormal



and thus, some of the properties of the well known discrete separable trans-
forms do not apply. The fact that DCT can be derived starting from a de-
formable model that tries to approximate the intensity surface of an image is
a significant outcome of this study. A very important characteristic of DMT is
that it can be viewed as DCT scaled by a novel analytically derived quantiza-
tion table that incorporates a physically meaningful parameter for controlling
its energy compaction/compression level. The proposed transform is applied
to lossy data compression and the results indicate that it can be a useful tool
in image compression. Compared to DCT (combined with the JPEG quantiza-
tion tables), the proposed transform can achieve comparable image quality for
low compression ratios and surpasses it in terms of compressed image quality
for high compression ratios. Moreover, it has very good energy packing and

decorrelation properties.

The remainder of the paper is organized as follows. The physics-based de-
formable surface model [22] is reviewed in Section 2 whereas in Section 3, the
proposed 1D and 2D discrete transform is introduced. The properties of the
proposed transform are described in Section 4. In Section 5 the DMT energy
packing and decorrelation efficiency are examined. Section 6 presents a JPEG-
like lossy image compression scheme that utilizes the proposed transform and
provides comparisons with DCT-based compression. Conclusions are drawn in

Section 7.

2 3D Physics-Based Deformable Surface Modeling

In this section, a physics based deformable surface model, introduced in [22]

and [25], will be reviewed in order to make the paper self-contained. There are



two formulations of the model, one for a 3D deformable surface model and one
for a 2D deformable curve model. We choose to analyze the 3D model since
it is more complicated in general and, at the same time, the assumptions and
the deformation procedure are the same for both the 2D and the 3D model.
The 2D physics-based deformable curve model is described in brief, at the end

of this section, due to its similarity to the 3D case.

Image intensity I(x,y) can be assumed to define a surface over the image
domain that will be subsequently called intensity surface (z,y,I(x,y)) in the
so-called XY'I space [26] (Figure 2). A 3D physics-based deformable surface
model can be used to approximate the intensity surface. The deformable sur-
face model consists of a uniform mesh of N = N, x N,, nodes, as illustrated
in Figure la. In this Section, we assume that N, and N, are equal to the
image height and width respectively, i.e., that each image pixel corresponds
to one mesh node. The node coordinates of the model under examination are
stacked in a N-dimensional column vector whose elements are 3-dimensional

TOow vectors:

T
vt — [xﬁ,...,xgt])\,w,xé?,...,Xg.?,,...,ng,)th} = [xgt),...,xz(-t),...,xN

Et) = [x(t), yz@, zz(t)] = [x(t) y(t) I](\?()del(xi,yi)] and t denotes the t-

where x ; P TR

th deformation time instance. For the problem at hand, each node of the
deformable surface model can move only along the z-axis, i.e., the intensity

axis, thus xz(t) Et)

= z; and y;” = y;. Each model node is assumed to have a mass m
and is connected to its four neighbors with perfect identical springs of stiffness
k having natural length Iy and damping coefficient ¢ (see Figure 1b). Constants
k and m describe the physical characteristics of the deformable model and

determine its behavior. Under the effect of internal and external forces, the



Fig. 1. (a) Quadrilateral surface (mesh) model, (b) Example of a 3D surface model
comprised of 8 nodes of mass m connected with identical springs of stiffness k and
damping coefficient c. Three forces act on three model nodes and result in model

deformation.



Fig. 2. (a) Facial image, (b) intensity surface representation of the image.

mass-spring system deforms to a 3D mesh representation of the image intensity
surface. Only elastic deformations are considered, i.e., it is assumed that the
model recovers its original configuration as soon as all applied forces causing

the deformation are removed. When k increases and/or m decreases, the ratio

k

-= increases and the surface model tends to behave as a rigid one. This means,
in practice, that the intensity surface model can hardly deform. In this case,
forces applied to nodes affect entire node neighborhoods (if not the entire
grid), depending on the exact value of the ratio % On the other hand, when
m increases and /or k decreases, the ratio % decreases and the intensity surface

model tends to be a fully deformable one, meaning that each force essentially

affects only the node (mass), where it is applied to.

The model under study is a physics-based system governed by the fundamental



dynamics equation:

£, + £, + £, (x?) = mx" | i=1,2,..., N, (2)

1

()

where %, is the acceleration of the i-th node. The external force f.;(-) applied
to each node, results from the attraction of the model by the image intensity
(often being proportional to the Euclidean distance between the node coordi-
nates and the corresponding pixel of the image, whose representation in the
XY space is (x4, yi, I(zi, ;) [27], [28]). The elastic force, fo(-) on the i-th

node is defined as:

B b
fez(XEt)):_k(Z by —1ly > —¢ ) (3)

¢
=g séro B3
where 7 (i) denotes the set of the four connected neighbors of node i and
() (

b =x; — xjt), J € T (1) is the vector difference of two nodes. The damping

(®)

force f,(+) is proportional to node velocity x;

fi(x{") = —ex!", (4)

where ¢ is the damping constant. The above governing equation (2) applies
to all N model nodes, leading to a nonlinear system of coupled differential
equations, since the displacement of a node depends on the displacement of

its neighbors that affects the term f,;(-).

In order to solve this system of coupled differential equations, one can set the
natural length of the springs to zero, [ = 0 and add a constant equilibrium
force f., = —f; to the left hand side of (2) [22]. By doing so, the natural state
of the model is its initial configuration (Figure 1a). This assumption has the
main advantage that the model can be considered within the framework of

linear elasticity, i.e., equation (2) is transformed to a set of linear differential



equations with node displacements decoupled in each coordinate, regardless

of the magnitude of the displacements.

The deformable surface model in its entirety is ruled by the following La-

grangian dynamics matrix equation [29]:

Mii® + Ca® 4+ Ku® = £, (5)
where u® = [ugt) ul? .. ugf,)]T is the N-dimensional nodal displacements vec-
tor u® = v® — v whose elements u!” are 3-dimensional row vectors.

)

M, C, and K are, respectively, the N x N mass, damping, and stiffness ma-
trices of the model whose formulation is explained analytically in [25] and
£ = [fl(t) £0 . f](\';)]T is the N-dimensional vector whose elements are all the
external force vectors applied to the model. Each element fz-(t) of the external
forces vector ) can be seen as a virtual spring of natural length zero and
stiffness ¢, joining each node of the surface model to the corresponding pixel
in the image (actually the corresponding point on the image intensity surface).

Equation (5) is a finite element formulation of the model deformation process.

Instead of finding directly the equilibrium solution of (5), one can use modal
analysis [25] and transform it by a basis change [30] to the so-called modal

space:
u® = wa, (6)

where W is a square nonsingular transformation matrix of dimension N x N
and order N to be determined and @l = [ﬁgt) al) ... ﬁ%)]T is referred to as
the generalized displacement vector. One effective way of choosing ¥ is to set

it equal to a matrix ® = [¢y, ..., @], whose columns ¢, are the eigenvectors



of the generalized eigenproblem:

Kq&i:waqﬁi, 1=1,..., N, (7)
N

ul = & = 3" ¢, (8)
=1

where K and M are the stiffness and mass matrices of the model. Equation
(8) is referred to as the modal superposition equation. The i-th eigenvector ¢;,

(*) is the 7-th

i.e., the i-th column of @ is also called the i-th vibration mode. 1,

element of ™ and w; is the corresponding eigenvalue (also called wvibration
frequency). If the matrix C=3"Cdis diagonal (called standard Rayleigh
hypothesis in [22]), then, the governing matrix-form equation (5) is decoupled
into 3N scalar equations (N equations for each one of the x, y, z axes) in the

modal space:

iy, + i + Wil = f17 (9)
i)+ el + w2l = ;Y (10)
i) + &g+ wia) = fi7, (11)
where i = 1,..., N, ﬁz(-t) = [aﬁtm,aﬁt;,aﬁtz], ¢; is the i-th diagonal element of

C and E-(t) = | ﬁ.(j;?, ff?, fz(tz)] the i-th component of the transformed external
force vector f®, where f® = ®Tf® £ being the external force vector.
Solving these equations at iteration 7 leads to ﬁz(-t) and therefore to @(). The

displacement vector u® of the model nodes is then obtained by the modal

superposition equation (8).

A significant advantage of the formulations described so far, is that the vibra-
tion modes (eigenvectors) ¢; = [¢;(1),...,¢;(IN)] and the frequencies (eigen-

values) w; of a plane topology (see Figure 1a) have an explicit formulation [22]
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and they do not have to be computed using eigen-decomposition techniques:

o ak [ . Tj . i
2 . 2 2 2
—2 =2k 7 12
W33 = W) Ny mFm<mw>+ml@MU’ (12)
. mj(2n — 1 i (2n' — 1
G (5. 7') = &) Ny+i7(n Ny +n') = cos J N, ) cos = ( ), (13)

where j =0,1,...,.N,— 1,5/ =0,1,...,.N, — 1, n =1,2,...,N, and n’ =

1,2,...,N,.

In our case, where the initial and the final (desirable) deformable surface
states, i.e. the initial planar model configuration and the image intensity sur-
face, are known, it is assumed that a constant force load f is applied to the
surface model. The components of the forces in f along the z and y axes are
taken to be equal to zero, i.e. f;, = fi, = 0. The components of these forces
along the z (intensity) axis are taken to be equal to the Euclidean distance
between the point (z,y, I(x,y)) of the intensity surface and the correspond-
ing model node position in its initial configuration (z,y, 0), i.e., equal to the

intensity I(x,y) of pixel (z,y):

f(:c—l)Nw-l—y,z:f(x;y):I(x;y); lea'--:Nh: yzla"'an (14)

where f(z—1)n,+y,> 1S the component along the 2 axis of the f,_;)n, 4, element
of vector f. Under such a condition, the model deforms only along the z
axis, affected by constant forces. Thus, equation (5) reduces to the following

equilibrium governing equation that corresponds to the static problem:
Ku="f, (15)

or in the modal space:
Ku = f, (16)

where K = ®"K® and f = &'f, f being the external force vector.

11



In the new basis, equation (16) is simplified to 3N scalar equations:
wgai,m - .fz',ma

Wfﬂzy = Jzzy =0
wu”—f”—O (19)

where ¢ = 1,..., N. Thus, instead of computing the displacement vector u
from (15), one can compute w? and ¢; from (12) and (13) respectively, @ from

(19) and finally compute u using (8).

Using (8) and (19) it can be found that the deformations u,, along the intensity
axis of the deformable model node that corresponds to pixel (z,y) based on
modal analysis for a plane topology and external forces whose z component
is given by (14) whereas the other two components are zero, can be described

by:
Nil Nfl ENh ]\Cw =1 I(n n’)d)n,n’ (i, ])
=0 5=0 1 +w2 7’ ])) ZNh 7]:{11}:1 %,n’(iaj)

where g, is the z component of the element u_1)n,+y of vector u (the other

Gay(i, ), (20)

two components being zero) and I(n, n') is the image intensity of pixel (n,n’).
The above equation presents the final outcome of the aforementioned method-
ology of deformable surface models adaptation based on Modal Analysis. One
can see that deformations are directly related to the eigenvalues w?(i, j) and

the eigenvectors ¢*(i, j) of the model, calculated by (12) and (13) respectively.

Similar to 2D signals, one can obtain a representation of a 1D signal using
2D physics-based deformable modeling. A 1D discrete time signal s(x) (with
x=1,2,...,N) can be considered as a 2D curve (x, s(x)). Modeling such a 1D
signal can be achieved by using an open chain topology of N virtual masses

(Figure 3) to approximate the signal. The assumptions for the deformable

12



Fig. 3. (a) 2D open curve model, (b) Ezample of a 2D curve model comprised
of 5 nodes of mass m connected with identical springs of stiffness k and damping
coefficient c. Two forces act on two model nodes and result in model deformation.

curve model are the same as those of the deformable surface model. The forces
acting on the nodes are considered to have only one non-zero component along
the s(z) axis. The magnitude of this component is equal to the corresponding
signal value s(x). The vibration modes (eigenvectors) ¢, and the frequencies

(eigenvalues) w; of open curves have the following explicit formulation [22]:
Ak :
W2(6) = 22 gin? <ﬂ> , (21)

(22)

where ¢, (i) is the n-th element of eigenvector ¢(i), i € {0,1,..., N — 1} and

ne{l,2,...,N}.
Through an analysis similar to that presented for the surface model, it can be

13



found that the deformations of the node of the 2D deformable curve model that
corresponds to sample s(z) of the signal for an open curve (chain topology),

can be described by:

_ X Zs(m)éali) Z,
P PR G (23)

3 The Discrete Modal Transform (DMT)

In this section, the 1D and 2D Discrete Modal Transform will be introduced.
The proposed transform is an intermediate result of the deformation procedure

described in Section 2.

In the case of 2D signals, i.e. images, the 3D physics based deformable surface
model described in Section 2 is used to approximate the image surface. As
already mentioned, the height and width (in nodes) of the deformable model
is the height and width (in pixels) of the image and it is assumed, that the

surface model can be deformed only along the z-axis.

Thus, the deformations u of the 3D deformable surface model applied on an

image I are given by equation (20) which can be rewritten as:

Np—1 Ny—1
— X Pay (K, l)
F(k,1) ’ r=1,....,Ny, y=1,..., N,
kzo ; \/z N 925(k. 1) "
(24)
where
Ny, Nm .o
f(k),l) o Ez 1 I(Z ])¢zg(k l) (25)

(+w2kl\/2 N g2 (k1)

Equation (24) is applied to each node of the deformable surface model inde-

pendently.

The term of the deformation equation described by equation (25) is a matrix

14



of dimensions Ny, x N,,. Since (25) involves the image under study, F(k,[) can
be considered to represent the coefficients of a 2D image transform. These
coefficients can be used to decompose an image into basis images which have

interesting properties.

The normalization factor (ny:hl Z;V:wl 7 i(k, l)) in the denominator of (25) can

be further simplified [31]:

Np Ny
> 91k 1) = a(k)a(l), (26)
i=1j=1
where
N, k=0
a(k) =  ke{0,1,...,N—1}. (27)
T k#0

Thus, using (12), (13), (25), (26) and (27), F(k,1) can be rewritten as:

Np—1 Nyp—1
Flh )= > > I, 5)vea(i, ), (28)
i=0  j=0
- cos B o 121 o
VE,a\2,]) = < )
[1 + A [Sin2 (%) + sin? (%)H a(k)a(l)

where k = 0,1,...,N, — 1,1 = 0,1,..., N, — 1, A = 4% Equations (28)
and (29) define the proposed 2D Discrete Modal Transform, F(k,l) being
the transform coefficients. From the discussion on Section 2 it is obvious that
the parameter A of the transform controls the elasticity of the corresponding

deformable model.

2D DMT is directly related to DCT, which is defined as [9]:

Np—1 Ny—1 . .
D) = bB(0) S S 1(j,j) cos TR T2 L)
2N}, 2N,

i=0 j=0

(30)

15



where

k=0
b(k) = , ke{0,1,...,N—1}. (31)

NEN A
Table 1

The basis images of the 2D DMT for a block size of dimensions Ny = 3, Ny, = 3

and A = 1.
Wi Wia Wis
0.3333 0.3333 0.3333 0.3266 0 —0.3266 0.1347 —0.2694 0.1347
0.3333 0.3333 0.3333 0.3266 0 —0.3266 0.1347 —0.2694 0.1347
0.3333 0.3333 0.3333 0.3266 0 —0.3266 0.1347 —0.2694 0.1347
Wai Wasa Was
( 0.3266 0.3266 0.3266 0.3333 0 —0.3333 ( 0.1443 —0.2887 0.1443
0 0 0 0 0 0 0 0 0
L —0.3266 —0.3266 —0.3266 —0.3333 0 0.3333 L —0.1443 0.2887 —0.1443
Wa1 W32 Was
( 0.1347 0.1347 0.1347 0.1443 0 —0.1443 ( 0.0667 —0.1333 0.0667
—0.2694 —0.2694 —0.2694 —0.2887 0 0.2887 —0.1333 0.2667 —0.1333
L 0.1347 0.1347 0.1347 0.1443 0 —0.1443 L 0.0667 —0.1333 0.0667

By comparing (27), (28), (29) to (30), (31) it is easy to conclude that DMT

coeflicients F are related with DCT coefficients as follows:

1 C(k,1)
-2 ( 7k 2 ( =@l C(k’l) - ’
[ 2 (sin (5) + sin® (575 )

One can easily notice that when A = 0, F(k,l) = C(k,l). Thus, we can claim,

F(k,1) = (32)

that the proposed transformation is a generalization of the DCT, which is
also implied by the fact that they have similar properties, as will be shown in
Section 4. Essentially, DMT coefficients are scaled versions of DCT coefficients,

the scaling factor being the denominator Z(k,[) in (4). A plot of the scaling

16



Fig. 4. The denominator of equation (32) for N, = Ny, = 8 and A = 1.
factors for N, = N,, = 8 and A = 1 can be seen in Figure 5. The scaling factor
involves the parameter A, that as will be shown in sections 5 and 6, controls
the energy compaction properties of the transform. Z(k, ) plays a role similar
to that of quantization matrix used in DCT based coding in JPEG standard.
Thus, DMT can be seen as a DCT combined with a new, analytically computed

quantization matrix.

The inverse DMT transform is expressed as:
Nj Ny
[(27]) = sz(k:l)wk,l(iaj)a (33)

k=11=1

where 1 =0,1,...,N, — 1,7 =0,1,..., N, — 1 and wy (7, j) are given by:

mh(2i+1) w2+ 1)1+ [sin® () +sin® (65D

wi(4,J) = cos
2Ny, 2Ny, a(k)a(l)

(34)
wy,(7,j) constitute the basis images of the 2D Discrete Modal Transform.
The proof for the inverse 2D DMT is included in the Appendix A.1. The basis
images of the proposed transform can be seen in Table 1 for block size of
dimensions N, = 3, N, = 3 and A = 1. In Table 2, the corresponding basis

images of block size 3 x 3 are illustrated for the DCT. Obviously, the basis

17



Table 2

The basis images of 2D DCT for a block size of dimensions N = 3 and N,, = 3.

Wi1 Wi Wis
0.3333 0.3333 0.3333 0.4082 0 —0.4082 0.2357 —0.4714 0.2357
0.3333 0.3333 0.3333 0.4082 0 —0.4082 0.2357 —0.4714 0.2357
0.3333 0.3333 0.3333 0.4082 0 —0.4082 0.2357 —0.4714 0.2357
Way Was Wag
0.4082 0.4082 0.4082 0.5 0 —0.5 0.2887 —0.5774 0.2887
0 0 0 0 0 0 0 0 0
—0.4082 —0.4082 —0.4082 —0.5 0 0.5 —0.2887 0.5774 —0.2887
W31 W32 W33
0.2357 0.2357 0.2357 0.2887 0 —0.2887 0.1667 —0.3333 0.1667
—0.4714 —0.4714 —0.4714 —0.5774 0 0.57747 —0.3333 0.6667 —0.3333
0.2357 0.2357 0.2357 0.2887 0 —0.2887 0.1667 —0.3333 0.1667

images of the two transforms have a similar structure.

In the case of 1D signals, the 2D physics based deformable curve model is
used to represent the signal. The length of the model is the signal size and
it is assumed that the curve model can be deformed only along the y-axis.
Using a methodology similar to that presented above for the 2D case, the 1D
Discrete Modal Transform pair for a signal s(i) can be introduced:

N-1 Tk(2i+1)

P8 = O e ()] e )

N1 mk(2i 1+ Asin® (2%
s(i)zkz_: F (k) cos k(§N+1) * a(k)( ) (36)

Basis vectors for the proposed 1D Modal Transform (A = 1) and the 1D DCT

can be seen in Figure 5 for block size 8.

18
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Fig. 5. The basis vectors of block size 8 of the 1D DMT (A =1) and the DCT.




4 Properties of the DMT

In this Section, the properties of the introduced 2D transform will be presented
and their similarities with those of the DCT will be highlighted. The properties
of the 1D realization of the transform, are similar to the 2D case and thus,

will not be presented in this Section.

The DMT is a linear and real transform. Moreover, the DMT and inverse

DMT pair form an orthonormal transform pair, i.e.

N—1N-1
> vkt fwp (i, 5) = 6(k — k', 1= 1'), (37)
i=0 j=0

where ¢ is the unit impulse function. The proof for the orthonormality and
the orthogonality of the DMT-inverse DMT pair is included in the Appendix
A.2. However, unlike DCT, DMT basis images wy(i, j) are orthogonal but

not orthonormal (see Appendix A.2), i.e.

N-1N-1 g# 1L, k=FkK andl =1
S wiali, Hww v (i ) = . (38)

i=0 j=0
0, otherwise

Thus, DMT is not an orthonormal (unitary) transform and the energy is not
preserved in the transform domain. Furthermore, unlike DCT, DMT is non-

separable, as can be seen from (32).

Since DMT is a non-separable image transform, its computational complexity
for a N x N image is of the order of O(N*). However, since 2D DMT can be
calculated using DCT, through (32), its complexity can be further reduced to

O(N?log, N) if fast DCT implementations are used for its calculation [32].

The basis functions of DMT correspond to well known image processing oper-
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Fig. 6. (a) An outdoor image, (b) DMT coefficients for A = 1.

ators, typically local line and edge detectors, multiplied by a coefficient that
depends on A. For the simplest case, where N, = N,, = 3 (see Table 1), basis
images W1, and Wy are the Prewitt operators [33] which detect edges in
both vertical and horizontal directions. Additionally, basis images W7 3 and
W3, are vertical and horizontal line detection masks [33]. Moreover, Wy 3 and
W3, are edge detectors [34] and W33 is the Laplacian line detection mask.
The masks for other values of N, and N, also correspond to local line and

edge detection operators.

The DMT has excellent energy compaction properties, similar to the ones of
the DCT. Figures 6 and 7 illustrate the energy compaction in the frequency
domain for two images using the DMT (with A = 1). It is obvious, that the
energy for both images is packed into the low frequency region, i.e., the top

left region. This property will be further investigated in the following section.
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Fig. 7. (a) A human face, (b) DMT coefficients for A = 1.

5 DMT Energy Packing and Decorrelation Efficiency

In this section, the energy packing ability and the decorrelation efficiency of

DMT are examined using test images as well as a stochastic image model.

In the first set of experiments, the DMT was applied to various images and the
percentage of the energy compaction for the 3% of the transform coefficients
lying at the low-frequency region on the top left quadrant of the frequency
domain (Figure 8), was calculated. In other words, the fraction of the total
transform domain energy residing into the coefficients of the white area in
Figure 8, was calculated. Table 3 shows the energy compaction in the region
shown in Figure 8 for various images, for various values of the DM'T parameter
A. The block size that was used to compute the transformed images was the
actual image size. The results show that the proposed transform compacts the
energy into a few coefficients in the low frequency region. More specifically, as

A increases DMT packs more energy in the the low frequency region. Thus,
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Fig. 8. The percentage of the energy compaction is calculated for the white area

shown above. This area corresponds to 3% of the frequency domain.

DMT includes an inherent way of controlling its energy compaction properties,
through the parameter A. This is an important characteristic, especially since
A is directly connected to the deformable model through which the DMT is
derived, being the parameter that controls the model elasticity. A large value
of A results in a rigid deformable model that can hardly deform, thus resulting
in a coarse, smooth approximation of the target image intensity surface that
eliminates the high frequency components of the image. Since DMT coefficients
form the image-dependent part of the model deformation (see equation (24)),
the energy is concentrated on the low-frequency region. On the other hand,
a small value of A leads to a highly elastic deformable model that deforms to
produce a close approximation of the image intensity surface, retaining most
of the high frequency components. This in turn results in the energy being

more spread over the DMT coefficients domain.

In the following set of experiments, the performance of the proposed transform
was evaluated by using two metrics of transform efficiency, i.e. the decorrela-

tion efficiency and energy packing ability, similar to the ones used in [35], [36].
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Table 3
Percentage of total energy residing in the 3% low-frequency region (white area of

Figure 8) for DMT and different values of .

Test images DMT

A=1 A =10 A =20

Lenna 92.85 98.26 100

Baboon 83.33 99.01 100

outdoor image 94.25 100 100

indoor image 82.54 100 100

facial image 94.52 100 100
studio image 74.13 90.43 96.42
average values 86.94 97.95 99.41

These metrics were calculated by assuming a covariance model for the input
image and evaluating the covariance function of the transform coefficients. The
input image was modeled as a zero mean unit variance wide sense stationary
2D Markov random field with an exponential isotropic non-separable covari-
ance function with interelement correlation coefficient p, which is a frequently
used model in image processing [32]. The covariance matrix for an M x N

image (i, j) that adheres to this model is given by:

Cov(i, 5,7, j') = E[I(i, j)I(i',j")] = pV =" H0=17, (39)

where E[-] denotes the expectation operator.

Given an image transform with basis images vy(i, j) with &, € {0,1,..., N —
1}, 1,5 € {0,1,..., M —1}, the covariance matrix Covy(k, 1, k', I') of the trans-

form coefficients F(k,l) can be calculated as follows:
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Covr(k, 1, K, 1) = E[F (k, ) F(k' )]
1

HVN_ M-t . oo -| [N_l Nt NI g -|-|
=F I(’L, )Ukl(la ) I(Z s )Uk/l/(l, )
|| X X 10| 3 3 105
XS Y S B e (2

=> ) Cov (i, 7,7, ) o (4, §)ogw (7', 7). (40)

(41)

The metrics of decorrelation and energy packing ability for 1D signals and
transforms in [35], [36], were extended to the 2D case. Hence, the decorrelation

efficiency of a 2D transform can be expressed as:

DE fVBl J 0 ICOfvT(Z jis g)]

Z Z Z Z |COUT(27]7ilajl)|‘

(42)

An efficient transform should results in transform coeflicients that are as
much uncorrelated as possible, i.e. in the ideal case E[F(k,l)F(k',l')] =
Covr(k, 1, k', l') should be zero for k # k' or | # I'. In this case DE = 1.
In general, large values of DFE (i.e. values close to 1) indicate good decorrela-

tion properties.

The energy packing ability is calculated by:

?:0 Zn 0 |CO’UT(i ja’iaj)|
i]ial ] 0 |COUT(2 ]72:])|

EPA(n) = (43)

where 7 is the amount of the coefficients retained. Energy packing ability
measures, in the transform domain, the ratio of energy that is contained in
the n x n “low-frequency” coefficients to the energy of all coefficients. High
EPA values (i.e. values close to 1) indicate high energy packing. It should be
noted that for a non-orthonormal transform, like DMT, the total energy in

the transform domain is different from that in the spatial domain. However,
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A=1(DMTy), (b) DMT, A\ = 10 (DMTy), (¢) DMT, X\ = 30 (DMTs,), (d)

DCT, (DCT), (e) DCT with quantization table (DCTgr).

since EPA is expressed as an energy ratio (in the transform domain), it is a

valid efficiency metric in this case too.

Plots of the decorrelation efficiency of DMT for values of parameter A equal to
1 (DMTy), 10 (DMTy,) and 30 (DMT3p) when the interelement correlation
coefficient p (eq. (39)) ranges from 0.75 to 0.98 (i.e. for high correlated 2D
signals, a typical situation in images) are plotted in Figure 9. The DFE versus
p values for DCT (denoted as DCT) and DCT scaled with the elements of the
quantization table (see Table 4) found in the Annex of the JPEG standard
(denoted as DCTqr) are also presented in Figure 9. A transform size of 8 x 8,
i,e. N = M = 8 was used for both DCT and DMT. Curves of the energy
packing ability (EPA) versus the interelement correlation coefficient p for the
same algorithms and n = 2 and 3 (i.e. for 4 and 9 lower frequency coefficients)

are presented in Figures 10 and 11 respectively.
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Table 4

DCT Quantization Table: Luminance.

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

These Figures show that DMT has very good energy packing and decorre-
lation properties that get better as A increases. It should be noted however,
that the improved performance of DMT does not stem from the transform per
se, since DMT is essentially a DCT followed by a division of its coefficients
with appropriate, coefficient-dependent, scaling factors. As A increases, these
scaling factors tend to favour the low frequency coefficients, thus increasing
the EPA of the algorithm. Hence, safer conclusions regarding the performance
of the algorithm with respect to DCT can be obtained within an image com-
pression framework, as will be detailed in the next section. Note also that, as
is obvious from (40), (42) and (43), the application of a scaling factor ) on
the DCT quantization matrix, does not change the shape of energy packing

and decorrelation curves of DCT (i.e. curves DCTgy in Figures 9-11 ).

6 Application of DMT to Image Compression

Although the main contribution of this paper is the introduction of the DMT,
an application of the DMT to lossy grayscale image compression is presented

in this Section. The proposed transform is compared with the DCT in terms
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of level of compression and compressed image quality. We chose to use DCT,
because of the similarities between the proposed transform and DCT. Fur-
thermore, DCT is the most widely used transform in many image compression

schemes, e.g. in JPEG.

The first set of experiments dealt with the evaluation of the quality of the
compressed images when DMT and DCT are applied to the target images. To
perform image compression, the same procedure is used for both transforms.
Both 2D transforms are applied to an image, by using 8 x 8 blocks. In order
to discard high-frequency details and achieve compression, the DCT output
must be quantized. In this experiment, the quantization table found in the
Annex of the JPEG standard [15] (Table 4), multiplied by a scaling coefficient
(2 to enable variable compression, was used for all image blocks. No quanti-
zation table was used for DMT, since the coefficient A along with the scaling
factor in the denominator of (32) essentially act as a quantization table. Once
the frequency coefficients of DCT were divided by the values of the quanti-
zation table, both the DMT and DCT outputs were rounded to their closest
integers. The frequency components that either have a small coefficient or a
large divisor in the quantization table will likely round to zero. By sorting
the frequency components (e.g. zig-zag scanning), one will typically end up
with a run of zeros at the end of the coefficient vector, which can be discarded
for compression purposes. In order to acquire the compressed image, first, the
output for DCT is multiplied with the quantization table and then, the inverse

transforms are applied to the frequency vectors, for both transforms.

The metrics used for comparing the results in terms of image quality were the
peak signal-to-noise ratio (PSNR) between the original and the compressed im-

age, the weighted PSNR (WPSNR) [37] and the total perceptual error (TPE)
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Fig. 12. PSNR and WPSNR between the original and the compressed image versus
the percentage of non-zero coefficients for different values of A and @ for DMT and
DCT respectively, for different test images:(a) Lenna, (b) Mandrill, (¢) an outdoor

image, (d) an indoor image, (e) a facial image and (f) a studio image.

30



centage (%) of non-zero

Percentage (%) of non-zero coefficients

5
&
s
O o 0w om0 o3 % as
Total Perceptual Error Total Perceptual Error
2 27
s g
Kl L2
£ £
5 36
8 8
o, 2
i i
L :
g 2
s B4
g 2
s °
3
g gs
£ £
5 5
g, g
T om0 om  om o 30 o1
Total Perceptual Error Total Perceptual Error
— o
st
2
g
2
2
£
5
3
3

centage (%) of non-zero

Per

Percentage (%) of non-zero coefficients

o on 0w om
Total Perceptual Error

(e)

T 30 o o6
Total Perceptual Error

(f)

Fig. 13. The total perceptual error of the Watson metric between the original and the

compressed image versus the percentage of non-zero coefficients for different values

of X and @Q for DMT and DCT respectively, for different test images:(a) Lenna,

(b) Mandrill, (¢) an outdoor image, (d) an indoor image, (e) a facial image and

(f) a studio image.
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of the Watson metric [38]. The formulas used for PSNR and WPSNR are given

below:

255
\/Zf\lhl Zj\’:u)l (Iom'ginal(izj)_lcompressed(iaj))2

Np, N

maX(Io'rigmal (Za ]))

Y
N N .. .. 2
\/2th Zj:wl (NVFij'(Ioriginal(sz)_lcompressed(zzj)))

WPSNR = 20log,, (45)

Np, N

1

1+03’

NVE; = (46)

where NV Fy; is the noise visibility function and o7

is the local variance of
an image I in a window centered on the pixel with coordinates (i, 7). Even
though the weighted PSNR and the Watson metric are more sophisticated and
efficient than PSNR in representing image quality as perceived by humans,
they are not the best way to compare the two algorithms, more so because the
JPEG quantization table for DCT was not designed in order to maximize the
objective performance but rather the subjective performance of the algorithm.

However they have been preferred over subjective quality testing since the

latter is a very cumbersome procedure.

In order to compare the compression results of the two transforms various
images of different sizes and content, namely facial images, studio images, im-
ages depicting humans, indoor and outdoor scenes were used. By varying the
coefficients A and @) for DMT and DCT respectively, different levels of com-
pression were achieved. In this experimental setup, compression was measured
as the percentage of non-zero frequency coefficients in the compressed images.
Plots of image quality (PSNR, WPSNR and TPE of Watson metric) versus
the number of non-zero frequency coefficients for some of the test images can

be seen in Figures 12, 13.
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Results prove that the DMT can achieve approximately the same or better
image quality at the same levels of compression. In general, in this simple
compression setup, the DMT achieves better image quality than DCT for
high compression levels (small percentage of non-zero coefficients). For exam-
ple, when only 3% of the coefficients are non-zero DMT achieves a WPSNR
improvement over DCT that is equal to 1.6db for an indoor image and 1.8db
for a facial image (Figure 2a). The improvements in terms of the TPE of the
Watson metric are 0.016 and 0.019 respectively. In low compression levels the
two algorithms perform almost the same. Some of the compressed test images
are shown in Figure 14. Similar results were obtained in all images used in our

experiments.

The second set of experiments dealt with the evaluation of the compres-
sion/image quality performance of DMT and DCT when applied for the com-
pression of images in a JPEG-like setup. In this case, the following procedure
is applied to both transforms. Both transforms are applied to an image, by us-
ing 8 x 8 blocks. Then, the quantization table found in the Annex of the JPEG
standard [15] (Table 4), multiplied by a scaling coefficient ) to enable variable
compression, was used for all DCT-transformed image blocks. No quantiza-
tion table was used for DMT, since as already mentioned, the scaling factor
in the denominator of (32) essentially acts as a quantization table. Both the
DMT and DCT outputs were rounded to their closest integers. The non zero

coefficients were scanned in a zig-zag order and subjected to entropy coding.

A set of images different than the one used in the previous experiment has
been used in this case. By varying the coefficients A and () for DMT and DCT
respectively, different levels of compression were achieved. In this experimental

setup, compression was measured in terms of the compression ratio, i.e. as
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Fig. 14. Application of DMT and DCT to lossy image compression. Factors Q, A
have been selected so that the two algorithms achieve approzimately the same com-
pression for each image. (a), (b), (c): Original images. Compressed images using
DMT: (d) X = 250, percentage of non zero coefficients = 6% and PSNR = 42.80,
(e) A = 250, percentage of non zero coefficients = 10% and PSNR = 36.59, (f):
A = 25, percentage of non zero coefficients = 14.5% and PSNR = 40.27. Com-
pressed images using DCT: (g) Q = 2, percentage of non zero coefficients = 6%
and PSNR = 42.77, (h) Q = 2, percentage of non zero coefficients = 10% and
PSNR = 3645, (i) Q = 2, percentage of non zero coefficients = 14.5% and

PSNR = 40.11.
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the number of bits in the original image divided by the number of bits in
the compressed image, after quantization and entropy coding. Plots of image
quality (PSNR, WPSNR and TPE of Watson metric) versus the compression
ratio for a subset of the test images used in these experiments can be seen
in Figures 15, 16. One can see, that DMT achieves in almost all cases, better
image quality than DCT. For example, the WPSNR improvements over DCT
are 1.1db for a compression ratio of 1 : 20 in Figure 15b and 0.6db for 1 : 15
compression ratio in Figure 15d. The corresponding improvements in terms of
the TPE of the Watson metric are 0.009 and 0.008 respectively. Similar results

were obtained in all images used in our experiments.

In the last set of experiments, instead of using standard quantization tables
that are based on general experiments for DCT, a technique based on bit-rate
control was exploited. More specifically, an optimal bit allocation procedure,
reviewed in [39], based on the statistical properties of an image was applied.
The image was partitioned in 8 x 8 non-overlapping blocks and both transforms
were applied to each block. The DCT output was scaled by the quantization
coefficients that were derived from the statistical properties of the image using
the bit allocation procedure in [39] and the selected bit rate. No quantization
coefficients were applied to DMT due to its inherent compression control pro-
vided by the denominator of (32). Then, both DMT and DCT coefficients
were rounded to their closer integer and entropy coding [39] was performed.
During the entropy coding, DCT coefficients were ordered by using the zig-zag
scan, whereas the DMT coefficients were sorted in ascending order based on

the denominator (32):

Z(k,1) =14\ lsinz <%) + sin? (%)] : (47)
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Fig. 15. Compression ratio-distortion curves for both DMT and DCT, for various
test images: (a) a lake image, (b) a house image, (¢) an animal image, (d) a child
image, (e) a flower image and (f) a portrait image. The distortion is measured in

terms of PSNR and WPSNR.
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Fig. 16. Compression ratio-distortion curves for both DMT and DCT for various

test images: (a) a lake image, (b) a house image, (¢) an animal image, (d) a child

image, (e) a flower image and (f) a portrait image. The distortion is measured in

terms of the total perceptual error of the Watson metric.
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where N, N,, are the dimensions of the 2D transform. The DMT coefficients
are divided by this term, thus, sorting based on this term means that the
coefficients which are divided with small values of Z have larger information
and must be kept and the coefficients which are divided with large values
of Z may be discarded. In Figures 17, 18, the compression ratio-distortion
curves for a subset of the test images used in our experiments are depicted.
In the case of DMT, compression was controlled by varying A. Similar to the
previous experiment, compression ratio was measured as the number of bits
in the original image divided by the number of bits in the compressed image,
after quantization and entropy coding, whereas distortion was measured using
PSNR and WPSNR (Figure 17) as well as the TPE of the Watson metric
(Figure 18). One can see, that DMT achieves in most cases, better image
quality than DCT for high compression ratios. For example, the WPSNR
improvements over DCT are 0.6db for a compression ratio of 1 : 15 in Figure
17a, 1.1db for a compression ratio of 1 : 35 for the facial image (Figure 2a)
and 0.5db for 1 : 35 compression ratio for Figure 17d. The corresponding
improvements in terms of the TPE of the Watson metric are 0.004, 0.007
and 0.006 respectively. At lower compression ratios, the two transforms have
almost the same performance. Similar results were obtained in all images used

in our experiments.

7 Conclusions

Novel 1D and 2D discrete, non-separable, signal transforms and their inverse
formula were introduced in this paper. The proposed 1D and 2D transforms

are an intermediate result of the deformation procedure of a 2D and 3D
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Fig. 17. Compression ratio-distortion curves for both DMT and DCT, for various
test images depicting: (a) a garden, (b) a basket, (c) the sea, (d) a woman, (e)
a human face and (f) a forest. The distortion is measured in terms of PSNR and

WPSNR.
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curves for both DMT and DCT for various

test images depicting: (a) a garden, (b) a basket, (c) the sea, (d) a woman, (e)

a human face and (f) a forest. The distortion is measured in terms of the total

perceptual error of the Watson metric.
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physics-based deformable model respectively. The proposed transform is a
DCT-like transform that includes the DCT as a special case and thus exhibits
similar properties to DCT. The fact that DCT can be derived using as starting
point a deformable model that tries to approximate the intensity surface of an
image, is per se, an important outcome of this study. Essentially, the coeffi-
cients (or equivalently, the basis images) of the proposed transform are scaled
versions of the DCT coefficients (or basis images) and so the transform can be
also viewed as a means of introducing a new quantization table for DCT. Thus,
the proposed transform includes an inherent and physically meaningful com-
pression level selection mechanism which allows handling of the compression
ratio without any particular quantization procedure. We applied the proposed
transform to lossy image compression and compared it with DCT, since the
latter is widely used in image compression. The results show that the proposed
transform can achieve very good energy packing and coefficient decorrelation,
comparable image quality to DCT at low levels of compression and in most

cases, better image quality for high compression levels.

Future work includes performing subjective comparisons between DCT and
DMT, using a panel of viewers as well as trying to provide a reasoning also
why the quantization matrix included in DMT provides better results than
the one included in the JPEG standard. Such an investigation will aim at
explaining the fact in terms of the structure and properties of the human

visual system.
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A Appendix
A.1 Inverse DMT Transform

The inverse DMT transform is expressed as:

Np Ny

k=11=1
where F(k, 1) denotes the DMT coefficients, N, and N,, are the dimensions of
the transform, 2 =0,1,...,N,—1,57=0,1,..., N, — 1 and the basis images

wy,(1, ) are given by:

k(2 + 1) (25 +1) 1+ A [sm (Tk) + sin (2]7:7111))] |

wi, (4, J) = cos 5N, COS N, a(k)a(l)

(A.2)

In order to prove that (A.1) is indeed the formula of the inverse DMT, we

substitute F(k,l) from (28) on the right side of (A.1):

n Ny Np—1 Ny—1 o cos Wké?\i‘FU COS 771(22]{7-1-1) o
ZZ Z Z 1(, 5) lw Wi (45 7),
k=11=1 i=0 j=0 [1 + A [sm ( ) + sin (217;“))“ a(k)a(l)

(A.3)

which can be rewritten as:
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%Nw Np—1 Ny— 1 1+)\[sm (%)%—sm (2%)]
k=11=1 % =0 j= 1+)\[sm (755)4—8111 (Q?Vlw)]
cos Wk(22+ )cosm(%+ )cos mh(2i + )cos mZi 1)
5N, 9N, 2N, ON,
%% 1 Ni:lNi:lf k(20 + 1) ml(25 +1)
(i,7) cos oS
k=11=1 @ i= 2N 2
k(21 (2 Sy
cosﬂ(“L )(,*os;7r(]+ = > )
2N}, 2N, k=11=1 \/a(k )a(l)
Nyp—1 Ny—1 k(2 + 1 (25 +1
Z le] Cosﬁ(z+)cosﬁ(]+) (A.4)
a(k)a(l) e 2N 2

21+ 1 27 +1
cos Wk(QJZV: )cos WZ(QJN:— ) (A.5)

The term in brackets in (A.4) is the 2D DCT transform C(k,[) of image 1.

Thus (A.4) can be rewritten as:

s 1 Tk(2i+1)  wl(2j+1)
———=C(k,l) cos oS =
kz::ug; a(k)a(l) 2N}, 2N,

where IDCT(i, j) is the inverse DCT transform.

A.2  Orthonormality of the DM T-inverse DMT pair

A 2D transform pair is orthonormal when the following property is satisfied

[32]:
N-1N-1
> (i, fwp (i, 5) = 6(k — k', 1= 1), (B.1)
i=0 j=0
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where N is the size of the basis images w, v are the matrices of the transform,

kLK I'=0,1,...,N — 1 and ¢ is the unit impulse function:

0,korl#0

In our case, the transformation matrices v and the basis images w are given by

equations (29) and (34) respectively (repeated here for readers’ convenience):

veaisf) = L g TR T2+ ) !
kI\s = . p . RN
Va(k) /a(l) 2N 2N 14 A(sin® 2 + sin® 1)
(B.3)
(i. ) 1 1 cos k' (20 + 1) cos ml'(25 + 1)
W1, ]) =
Jat) Ja) 2N 2N
2 T8 4 ginz L
<1+)\<sm 2N+sm 2N>> : (B.4)

where a(-) is given by equation (27), and A is a constant.

Thus, in order to prove that DMT is orthonormal one should prove the fol-

lowing equation:

NZLNZL 1 2+ 1 27 +1
B Z Cosﬂk( 7+ )Cosﬂl( j+1)
i=0 j=0 y/a(k)/a(l) 2N 2N

1 1 1
14 A(sin® ZE + sin® ZL) fa (k') [a(l')

wk'(2i+1)  7wl'(25+1) .ok ,wl
1 o 20
cOS SN coS SN + A | sin 5N + sin 5N

=5k — k', 1—1). (B.5)

Equation (B.5) can be further analyzed to:
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1 14 A(sin® 2% Tkt sin? ﬂ)

B= \/a(k) a(k") a(l) a(l’) 1+ A(sin® Z£ ﬂ + sin® 7L)

By B, (B.6)

where B is given by:

k(20 +1)  wk'(20+1)
Z co T A Y (B.7)

and B, is equal to:

2; +1) w2 +1)
. B.
Z COS coS SN (B.8)

Due to the similarity of B; and By one can focus only on the first one.

By a change of the summation index ¢ one can transform B; into:

k(2i — 1) k' (21 — 1)

. B.9
Z cos = cos —o (B.9)

which can be rewritten to:

B, = ; % (cos mik - l;])\g% i) + cos mik+ l;])\;% — 1)) . (B.10)

The proof will be separated into 5 distinct cases depending on the values of

k, kK and [, I'.

1.k£K or 141

It isknown that 0 < £k < Nand 0 < k' < N, thus =N < k—k’ < N and

1 _ k=K
—5 < S < 1 Since in this case we have assumed that k # k', & 2N L 40
and thus this term cannot obtain an integer value. As a consequence
sin (k—ﬂ') # 0. Moreover, 0 < k+ k' < 2N and thus using as similar

reasoning sin (k+k ) # 0.

The summation 37 ; cos(2i — 1)z can be expressed as follows [40]:

icos(?i — 1)z = %sm (2Nx) (B.11)

sin 517
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By substituting x with ”(27;“’) in the previous expression, the term

N cos % in equation (B.10) can be simplified to:

Noooork—-k)2i—-1) 1 2N(k — Km 1
= —si B.12
; COS ON 5 Sin ( ON ) sin (k;]lz;)ﬂ 3 ( )

the term in the denominator being non zero as was shown above. By
substituting = with ”(’;7#’) in (B.11), the second term of the sum in (B.10)

is simplified as follows:

> cos N = 5 sin 5N o (B.13)

=1 2N

Nooomk+E)2i—-1) 1, <2N(k+k’)7r> 1

the term in the denominator being again non zero.

Thus, By = 0, since sin ((k — k")) and sin ((k + k')7) are always equal
to zero. In the same way, when [ # ' B, = 0 and therefore B = 0.
k=K #0and 1=1#0
In this case B is given by the equation:

N

1 mk(2i — 1))
B =Y = (1 +cos ——— (B.14)
2 v

and as we have already seen in the previous case, the second term of the
summation is equal to zero. Consequently, B, = % In the same way,
when [ = " # 0 the factor By = g Since k, k', | and I’ are all not
equal to zero, a(k) = a(k') = a(l) = a(l') = 4. Moreover, the fraction

s 9wk’ ;o xl
1+A(sin S +sin W)

14A(sin? Z& +sin? ZL)

B=1.

in (B.6) is equal to 1 since k = k' and | = I, thus,

k=k=1=1I'=0
In this case, it is obvious that
N1
B, :Z§(I+1):N. (B.15)

=1

In the same way, when [ =[' =0, B, = N. Since k = k' =1=1 =0,
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1+/\(sm ——|—sm2 "—ll) -1 ThUS B=1

a(k) = a(k’) = a(l) = a(l') = N and A "]’\“,+s 7
.k=k'#0and 1=1'=0
From the cases 3 and 4 respectively, one can see that B; = ﬂ and By =
1+ A(sin +sm Z;l
fd a(l{)l) fd %7 a(l) = a(ll) — N and 1+)\((51n2 WJIX+S]H LN];,)) fd

N. Moreover, a(k)

1, thus, B = 1.
k=k'=0and 1=1+#0
=N, B, =%, a(k) = a(k') = N,

According to the previous case, B,
=1 and therefore B = 1.

. n _ N 1+X(sin? i—l—smv ;"l )
Cl(l) - Cl(l) -2 14+ (sin2 ﬂ—|—sm LN)

Concluding, we can say that DMT is an orthonormal transform pair since

equation (B.5) is proven to be equal to

1,k=Fkandl=10
=6(k—FK,1-1). (B.16)

B = =
0, otherwise

The proof of the 1D case is trivial and it is omitted

Moreover, the basis images of DMT are orthogonal and not orthonormal, i.e

the following equation is satisfied

N—1N-1 g# 1L, k=K andl =1
> wig (i, J)w p (i, 7) = , (B.17)
=0 j=0
0, otherwise

where wy; form the basis images of DMT. The proof of the afore-mentioned

equation is similar to the orthonormality of the DMT pair (B.1) and it is

omitted.
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