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Abstract

A joint probabilistic face detection and tracking algorithm combining likelihood estimation and a prior

probability is proposed in this paper. The likelihood estimation scheme is based on the statistical training of

sets of automatically generated feature points and a mutual information tracking cue, while the prior probability

estimation is based on a Gaussian temporal model. The likelihood estimation process is the core of a multiple face

detection scheme used to initialize the tracking process. The resulting system was tested on real image sequences

and is robust to significant partial occlusion and illumination changes.

Index terms: Mutual information, arbitration scheme, occlusion, illumination changes.
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I. INTRODUCTION

Automatic detection and tracking of human body parts (e.g. face, arms) is a challenging research topic with

applications in many domains such as human computer interaction, surveillance, face recognition and human

joint audio and video localization systems.

In this framework, Bayesian approaches express the posterior probability of the motion parameters in terms

of a prior probability and a likelihood function [1]. The prior probability is representative of the previous

history of the tracked object and the likelihood is representative of its similarity to an appearance based model

learnt through statistical training. Bayesian approaches are considered as an effective way for updating prior

information by estimating the posterior probability and using it as a prior in the next stage of the tracking

process. They also allow the fusion of different tracking cues in order to provide a joint tracking output.

The main characteristics of the relevant published work are the use of an image model learnt through statistical

training and the fusion of different tracking cues. An appearance model consisting of a stable component, a

transient component and an outlier detection process is proposed in [2], while the use of exemplar based models

in object tracking is introduced in [3]. Object tracking is performed using color, texture, and edge information

in [4], while edge and ridge information is used in [5]. Grayscale information and motion models are combined

in [6] to perform tracking of 3D articulated figures.

Head orientation is calculated by using either feature based methods [7],[8] or appearance based methods

[9],[10]. The latter rely on using training sets of face images under various poses, while the former do not

require statistical training. Appearance based methods are particularly interesting, as they can be combined in

a probabilistic framework to obtain a single perceptual output.

The face tracking scheme proposed in this paper relies on calculating the posterior probability of motion

parameters as the product of a prior probability and a likelihood function. The construction of the likelihood

function relies on an appearance based model of automatically generated feature point sets and a mutual

information based tracking cue, while the prior probability is constructed by using a temporal model term.

Mutual information has been widely used in image registration [11]. It has also been used as a cue selection

criterion in multiple cue tracking systems [12], [13]. The novelty of our approach lies in the use of mutual

information as a separate cue in a probabilistic face tracking framework. Furthermore, the probability of face

observation is constrained by using a temporal model based on the automatically generated feature point sets.

Head orientation calculation is performed using a mutual information based scheme as well. The proposed

approach does not require training for head orientation estimation and has shown good results in determining

pose under facial appearance changes and illumination variations.

The tracking initialization algorithm uses a likelihood function estimation framework and can be interpreted

as a probabilistic face detector. An arbitration scheme is also used to obtain an extension of the algorithm to

cover multiple face cases.

The main contributions of the current work are the use of a novel probabilistic model based on automatically

generated feature point sets in an object tracking scheme, the introduction of mutual information as a separate cue

in a probabilistic face tracking framework and the head orientation calculation method using mutual information.

The proposed tracking scheme was tested on real image sequences. The tracker performs well in partial

occlusion and illumination changes, because it combines the robustness of the mutual information systems to
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illumination changes and the appearance based face detection systems to partial occlusion.

The remainder of the paper is organized as follows: The estimation of the likelihood function term based on

statistical training is described in section 2. The estimation of the probability based on mutual information is

presented in section 3. The temporal model is presented in section 4. The tracking process and the tracking

initialization procedure are described in sections 5 and 6 respectively. Experimental results are presented in

section 7 and conclusions are drawn in section 8.

II. ESTIMATION OF THE LIKELIHOOD FUNCTION TERM BASED ON STATISTICAL TRAINING

The likelihood function term based on statistical training is learnt through training using automatically

generated feature point sets. Each image of the training set is reduced to a set of automatically generated

feature points [14], [15]. The feature points represent image corners and are characterized by large gradient

variations in both horizontal and vertical directions.

A. Face feature generation and training

The feature points v = [vx; vy]
T [14], are generated using a matrix:

Z =

2
4
P

W J2x
P

W JxJyP
W JxJy

P
W J2y

3
5 ; (1)

where Jx and Jy are the image gradients of an image point in the x and y direction respectively and W is a

n � n window centered on the candidate feature point. Matrix Z is zero-positive one by definition with two

eigenvalues �2 > �1 � 0 and is calculated for every candidate feature point. The selected feature points have

two large eigenvalues of their matrix Z. Furthermore, the geometrical distance between two feature points must

not be smaller than a predefined threshold (feature point neighborhood threshold) to ensure that the feature

points do not concentrate on small image neighborhoods. The feature point set is assumed to be comprised of

N pixels. Most of them represent contour corners or local intensity patterns not corresponding to obviously

visible scene features [16]. In the case of faces, the feature points are expected to lie on facial areas containing

intensity variations, such as facial contours, eyes, nose and mouth (see Figure 1).

The training procedure involves the feature point set generation from a number of training images. The ”ORL

Database of Faces”[17] containing a total number of 400 images of 40 different persons was used for training.

Feature point sets were generated on the facial region of each training image. The facial region bounding rectangle

was manually defined during the training process. The feature point set generation process was performed inside

the manually defined facial region for each image belonging to the training set.

As stated in [18], a major difficulty in the application of statistical feature point training is the efficient

establishment of a rough registration between the different instances of the training set. Therefore, to avoid

tedious manual interaction on very large feature point sets we have resorted to a semi-automatic registration

procedure. A bounding box containing the face was drawn on each image of the training set and registered with

respect to the bounding box of an arbitrarily chosen reference image.

Let v1ri be the geometrical coordinates of the i � th feature point with respect to the upper left corner of

the face bounding box belonging to the first image of the training set and v l
rj

the geometrical coordinates with

respect to the upper left corner of the face bounding box of a feature point belonging to the l� th image of the
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training set and has not been matched yet. We have assumed correspondence for features v 1
ri

and vlrj� , with j�

satisfying:

j� = argmin
j
k v1ri � v

l
rj
k (2)

among the feature points of image l not yet matched. Fully automatic unsupervised registration algorithms also

proposed in literature may be applied. Their output strongly depends on the similarity metric used [19].

The feature point generation can be seen as a mapping procedure. Each image of the training set is mapped

to a ”feature point set” space with reduced dimensionality. The number of feature points N is selected to be

much less than the total number of image pixels N1, (N << N1). It is convenient to set N < NT , where NT

is the cardinality of the training image set. In our case NT = 400.

A second dimensionality reduction step can be accomplished by using standard PCA. This step is necessary,

if further dimensionality reduction is desired without reducing the number of feature points. The Gaussian

probability density function of facial observation can be computed using the first M principal components,

typically M = 0:2N . If N is chosen as N ' 0:1N1, then M ' 0:02N1. This corresponds to a significant data

reduction of a factor of 50:1. The level of reduction can be controlled by appropriately selecting the number of

feature points N .

Let J(v) be the image intensity at pixel v. The feature vector x = [J(v1); : : : ; J(vN )]T can be expressed

as:

x = x+Pb; (3)

where P is the matrix whose columns are the eigenvectors of the covariance matrix:

C = E[(x� x)(x� x)T ]; (4)

x is the mean feature vector:

x =
1

NT

NTX
i=1

xi (5)

and

bi = PT (x� x) (6)

are the coordinates of x� x in the eigenvector basis. A principal component feature vector y = [y 1; : : : ; yM ]T

is obtained by:

y = PT
M (x� x); (7)

where PM is a submatrix of P containing the M principal eigenvectors.

B. Probability estimation

The estimation of the likelihood function term based on statistical training is accomplished by using the

multiscale extension of the face detection procedure presented in [20]. Let x be the mean and C be the covariance

matrix of the feature vector xt = [Jt(v1); : : : ; Jt(vN )]T obtained by the statistical training procedure. The

likelihood of an feature vector xt at time instant t, under the assumption of Gaussian distribution is given by:

p(xtj�t;
) =
exp[� 1

2 (xt � x)TC�1(xt � x)]

(2�)
N
2 jCj

1
2

(8)
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Where 
 is the face class and �
t

is the position, scale and rotation vector to be defined in the next section.

If PCA has been performed on the feature vectors, p(x tj�t;
) can be approximated by [20]:

bp(xtj�t;
) = pM (xtj�t;
)bpN�M (xtj�t;
) (9)

where:

pM (xtj�t;
) =
exp(� 1

2

PM
i=1

y2i
�i
)

(2�)
M
2 �M

i=1�
1
2
i

(10)

is the term estimated from the M principal components and:

bpN�M (xtj�t;
) =
exp(� �2(xt)

2� )

(2��)
(N�M)

2

(11)

is the estimated contribution of the remaining components. � 2(xt) is the residual reconstruction error:

�2(xt) =

NX
i=M+1

y2i =k xt � x k
2 �

MX
i=1

y2i (12)

and:

� =
1

N �M
�N
i=M+1�i: (13)

In order to estimate bp(xtj�t;
) over a new face region in video frame t, a set of feature points should be

generated using the previously described algorithm. The probability bp(x tj�t;
) of a pattern xt belonging to a

face is generally normalized with respect to its maximum value. The normalized probability is compared to a

predefined threshold in order to perform facial region assignment.

III. ESTIMATION OF THE PROBABILITY BASED ON MUTUAL INFORMATION

The tracking process can be modeled as a communication between a transmitter (the reference face region

at time t � 1) and a receiver (the target face region at time t) with a symbol alphabet having cardinality

Nmax (the maximum number of grayscale levels). The mutual information is a measure of the amount of

information transmitted through the communication channel. Let U(�
t�1

); V (�
t
) be two random variables with

p(u; v); p(u); p(v) their joint and marginal probability mass functions and �
t
= [Vt; st; #t]

T be the tracked

face parameter vector at time t. Vt contains the feature point set geometrical coordinates at time t, V t =

[v1t ; : : : ;vNt ]
T , while s and # represent face scale and rotation parameters at time t with respect to the face

location at time t� 1.

The mutual information of two random variables U; V with a joint probability mass function p(u; v) is defined

as [21], [22]:

I(U(�
t�1

); V (�
t
)) =

NmaxX
i=1

NmaxX
j=1

p(ui; vj) log2
p(ui; vj)

p(ui)p(vj)
; (14)

The maximal mutual information for a particular prior p(u) is [23]:

Imax(U(�
t�1

); V (�
t
)) = �

NmaxX
i=1

p(ui) log2 p(ui) (15)
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and reaches its maximal value when:

p(ui) =
1

Nmax

; 0 � i < N: (16)

We define the prior probability based on the mutual information tracking cue as:

pMI (U; V j�t; �t�1) =
I(U(�

t�1
); V (�

t
))

Imax(U(�
t�1

); V (�
t
))
; (17)

Since I(U; V ) � 0 [21], [22], 0 � pMI(U; V j�t; �t�1) � 1: A large value of pMI (U; V j�t; �t�1) indicates a

strong match between the reference and the target regions, while a small value of pMI(U; V j�t; �t�1) indicates

a weaker match. As can be seen, the calculation of pMI does not require previous training and is calculated

using the facial position in the previous frame (reference face region) and current frame (target face region).

IV. TEMPORAL MODEL

The temporal model describes the probability face appearance at a certain location given its location at the

previous time instant. The temporal model is used as a constraint factor in the tracking process [6]. Scale

variation s is modeled as a Gaussian distribution:

p(stjst�1) � c1e
�(c2(st�st�1)

2): (18)

In order to model the facial position variation, the feature point sets generated on the reference and target regions

are used. The overall facial position variation is modeled as:

p(VtjVt�1) � c3e
�(c4

P
k
(xk(t)�xk(t�1))

2+(yk(t)�yk(t�1))
2) (19)

where xk(t); yk(t) are the x and y coordinates of feature point k respectively at time instant t. Finally, rotation

is modeled by:

p(#tj#t�1) � c5e
�(c6(#(t)�#(t�1))

2) (20)

The overall temporal model term is defined as the product of the terms:

p(stjst�1); p(VtjVt�1) and p(#tj#t�1):

pTEMP (�tj�t�1) = p(stjst�1)p(VtjVt�1)p(#tj#t�1) (21)

Prior probabilities are not informative if the prior pdf has a larger variance than the likelihood function [1].

Therefore, too small values of c2; c4 and c6 will render the temporal model non informative and, thus, not useful

for the tracking process.

V. FACE TRACKING

In order to track the detected faces to the next frame, the observation probabilities p(�
t
jxt; �t�1;xt�1;
) are

calculated for each detected face [6]. Let us recall that �
t
= [Vt; st; #t]

T is the vector containing the feature

points and their rotation and scaling parameters at time instant t.

Using the Bayesian formulation it can be easily found that:

p(�
t
jxt; �t�1;xt�1;
) =

p(�
t
j�
t�1

;xt�1;
)p(xtj�t; �t�1;xt�1;
)

p(xtj�t�1;xt�1;
)
(22)
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In (22) p(�
t
jxt; �t�1;xt�1;
) represents the posterior density, p(�

t
j�
t�1

;xt�1;
) represents the prior density

function, p(xtj�t; �t�1;xt�1;
) represents the likelihood function. The term p(x tj�t�1;xt�1;
) is considered

a constant [1]. In the context of present work, the likelihood function is calculated as a the product of a term

based on statistical training and a mutual information tracking term, while the prior density function is calculated

by using a temporal model term. The mutual information term is used as a measure of the similarity between the

face in the previous and in current frame. The observation probability p(�
t
jxt; �t�1;xt�1;
) of the parameter

vector �
t

is approximated, as the product of a prior probability term and a likelihood term [1] by:

p(�
t
jxt; �t�1;xt�1;
) = c7p(�tj�t�1;xt�1;
)p(xtj�t; �t�1;xt�1;
): (23)

The term c7 is a normalizing factor [1]. In the context of the present work:

p(xtj�t; �t�1;xt�1;
) � pMI (U; V j�t; �t�1)p(xtj�t;
); (24)

p(�
t
j�
t�1

;xt�1;
) � pTEMP (�tj�t�1) (25)

In order to obtain an estimate of the head location parameters �
t

we start by finding the vector Vt. The estimate

of �
t

is then refined by calculating the scale factor st and the rotation angle #t. Better results may be obtained

by adopting a recursive refining process.

In the context of present work, the scale estimate is determined by using the procedure described in section II-

B. Head orientation is estimated by using the mutual information cue presented in section III. A search for the best

rotation angle is performed after the translation parameters are estimated. The probability pMI(U; V j�t; �t�1)

(17) incorporates the orientation information. The obtained estimates are refined by using the temporal model

presented in section IV.

VI. FACE TRACKING INITIALIZATION

The face tracking algorithm initialization procedure is based on the estimation of the probability bp(x tj�t;
).

The probability is obtained by using the process described in section II-B and is extended to handle multiple

faces. Candidate facial regions are considered all those for which the normalized probability bp(x tj�t;
) with

respect to its maximum value exceeds a predefined threshold, whose value is set empirically by obtaining tracking

results on image sequences acquired using the same camera under similar illumination conditions. In order to

eliminate false facial region candidates an arbitration scheme similar to that presented in [24] is implemented

and is described subsequently. The initialization steps of the multiple face tracking algorithm are:

� Calculate the probabilities bp(xtj�t;
) over the entire image (9).

� Reject all the candidate regions whose normalized probability is below a predefined threshold. Mark these

candidate regions as non facial regions.

� Repeat

– Mark as a face the unmarked image region assigned to the maximum probability.

– Perform the arbitration scheme:

� Reject any candidate facial region whose center lies within a previously defined facial region.

� Reject any candidate facial region overlapping with a previously defined facial region.
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� Reject any candidate facial region, when the number of less probable candidate facial regions within

them is less than a predefined threshold.

� until all candidate regions are marked as facial or non facial ones.

The first two rules of the arbitration scheme impose the rejection of candidate facial regions that are considered

outliers, based on previous detection results. Nevertheless, wrong rejection of facial regions lying very closely

to each other is a possible side effect. The third rule of the arbitration scheme was motivated by the work of

Rowley et al. [24] and is based on the assumption that a strong facial candidate should be accompanied by

neighboring less strong facial candidates. The absence of the less strong facial candidates implies that the facial

candidate under examination is an outlier and should be rejected.

VII. EXPERIMENTAL RESULTS

The proposed algorithm was tested on a variety of real face image sequences under various illumination and

occlusion conditions. The image sequences were obtained, using a simple video-conference camera. They can

contain multiple faces per video shot.

The kernel parameters versus time, such as the likelihood function term based on statistical training (9),

the mutual information based probability pMI , (17) and the observation probability (23) are presented in time

sequences (Figures 4, 5 and 6), for each face in the image sequences presented in Figures 2 and 3. The results

for all the kernel parameters are calculated from the second frame of each testing sequence onwards. Note that

in Figure 6, the final observation probability and the likelihood term based on statistical training are normalized

with respect to the maximum probability after the first face localization.

Results on a single face sequence without illumination changes or partial occlusion are presented in Figure

7. As can be observed, the face position and orientation are correctly determined. Tracking results on a similar

sequence with illumination changes are presented in Figure 8. A slight drift in the estimated facial position is

noticed in very dark image sequences, when the tracking process is prolonged for too long. Results on multiple

face image sequences suffering from lightening changes and partial occlusion are presented in Figures 9 and

10 respectively. Facial position is correctly determined in the multiple face case, even under severe partial

occlusion or illumination changes. In general, the face tracking algorithm proposed in this paper can effectively

track multiple faces under significant illumination changes and partial occlusion.

VIII. CONCLUSIONS

A probabilistic face tracking scheme was presented in this paper. Likelihood function estimation is performed

using sets of automatically generated feature points and a mutual information tracking cue, while the prior

density function estimation is based on a Gaussian temporal model.

The main contributions of the proposed scheme are the introduction of a novel appearance based model for

likelihood function estimation and the use of a mutual information tracking cue in conjunction with a Gaussian

temporal model. Moreover, the implementation of an arbitration scheme to face tracking initialization is also

important, since it allows a multiple face tracking extension.

The proposed algorithm was tested on real face sequences acquired using a video-conference camera under

different illumination and occlusion conditions. Results have shown that the facial position is correctly determined
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even in image sequences presenting important illumination changes and partial occlusion. The face orientation

was correctly determined under normal illumination conditions and slight illumination changes. Robustness

to illumination changes is obtained by using the mutual information tracking cue, while robustness to partial

occlusion is obtained by the use of the appearance based model.
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(a) (b) (c)

Fig. 1. (a) Feature point set of 100 feature points. Feature neighborhood threshold=5 pixels. (b) Feature point set of 100 feature points.

Feature neighborhood threshold=3 pixels. (c) Feature point set of 300 feature points. Feature neighborhood threshold=3 pixels.

Fig. 2. Single face tracking image sequence.

Fig. 3. Face tracking image sequence containing two faces.

12



(a) (b)

(c) (d)

Fig. 4. (a) Observation probability (23), (b) likelihood function term based on statistical training (9) , (c) mutual information term (17),

(d) temporal model term (18-20) versus time for the image sequence shown in Figure 2.
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(a) (b)

(c) (d)

Fig. 5. (a) Observation probability (23), (b) likelihood function term based on statistical training (9) , (c) mutual information term (17),

(d) temporal model term (18-20) versus time for the left-hand face of the image sequence presented in Figure 3.
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(a) (b)

(c) (d)

Fig. 6. (a) Observation probability (23), (b) likelihood function term based on statistical training (9) , (c) mutual information term (17),

(d) temporal model term (18-20) versus time for the right-hand face of the image sequence presented in Figure 3.

Fig. 7. Face tracking under constant illumination conditions.

Fig. 8. Face tracking under varying illumination conditions.

15



Fig. 9. Tracking of two faces under varying illumination conditions.

Fig. 10. Tracking results of two faces under varying illumination conditions and partial occlusion.
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