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Abstract

Metrics measuring tracking reliability under occlusion that are based on mutual information and

do not resort to ground truth data are proposed in this paper. Metrics for both the initialization of the

region to be tracked as well as for measuring the performance of the tracking algorithm are presented.

The metrics variations may be interpreted as a quantitative estimate of changes in the tracking

region due to occlusion, sudden movement or deformation of the tracked object. Performance metrics

based on the Kullback-Leibler distance and normalized correlation were also added for comparison

purposes. The proposed approach was tested on an object tracking scheme using multiple feature

point correspondences. Experimental results have shown that mutual information can e�ectively

characterize object appearance and reappearance in many computer vision applications.
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1 Introduction

Partial or full occlusion is an important issue in an object tracking process. A variety of algorithms

handling occlusion exist [1, 2, 3, 4]. However, they do not handle total occlusion properly. Tracking is

performed in [1] using Sum of square di�erences (SSD). Tracking does not rely on feature point sets.

Partial occlusion and illumination changes are handled. Nevertheless, the proposed algorithm does not

handle full occlusion. A contour tracking algorithm is proposed in [2]. The resulting scheme is reliable

in image clutter and partial occlusion. Nevertheless, it is not reliable to large amounts of occlusion. The

algorithm presented in [3] relies on deformable templates and can handle moderate amounts of partial

occlusion. In [4] the role of geometric invariants in tracking is examined. Feature point tracking veri�-

cation using geometric invariants is presented. The aim of the method is to compute the target feature

point set using geometric invariants. An algorithm insensitive to the disappearance and reappearance of

feature points is described in [5]. Although the above mentioned methods handle partial occlusion, only

few of them behave well under total occlusion.

A model based tracking scheme performing object tracking using edge information and capable of

handling partial and total occlusion is proposed in [6]. The proposed method can handle partial and

total occlusion events. Nevertheless, it is computationally expensive. A new approach on occlusion re-

sistant object tracking, using Kalman �ltering and robust statistics was proposed [7]. This method can

handle full occlusion for short time periods. The way the tracking system recovers after total occlu-

sion implies that the position of the disoccluded object lies within the tracker's search range. Another

approach for tracking multiple articulated objects in the presence of occlusion based on a Kalman �l-

tering mechanism is presented in [8]. This system was tested in a surveillance scheme used to track

moving people. The algorithm has shown good results in severe partial occlusion caused by inter object

and object-environment interferences. Finally, a probabilistic multiple object tracking approach working

under inter object occlusions is presented in [9].

The performance measure of a tracking algorithm is also an open issue. Although most of the proposed

techniques apply subjective evaluation methods, some of them use quantitative approaches based on

ground truth [10]. Therefore, implementation of reliability measures not resorting to ground truth data is

particularly important. Several metrics for performance evaluation of tracking algorithms without ground-

truth, based on color and motion were introduced in [11]. A more recent work on those metrics provides

their incorporation in a tracking scheme in order to perform better tracking [12]. A variety of con�dence

measures for the analysis of optical 
ow techniques was presented in [13]. However, the con�dence

measures analyzed in [13] are only used for the evaluation of the velocity �eld and are application

oriented.

The use of mutual information in object tracking as a tool for extracting information concerning the

condition of a tracking object is assessed in this paper. The proposed scheme is eÆcient in extracting

information under partial and total occlusion. Mutual information was �rst introduced in computer vision

in [14] for medical image registration applications. In [15, 16] it was applied to combine the outputs of

multiple tracking algorithms in order to improve the overall tracker performance.

In our method, the tracking process is modeled as a communication task between a transmitter and
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a receiver through a channel. Information theory based metrics are introduced. The mutual information

is used as a quantitative measure of the tracking process. Its variations can improve the understanding

of the tracked region characteristics and are closely related to changes in the tracked region. These

changes are caused by partial or total occlusion, movement of the occluding object and abrupt movements

or deformations of the occluded (tracked) object. Determining and understanding these changes may

improve tracker performance and assist an event detection scheme. Measures based on the Kullback-

Leibler distance and the normalized correlation are also implemented for comparison purposes. The

entropy is used as a measure of the initialization eÆciency of the tracking process and is closely related

to the �rst metric. The proposed metrics were tested on a feature point based tracking algorithm [17].

The algorithm is enhanced with an occlusion handling scheme, while an object reappearance veri�cation

scheme is also designed to allow tracking continuation after object reappearance. It relies on a mutual

information-based metric measuring the similarity between a reference and a target region. The modi�ed

tracking algorithm performs better than [17] in partial and total occlusion situations.

The main contribution of the current work is the introduction of information theory based metrics as

measures of tracking reliability. The use of the metrics does not impose the utilization of ground truth

data and is extended to the analysis of partial and total occlusion in object tracking. Moreover, occlusion

is processed without resorting to multiple camera systems fusing the outputs of di�erent tracking cues.

The remainder of the paper is organized as follows: The feature point generation and tracking is

presented in section 2. The information theory based metrics are described in section 3. Tracking

algorithm enhancement is presented in section 4. Experimental results are presented in section 5 and

conclusions are drawn in section 6.

2 Feature point generation and tracking

Object tracking is performed by minimizing the sum of squared di�erences of a large set of feature points

generated in the tracking region. The algorithm presented in [17] is used for feature point tracking.

Kalman �ltering motion prediction is employed to estimate the tracked region position during occlusion.

The tracked region in the subsequent video frame is speci�ed as the bounding rectangle of all the tracked

feature points. Robustness to partial occlusion is achieved by estimating the motion of the lost feature

points, using the estimated motion of the bounding box of the tracked object.

The displacement d = [dx; dy]
T between two feature point windows on images J2 and J1 is obtained

by minimizing

� =

Z Z
W

[J2(x+
d

2
)� J1(x�

d

2
)]2w(x)dx (1)

where x = [x; y]T , W is the region of the intergration window and w(x) is a weighting function that can

be set to 1 for simplicity. Equation (1) uses [J2(x+
d
2 )� J1(x�

d
2 )] instead of [J2(x)� J1(x� d)] used

in [17], because of its symmetry with respect to both images [18]. In order to perform one iteration of

the minimization procedure of (1), the equation Zd = e must be solved where:

Z =

Z Z
W

g(x)gT (x)w(x)dx (2)
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e = 2

Z Z
W

[J1(x)� J2(x)]g(x)w(x)dx (3)

and

g =

2
4 @(J1+J2)

@x

@(J1+J2)
@y

3
5 : (4)

Feature point occlusion is determined using the process described in [17] and is essentially controlled

by the residue �. Large values of � when compared to a prede�ned threshold imply that the feature

point of interest should be rejected. The object tracking occlusion handling is based on feature point

occlusion handling as presented in [17] That is, an object part is considered lost when the feature points

"belonging" to that part are lost. Other methods of occlusion handling involve the use of constraints

based on articulation [19] and layer representation [20]. The approach used in the context of present

work is general and can be used in a variety of applications. The layer representation method is very

useful in coding and compression, while the role of articulation constraints in determining self occlusions

in human body part tracking is vital.

In order to avoid tracking stationary or slowly moving background feature points, we have introduced

a clustering procedure. The mean (�x; �y) and the variance (�x; �y) of the feature point coordinates

are computed for the tracked region in each frame. Let [x; y]T be the coordinates of a feature point at

video frame t and (�x; �y), (�x; �y) their mean and variance. A feature point is retained in video frame

t + 1, if x � [�x � �x; �x + �x] and y � [�y � �y ; �y + �y], otherwise it is rejected. Assuming that the

object feature points have similar motion patterns, we can reject stationary or slow moving background

features, after a number of frames, while retaining the moving object feature points. This procedure is

particularly useful, if the initialized region to be tracked contains some portions of background regions.

2.1 Initialization

The region bounding rectangle is used to specify the region to be tracked. A large number of feature

points is generated inside the tracked region using the process described in [17, 18, 21]. A good feature

point is de�ned as the one whose matrix Z has two large eigenvalues that do not di�er by several orders

of magnitude [21]. In order to avoid loss of target, caused by too many lost feature points, the feature

point set is periodically regenerated. Di�erent strategies for the periodic feature point regeneration can

be applied. It can be thorough (the entire feature point set is regenerated), periodic (it occurs after a

�xed number of frames) or asyncronus (its occurrence is based on the tracking process metric value).

Feature point generation and tracking are transparent to the observer.

The number of the generated feature points is essentially user controlled. The user controls the number

of feature points by selecting their number and the minimum allowed distance between the feature points.

Let Ns be the desired number of feature points selected by the user. The number Nk of feature points

generated in the region to be tracked depends essentially on the minimal allowed distance between the

feature points (Nk � Ns). Therefore, a set of the possible con�gurations of the ensemble of the possible

feature point sets can be de�ned. Large minimum allowed distances between the feature points may lead

to a small Nk and a poor tracker performance.
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3 Robustness to partial and total occlusion

The previously described tracking process can be modeled as a communication between a transmitter

(reference frame) and a receiver (target frame) with an Nmax symbol alphabet (the maximal number of

grayscale levels). The tracking process is characterized by loss of information caused by feature point

rejection and wrong feature point correspondences. Mutual information is a well known measure of the

amount of information transmitted through the communication channel [22, 23]. Therefore, it can be

used as a quantitative measure of tracking performance.

3.1 Mutual information as tracker evaluation metric

Let xri and xci represent the coordinate vectors of feature point i in the reference and current frame,

respectively. During the tracking process, a feature point set of the initial video frame

S1 = [xr1; : : : ;x
r
Nk
]T (5)

is tracked to a feature point set

S2 = [xc1; : : : ;x
c
N ]

T ; (6)

of the target video frame, with N � Nk; Nk � Ns; where Ns is the initial user preference for the number

of the feature points

Let U; V be two random variables with marginal probability mass functions p(u); p(v) and ui = J1(x
r
k);

vj = J2(x
c
k) their possible outcomes, where J1 and J2 are the reference and target image respectively

and xrk 2 S1 ;x
c
k 2 S2 . The mutual information of the two random variables U; V with a joint probability

mass function p(u; v) is de�ned as:

I(U; V ) =

NmaxX
i=1

NmaxX
j=1

p(ui; vj) log2
p(ui; vj)

p(ui)p(vj)
; (7)

where Nmax is the maximum number of the available grayscale levels. In order to take into account the

lost feature points during the tracking process a cost function Em is de�ned:

Em(U; V;N;Nk) = c1(
I(U; V )

Imax(U; V )
� �1

Nk �N

Nk

+ c2) (8)

The term I(U;V )
Imax(U;V )

is the mutual information part of the cost function. The maximummutual information

Imax(U; V ) is [24]:

Imax(U; V ) = �

NmaxX
i=1

p(ui) log2 p(ui) (9)

The term Nk�N
Nk

is a penalizing quantity depending on the number of the lost feature points during the

tracking process. The use of the penalizing term is necessary, because the mutual information part of the

metric measures only the matching eÆciency between the feature points that have not been lost. In the

context of present work c1 = 0:5; �1 = 1; c2 = 1: The constants c1; c2; �1 are chosen to satisfy:

0 � Em � 1: (10)
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In the case of total occlusion:

I(U; V )

Imax(U; V )
= 0 and

Nk �N

Nk

= 1 (11)

leading to the minimum value of Em. The maximum value of Em occurs when:

I(U; V ) = Imax(U; V ) and N = Nk (12)

The metric Em is a measure of the information 
ow during the tracking process. Large values of Em

represent large amounts of information carried from the reference region to the target output region.

In this case, the similarity between the reference region and the target region and, consequently, the

reliability of the tracker output are high. Small values of Em are an indication that the tracking process

is unreliable.

3.2 Kullback-Leibler distance based tracking metric

The Kullback-Leibler distance is de�ned as [25]:

D(p(u)jjp(v)) =

NmaxX
i=1

p(ui) log2
p(ui)

p(vi)
(13)

and measures the similarity between p(ui) and p(vi). It is not symmetric, i.e. in general D(p(u)jjp(v)) 6=

D(p(v)jjp(u)): An upper bound of the Kullback-Leibler distance can be easily found as follows, since:

D(p(u)jjp(v)) =

NmaxX
i=1

p(ui) log2
p(ui)

p(vi)
=

NmaxX
i=1

p(ui) log2 p(ui)�

NmaxX
i=1

p(ui) log2 p(vi) (14)

The �rst term is negative or zero, while the second is positive. Therefore, an upper bound of the

Kullback-Leibler distance is:

D(p(u)jjp(v)) � �

NmaxX
i=1

p(ui) log2 p(vi): (15)

A similar metric to Em(U; V;N;Nk) based on the Kullback-Leibler distance can be de�ned as:

EK(U; V;N;Nk) = c1(1�
D(p(u)jjp(v))

Dmax(p(u)jjp(v))
� �1

Nk �N

Nk

+ c2) (16)

and by construction is expected to behave similarly to Em: Large values of EK imply a better matching

between the reference and the target region. Both Mutual information and Kullback-Leibler tracking

metrics are expected to perform best when we have planar object motion with partial and total occlusions.

3.3 Normalized correlation based metric

The normalized correlation between the reference and the target feature point sets can be de�ned as:

[26]:

Cn =

PN

i=1 J1(x
r
i )J2(x

c
i )qPN

i=1 J
2
1 (x

r
i )
PN

i=1 J
2
2 (x

c
i )

(17)
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since a one by one correspondence exists between the feature point sets. Equation (17) expresses the

similarity between J1 and J2 and can be used to construct a metric similar to those already presented in

the context of present work (Eq.8,16). The metric constructed is of the form:

C
0

n = c1(Cn � �1
Nk �N

Nk

+ c2) (18)

and was also tested under similar tracking conditions with the other two. It stands that:

0 � C
0

n � 1 (19)

The values of the constants c1,c2,�1 are the same as in equations (8), (16).

3.4 Tracker initialization evaluation metric

Since the feature point set S1 generated on the initial frame belongs to the power set of the possible feature

point set con�gurations, a metric measuring the reliability of S1 can be de�ned. It can characterize the

eÆciency of the initially selected region for tracking. Each feature point set Sk is characterized by its

entropy:

HSk = �

NmaxX
i=1

pk(ui)log2pk(ui); (20)

where u = J(x) are the image luminances at feature point locations on the initial frame. Let Nk be the

number of feature points generated in the tracked region. In general, Nk � Ns. The maximal value of

HSk depends on Nk; if Nk � Nmax; since in that case the number of grayscale levels, belonging to the

feature point set, cannot reach Nmax: Then the distribution pk(ui) =
1
Nk

can create an upper bound HSk

if Nk � Nmax: Therefore:

pk(ui) =

8<
:

1
Nk

Nk � Nmax

1
Nmax

Nk > Nmax

(21)

Clearly HSk is maximized when Nk � Nmax and pk(ui) =
1

Nmax
: The maximal symbol value of the

communication alphabet is Nmax (maximum number of grayscale levels). In order to handle degenerative

cases, where the number of the generated feature pointsNk is much smaller than the initial user preference

Ns; a penalizing term depending on the number of not generated feature points is added. Such cases

occur when the minimum allowed distance between feature points is large, compared to the region size.

Therefore, the metric, measuring the eÆciency of the feature point sets produced during the initialization

step, is de�ned as:

Ei(HSk ; Nk; Ns) =

8>>>>><
>>>>>:

HS
k

log2Nk
NT � Nk < Nmax

�H
HS

k

log2Nk
+ �F

Nk
Ns

Nk < Nmax; Nk < NT

HS
k

log2Nmax
NT � Nk; Nmax � Nk

�H
HS

k

log2Nmax
+ �F

Nk
Ns

Nmax � Nk; Nk < NT

(22)

Threshold NT is usually a fraction of the user speci�ed feature point number Ns: In the context of

present work we have chosen: Ns = 180; NT = Ns
4 ; �H = 0:5, �F = 0:5: The penalizing term is introduced

only when Nk < NT : In such cases the number of the feature points Nk is small and the penalizing term
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of equation (22) has to be added. The metric Ei is a measure of eÆciency of the initial feature point

set con�guration. It imposes a feature point selection based on the feature point set entropy. The

initialization metric imposes large feature point set luminance variation by using entropy maximization.

The most e�ective way of controlling the feature point set con�guration is by changing the minimum

distance between the feature points. Small distances lead to a feature point concentration in certain

parts of the object being tracked. Larger distances usually help at providing feature point sets with

better coverage of the object being tracked and at attaining better tracking results. Ideally, the average

feature point distance should be greater than the texture cell or grain size.

The entropy based selection criterion aims at imposing a large feature point intensity dispersion in

order to provide better tracking results. The penalizing term is introduced to prevent a feature point set

choice with too large distances between the feature points that contains a small number of feature points.

The initialization criterion can also be applied to untextured objects with limited success. The choice of

the initial feature point set con�guration is important for the success of the object tracking process.

4 Tracking algorithm enhancement

The tracking algorithm presented in section 2 is enhanced by using an occlusion handling scheme. It is

capable of handling partial and total occlusion in a variety of cases. The Occlusion handling scheme is

assisted by an object veri�cation scheme, applied to total occlusion situations. The object veri�cation

scheme is based on the metric Em; in the context of present work. Nevertheless, other techniques like

elastic graph matching can also be used.

4.1 Occlusion handling

In order to cope with partial occlusion, a prediction scheme is applied. The lost features are not tracked.

However, their coordinates are updated using the estimated movement of the upper left and the lower

right corner of the bounding rectangle of the tracked object. The procedure is stopped if the occlusion

is total, that is, when none of the feature points comprising the feature point set can be further tracked

correctly due to occlusion. In order to handle large variations of the bounding box size, caused by the

feature point loss, the area of the tracked region is introduced as a reliability measure of the update of the

upper left and lower right bounding box coordinates. The feature points, whose coordinates are updated,

are considered lost if the bounding box area exceeds a threshold Tmax or is smaller than a threshold

Tmin: Periodical regeneration of the lost feature points during the tracking process using the procedure

presented in section 2 is also a useful tool in order to handle partial occlusion and allow tracking for long

time periods. The feature points not lost in the tracking process are not regenerated. In order to cope

with total occlusion, the position of the occluded region is updated using the velocity estimates of the

region corners obtained from the measurements before total occlusion with the help of a Kalman �ltering

scheme.

The Kalman �ltering prediction process is applied on the upper left corner and the lower right corner

of the region bounding rectangle before total occlusion. A constant acceleration model is used [27]. Let

9



d(k), u(k), and a(k) denote the displacement velocity and acceleration for each corner of the bounding

box at time k respectively. The state-transition equation for each corner is, [27]:

s(k) = Cs(k � 1) +w(k); k = 1; : : : ; N (23)

where w(k) is a zero mean, white random sequence and s is a 6x1 vector containing the coordinates of

displacement velocity and acceleration, for each corner of the bounding box:

s =
h
dx dy ux uy ax ay

iT
: (24)

The measurements d(k) are related to the state variables s(k) with

d(k) = Hs(k) + v(k); k = 1; : : : ; N (25)

where v(k) denotes a zero-mean, white observation noise sequence. The matrices describing the model

are given below. The 2x1 observation vector and the 2x6 measurement matrix are given by:

d =

2
4 dx

dy

3
5 (26)

H =

2
4 1 0 0 0 0 0

0 1 0 0 0 0

3
5 : (27)

The observation equation states that the noisy displacement coordinates of each bounding box corner

can be observed.

The 6x6 state transition matrix describing the model is [27]:

C =

2
666666666664

1 0 1 0 0:5 0

0 1 0 1 0 0:5

0 0 1 0 1 0

0 0 0 1 0 1

0 0 0 0 1 0

0 0 0 0 0 1

3
777777777775

: (28)

4.2 Object reappearance prediction and veri�cation

Reappearance prediction is obtained by estimating and tracking the occluding region. To estimate the

occluding region bounding box, a simple region growing segmentation algorithm is used. A seed is

determined by the last position of the occluded region before total occlusion. The occluded object is

considered to be entirely disoccluded when:

A1

\
A2 = �; (29)

where A1 is the occluding region and A2 is the predicted occluded region. The occluded region reappears

provided that the above condition is satis�ed. Reappearance is associated with the regeneration of a set
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of feature points, as in the initialization step. Again, the selected feature points for object reappearance

are those that have large eigenvalues of matrix Z. The feature point regeneration is thorough after total

occlusion, that is the entire feature point set is regenerated inside the bounding rectangle speci�ed by

A2: Object tracking continues after the feature point set regeneration.

When the tracker predicts that reappearance has taken place, it has to decide if the reappearing

region is similar enough to the tracked region before occlusion. This can be achieved by using the mutual

information metric Em (8). A feature point set is generated in the tracked region belonging to the

frame before total occlusion. The position of this feature point set on the current frame is predicted.

The metric Em is calculated using the feature point sets of the reference and target frames, while the

predicted tracked region is allowed to change slightly. The maximum of the Em value is compared with

a threshold. The threshold value can be chosen according to the value of Em before total occlusion.

Graph matching is an alternative technique that can be used for object reappearance veri�cation.

Nevertheless, the use of Em as previously described is preferred, in the context of present work for

simplicity and uniformity.

5 Experimental results

The proposed tracking algorithm was tested on both real and arti�cially generated image sequences. In

order to evaluate the eÆciency of the proposed scheme, image sequences containing total occlusion and

partial occlusion were used. Curves showing the variations of the metrics Em, EK and Corr during the

tracking process were calculated for di�erent occlusion cases. The metric Ei of the tracking algorithm

initialization eÆciency, was tested both on arti�cial and real image sequences.

The algorithm involves the choice of system parameters in order to work. The parameters' values are

kept constant during the experiments. The choice of Ns is left to the user and depends mainly on the

tracked object size. NT is a fraction of Ns acquired by experience. The choice of c1, c2, �1,�F and �H is

imposed by the requirement 0 � Em � 1 and 0 � Ei � 1. Their value is kept throughout the entirety of

experiments. The choice of the minimum distance between feature point is crucial to the tracking process

and is obtained by using the initialization metric Ei.

Results on an arti�cial image sequence are presented in Figure 1. A small circular object (Fig. 1a)

moves slowly from right to left and is fully occluded by a faster moving elliptical object that moves in

the opposite direction (Figure 1b). The tracked region bounding rectangle is recalculated after total

disocclusion. The algorithm performs well, even when the occluding object reappears suddenly without

previous appearance in the image sequence. The cost function Em for various image sequence frames is

shown in Figure 2. A decrease in Em begins after frame 15, marking the beginning of partial occlusion.

The minimal value of Em = 0 marks the beginning of total occlusion. Object reappearance is marked

by an abrupt increase of Em. The frames corresponding to the start of partial occlusion and the start of

total occlusion are shown in Figure 3.

In Figure 4, the tracked region (head of the football player) is occluded by the foot of another football

player. The cost function Em for each frame of the image sequence is shown in Figure 5. Em drops
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at its minimum value Em = 0 during total occlusion. The results on the real and the arti�cial image

sequences show that Em can be useful in the analysis of partial and total occlusion in object tracking.

Partial occlusion is accompanied by a drop of Em, while total occlusion is characterized by a zero Em

value. The sudden increase of cost function Em after the object reappearance in the example of Figure

4 is caused by the generation of a feature point set during the object reappearance described in section

3:6. An increase of Em is possible, whenever a feature point set regeneration occurs.

In Figure 6, results showing robustness to partial occlusions are presented. A person face is partially

occluded and, at the end of partial occlusion, the tracked face reappears completely. The beginning of

partial occlusion in frame 34, (Figure 7) is marked by a sudden drop in Em (Figure 12). The mutual

information does not increase after face disocclusion, since many feature points were lost during partial

occlusion that have not been regenerated after disocclusion. Two frames showing the feature point sets

before and after partial occlusion are presented in Figure 8. Notice the loss of feature points, which

is caused by partial occlusion. The tracked region size is computed correctly with the help of partial

occlusion handling scheme.

The object tracking algorithm containing the occlusion handling scheme and the object reappearance

prediction and veri�cation scheme performs better than an object tracking algorithm based on [17] without

these new additions. In Figure 9 results of [17] without the new additions on the football image sequence

are presented. Notice the performance degradation before total occlusion and the loss of target after

total occlusion versus the results shown in Figure 4. Similar results on the arti�cial image sequence are

presented in Figure 10. Performance degradation before total occlusion and loss of target after total

occlusion is also noticed, when compared with the results shown in Figure 3 . Results on the lab image

sequence are also presented in Figure 11. Partial occlusion a�ects the tracking performance. One part of

the tracked object is lost during and after partial occlusion, as can be seen in Figure 11, in contrast to

what is shown in Figure 6.

The variations of the metric Em for the three sequences are presented in Figures 2,5,12 respectively,

while the metric Ek variations are presented in Figures 13,14,15. Finally, the variations of the Corr metric

are presented in Figures 17, 18 and 19. As it can be seen metric Ek performs similarly to Em. Further

tests have shown that no signi�cant change in Ek behavior was caused by its asymmetry (Fig. 16). The

normalized correlation based metric Corr does not behave as well as the information theory based metrics

in partial occlusion situations (Figures 17,18 and 19). The authors believe that the information theory

based metrics should be preferred over the normalized correlation one. Mutual information can be very

useful as it provides spatial information and is symmetrical. The Kullback-Leibler distance can provide

a variety of metrics with similar performance.

The variations of the initialization performance metric Ei (22) with respect to the minimum allowed

distance in pixels between feature points in the reference frame are presented in Figures 20 and 21 for

the arti�cial image sequence and the football image sequence respectively. The cost function values are

generally bigger in the football image sequence than in the arti�cial image sequence case due to the fact

that the initialized region in the arti�cial image sequence is uniformly textured. The value of Ei increases

when the minimum allowed distance between features increases, provided that Nk
�= Ns. A rapid decrease
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in the Ei value is noticed when the minimum allowed distance between feature points increase causes the

number of feature points generated in the tracking region be much smaller than the initial feature point

number user preference (Nk � Ns).

The e�ectiveness of the proposed tracker initialization metric was tested by performing object tracking

in the football and arti�cial image sequences under di�erent minimum feature points distances. The

algorithm performs well when the minimum between feature points distance in the football image sequence

case (Figure 22) is less than 5 pixels. A rapid decrease in performance was noticed when the feature points

distance increased above 5 pixels. Tests performed on the arti�cial image sequence case have shown no

signi�cant change in the algorithm performance for feature point distances in the range [3; : : : ; 7] pixels.

A decrease in the algorithm performance was noticed for feature point distance arround 10 pixels. It can

be noticed in the arti�cial image sequence that the "best" 5 pixel value is equal to the texture grain size.

This exhibits a possible relationship between the texture grain size and the feature point distance.

The e�ectiveness of the partial occlusion handling scheme during the tracking process is shown in

Figures 23 and 24. In Figure 23, the loss of feature points is caused by partial occlusion. Figure 24

demonstrates the usefulness of the updating procedure in a case not containing partial occlusion, since

loss of feature points can be caused by illumination changes, deformations of the tracked objects, abrupt

motion or a combination of them.

6 Conclusions

In this paper, an object tracking algorithm that is robust to partial and full occlusion was presented.

Information theory based metrics were used as a reliability measure to the algorithm initialization and

tracking procedures. The mutual information and Kullback-Leibler based metrics provide the means to

detect abrupt changes, (partial occlusion, full occlusion or movement of the occluding object). Further-

more, motion detection of the tracked object is also possible in static scenes. Finally, an object veri�cation

process based on mutual information was also proposed and applied after object disocclusion. The use

of the information theory based metrics combined with an occlusion handling scene provide an object

tracking algorithm performing better than [17] in partial and total occlusion situations.

Experimental results have shown that the algorithm correctly detects and processes partial and total

occlusion situations. The interpretation of variations of the proposed metrics may lead to a thorough

understanding of the object tracking process in many computer vision applications.

The information theory based metrics behave better in partial occlusion situations than the normalized

correlation based metric. A clear distinction in performance between the two information theory based

metrics cannot be easily extracted. Nevertheless, the mutual information having the advantage of being

symmetrical and including spatial information seems to be the preferred choice.
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(a) (b) (c)

Figure 1: Arti�cial image sequence: (a) before total occlusion, (b) during total occlusion, (c) region

reappearance.
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Figure 2: Cost function Em versus frame number of the arti�cial image sequence of Fig. 1.
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(a) (b) (c)

Figure 3: Arti�cial image sequence frames characterized by the mutual information cost function as: (a)

the start of partial occlusion frame (frame No. 15), (b) the start of total occlusion frame (frame No. 23),

(c) the �rst frame after the total object reappearance (frame No. 45)

(a) (b) (c)

Figure 4: Football image sequence: (a) before total occlusion, (b) during total occlusion, (c) region

reappearance.
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Figure 5: Values of the cost function Em versus frame number for part of the football image sequence

(Fig. 4).
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(a) (b) (c)

Figure 6: Lab image sequence: (a) tracked region, (b) partial occlusion, (c) region after occlusion.

(a) (b)

(c) (d)

Figure 7: Lab image sequence: (a) beginning of partial occlusion (frame 34), (b) disocclusion (frame

101), (c) movement of the occluding region (frame 85), (d) movement of the occluding region (frame 86).

(a) (b)

Figure 8: Lab image sequence: (a) Feature point set before partial occlusion, (b) Feature point set after

partial occlusion
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(a) (b) (c)

Figure 9: Football image sequence: Tracking without occlusion handling and object reappearance pre-

diction and veri�cation. (a) initial frame, (b) before total occlusion, (c) after total occlusion.

(a) (b) (c)

Figure 10: Arti�cial image sequence: Tracking without occlusion handling and object reappearance

prediction and veri�cation. (a) initial frame, (b) before total occlusion, (c) after total occlusion. Notice

tracking degradation in (b) and in (c).

(a) (b) (c)

Figure 11: Lab image sequence: Tracking without occlusion handling and object reappearance prediction

and veri�cation. (a) initial frame, (b) during partial occlusion, (c) after partial occlusion. Notice tracking

degradation in (b) and in (c).
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Figure 12: Cost function Em for the lab image sequence (Fig. 7) versus frame number.
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Figure 13: Cost function EK for the arti�cial image sequence (Fig. 3) versus frame number.
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Figure 14: Values of the cost function EK versus frame number for part of the football image sequence

(Fig. 4).
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Figure 15: Values of the cost function EK versus frame number for the lab image sequence (Fig. 7).
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Figure 16: Values of the two forms of the cost function EK based on D(p(u)jjp(v)) and D(p(v)jjp(u)) for

the arti�cial image sequence (Fig. 3).
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Figure 17: Normalized Correlation for the arti�cial image sequence (Fig. 3) versus frame number.
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Figure 18: Normalized Correlation for the football image sequence (Fig. 4) versus frame number.
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Figure 19: Normalized Correlation for the lab image sequence (Fig. 7) versus frame number.
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Figure 20: Cost function Ei for the algorithm initialization in the arti�cial image sequence. Notice that

the texture grain size is 5 pixels. (Fig. 1, 2).
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Figure 21: Cost function Ei for the initialization process in the football image sequence (Fig. 4).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 22: Tracker outputs for the arti�cial image sequence: (a) and (b) with minimum distance between

feature points equal to 5 pixels, (c) and (d) with minimum distance between feature points equal to 10

pixels. Football image sequence I: Tracker output obtained: (e) and (f) with minimum distance between

feature points equal to 4 pixels, (g) and (h) with minimum distance between feature points equal to 5

pixels Notice the performance degradation at (c),(d) and (g),(h).
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(a) (b)

Figure 23: Tracker outputs obtained: (a) with and (b) without applying the partial occlusion handling

scheme in a frame of the arti�cial image sequence.

(a) (b)

Figure 24: Tracker outputs obtained: (a) with and (b) without partial occlusion handling scheme in the

football image sequence.)
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