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Abstract— This paper presents a novel approach for estimating���

head pose in single-view video sequences. Following initial-
ization by a face detector, a tracking technique that utilizes a���

deformable surface model to approximate the facial image
intensity is used to track the face in the video sequence. Head
pose estimation is performed by using a feature vector which is
a byproduct of the equations that govern the deformation of the
surface model used in the tracking. The afore-mentioned vector
is used as input in a Radial Basis Function (RBF) interpolation
network in order to estimate the

���
head pose. The proposed

method was applied to IDIAP head pose estimation database.
The obtained results show that the method can estimate the head
direction vector with very good accuracy.

Index Terms— Head pose estimation,
���

deformable models,
Radial Basis Function Interpolation.
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I. INTRODUCTION

Head pose estimation in video sequences is a frequently
encountered task in many computer vision applications. In
video surveillance [1], head pose combined with prior knowl-
edge about the world, enables the analysis of person motion
and intentions. Head pose is also indicative for the focus of
attention of people, a fact that is very important in human-
computer interaction [2]. Head pose can moreover be used in
navigation of ��� games [3], in visual communications [4], ���
face reconstruction [5], etc. Head pose estimation is also used
as a preprocessing step in face detection [6], face recognition
[7] and facial expression analysis [8], since these tasks are
very sensitive to even minor head rotations. Thus, the exact
knowledge of the face pose is an essential problem which can
boost the performance of such applications. A number of head
pose estimation algorithms [9], [10] operate on stereoscopic
sequences. However, stereoscopic information might not be
available in the above-mentioned applications. As a result,
research on single-view head pose estimation has been on the
rise during the last years.

The basic challenge in head pose estimation from single-
view videos is to derive fast algorithms that do not require
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extensive preprocessing of the video sequence. Low-resolution
images, image clutter, partial occlusions, unconstrained mo-
tion, varying illumination conditions and complex background
can mislead the head pose estimation procedure. Depending
on the way the face is treated, existing methods can be broadly
divided in three categories:
 approaches based on facial features,
 model-based algorithms,
 appearance-based algorithms.

A comparison of existing head pose estimation algorithms is
given in [11], [12], [13].

The use of the spatial arrangement of important facial fea-
tures for face pose estimation has been investigated by many
researchers [14], [15], [16], [17]. In these approaches, the ���
face structure is exploited along with a priori anthropometric
information in order to define the head pose. The elliptic shape
of the face and the ratio of the major and minor axes of this
ellipse, the mouth-nose region geometry, the line connecting
the eye centers, the line connecting the mouth corners and
the face symmetry are some of the geometric features used to
estimate the ��� head pose. In [17], five facial features, i.e.,
the eye centers, the mouth centers and the nose are localized
within the detected face region. A weighting strategy is applied
after the detection of the facial features, so as to estimate the
final location of the five components more accurately. The
face pose is estimated by exploiting a metric which is based on
comparing the location of the acquired facial features with the
corresponding locations on a frontal pose. In [14], the location
of facial feature points is combined with color information
in order to estimate the ��� face pose. The skin and the hair
region of the face is extracted, based on a perceptually uniform
color system. Facial feature detection is performed on the face
region and the bounding boxes of eyes, eyebrows, mouth and
nose are defined. Then, corner detection is applied on these
bounding boxes. The left-most and the right-most corner are
selected as the feature points of each facial feature. The ���
head pose is inferred from both the facial features and the
skin and hair region of the face. This category of algorithms
has a major disadvantage: their performance depends on the
successful detection of facial features which remains a difficult
problem, especially in non-frontal faces.

In the last few years many efforts have been spent on
model-based head pose estimation algorithms [18], [19], [20].
The basic idea in this category of methods is to use an a
priori known ��� face model which is mapped onto the ���



2

images. Once ��� - ��� correspondences are found between the
input data and the face model, conventional pose estimation
techniques are exploited to provide the ��� face pose. The
main problem in these algorithms is to find in a robust way
characteristic facial features that can be used to define the best
mapping of the ��� model to the ��� face images. In [20],
the ��� model is a textured triangular mesh. The similarity
between the rendered (projected) model and the input facial
image is evaluated through an appropriate metric. The pose
of the model that gives the best match is the estimated head
pose. In [19], a cubic explicit polynomial in ��� is used to
morph a generic face into the specific face structure using as
input multiple views. The estimation of the head structure and
pose is achieved through the iterative minimization of a metric
based on the distance map (constructed by using a vector-
valued Euclidean distance function).

Appearance-based approaches [21], [22], [23], achieve satis-
factory results even with low-resolution head images. In these
approaches, instead of using facial landmarks or face models,
the whole image of the face is used for pose classification.
In [23], a neural network-based approach for ��� head pose
estimation from low-resolution facial images captured by a
panoramic camera is presented. A multi-layer perceptron is
trained for each pose angle (pan and tilt) by feeding it with
preprocessed facial images derived from a face detection
algorithm. The preprocessing consists of either histogram
normalization or edge detection. In [12], [21], an algorithm
that couples head tracking and pose estimation in a mixed state
particle filter framework is introduced. The method relies on a
Bayesian formulation and the goal is to estimate the pose by
learning discrete head poses from training sets. Texture and
color features of the face regions were used as input to the
particle filter. Two different variants were tested in [12]. The
first tracks the head and then estimates the head pose and the
second jointly tracks the head and estimates the ��� head pose.
Support Vector Regression (SVR) [24], i.e., Support Vector
Machines where the output domain contains continuous real
values has been also used in appearance-based approaches.
In [25], [26], two Sobel operators (horizontal and vertical)
were used to preprocess the training images and the two
filtered images were combined together. Principal Component
Analysis (PCA) is then performed on the filtered image in
order to reduce the dimensionality of the training examples
(facial images of known pose angles). SVM regression was
utilized in order to construct two pose estimators, for the tilt
and yaw angles. The input to SVM was the PCA vectors and
the output was the estimated face angle. Since the final aim
of the paper was multi-view face detection, these angles were
subsequently used for choosing the appropriate face detector
among a set of detectors designed to operate on a different
view angle interval. In [27], SVR is used to estimate head pose
from range images. A three-level discrete wavelet transform is
applied on all the training range images and the LL sub-band
(which accentuates pose-specific details, suppresses individual
facial details, and is relatively invariant to facial expressions)
is used as input to two support vector machines that are trained
using labelled examples to estimate the tilt and yaw angles.

The single-view ��� head pose estimation approach pro-

posed in this paper belongs to the appearance-based methods.
The method utilizes the deformable intensity surface approach
proposed in [28], [29] for image matching. According to
his approach, an image is represented as a ��� surface in
the so-called XYI-space by combining its spatial (XY) and
intensity (I) components. A deformable surface model, whose
deformation equation is solved through modal analysis, is
subsequently used to approximate this surface. Modal analysis
is a standard engineering technique that has been introduced
in the field of computer vision and image analysis in [30].
Modal analysis allows effective computations and provides
closed form solutions of the deformation process and has
been used in a variety of different applications for solving
model deformations, i.e. for analyzing non-rigid object motion
[31], for the alignment of serially acquired slices [32], for
multimodal brain image analysis [33], segmentation of ���
objects [34], image compression [35] and ��� object tracking
[36].

In our case, such a deformable intensity surface is used to
approximate, in the XYI-space, image regions depicting faces.
The generalized displacement vector, which is an intermediate
step of the deformation process, is subsequently used in a
novel way i.e. for both tracking the head and estimating its��� pose in monocular video sequences. Similarly to [36],
the tracking procedure is based on measuring and matching
from frame to frame the generalized displacement vector of
a deformable model placed on the face. The generalized dis-
placement vector is also used to train three RBF interpolation
networks into estimating the pan, tilt and roll angles of the
head, with respect to the camera image plane. The tilt and the
pan angles represent the vertical and the horizontal inclination
of the face, whereas the roll angle represents the rotation of the
head on the image plane (Figure 1). The proposed algorithm
was tested on the IDIAP head pose database [12] which
consists of video sequences that were acquired in natural
environments and contain large rotations of the face. The
database includes head pose ground truth information. The
results show that the proposed algorithm can estimate the��� orientation vector of the face with an average error of


degrees.
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Fig. 1. Pan, tilt and roll head pose angles.

The remainder of the paper is organized as follows. In
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Section II, a brief description of the deformation procedure
in the XYI-space is presented. The tracking algorithm and the
derivation of the feature vector used for pose estimation are
introduced in Section III. In Section IV, Radial Basis Function
interpolation is reviewed and its use for pose estimation is
explained. The performance of the proposed technique is
studied in Section V. Finally, conclusions are drawn in Section
VI.

II. A FACIAL IMAGE DEFORMABLE MODEL

In this section, the physics-based deformable surface model
that is used along with modal analysis to approximate image
regions depicting faces in the XYI-space will be briefly
reviewed. As already mentioned in Section I this approach
has been introduced in [28], [29] and has been used in our
case with small modifications, described in this Section. The
novelty of our approach lies in the utilization of the so-
called generalized displacement vector, involved in the modal
analysis, for tracking the face and estimating the pose angles,
as will be described in Section III.

According to [28], [29] an image can be represented as
an intensity surface ����������������������� by combining its intensity����������� and spatial ��������� components (Figure 2). The corre-
sponding space is called the XYI space and a deformable mesh
model is used to approximate this surface. Modal analysis [30]
is used to solve the deformation equations.

(a) (b)

(c) (d)

Fig. 2. (a) Facial image, (b) intensity surface representation of the image,
(c) deformed model approximating the intensity surface, (d) deformed model
approximating the intensity surface (only 25 % of the coefficients were used
in the deformation procedure).

The deformable surface model consists of a uniform quadri-
lateral mesh of ����� �"!#�%$ nodes, as illustrated in Figure
3. In this section, we assume that � � , �%$ are equal to the
image region height and width (in pixels) respectively, so that
each image pixel corresponds to one mesh node. Each node is
assumed to have a mass & and is connected to its neighbors

with perfect identical springs of stiffness ' having natural
length (*) and damping coefficient + . Under the influence of
internal and external forces, the mass-spring system deforms
to a ��� mesh representation of the image intensity surface, as
can be seen in Figure 2c.
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Fig. 3. Quadrilateral surface (mesh) model.

In our case, the initial and the final deformable surface
states are known. The initial state is the initial (planar) model
configuration and the final state is the image intensity surface,
shown in Figure 2b. Therefore, it can be assumed that a
constant force load , is applied to the surface model [33].
Since we are not interested in the deformation dynamics, we
can deal with the static problem formulation:-/. �0,�1 (1)

where
-

is the �2!3� stiffness matrix, ,4�65 ,�78�919191:��,<;>=@?
is the �A!B� vector whose elements are the � 3D external
force vectors applied to the model and

.
is the �6!/� nodal

displacements vector given by:. �C5 . 7D�919191E� .GF �919191E� . ;>=@?H� (2)

where
.GF �I5 J F�K L ��J F�K M ��J F�K N = is the displacement of the O -th

node.
Instead of finding directly the equilibrium solution of (1),

one can transform it by a basis change [30]:. �QPSR. � ;UT:;WV9;GXY F TG7[Z]\ R.GF � (3)

where R. is referred to as the generalized displacement vector,R.GF is the O -th component of R. and P is a matrix of order� , whose columns are the eigenvectors Z F of the generalized
eigenproblem: - Z F �_^]`FDa Z F � (4)

where a is the mass matrix of the model. The O -th eigen-
vector Z F , i.e., the O -th column of P is also called the O -th
vibration mode and ^ F is the corresponding eigenvalue (also
called vibration frequency). Equation (3) is known as modal
superposition equation.
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In practice, we wish to approximate nodal displacements
.

by b. , which is the truncated sum of the �Sc low-frequency
vibration modes, where �ScEd_� :.Be b. � ;UfY F TG7�Z F R.GF 1 (5)

The eigenvectors Z F , Og�Ch��919191E���4c , form the reduced modal
basis of the system. This is the major advantage of modal
analysis: it is solved in a subspace corresponding to the �Bc
truncated low-frequency vibration modes of the deformable
structure [31], [33], [30]. The number of vibration modes�4c retained in the surface description is chosen so as to
obtain a compact but adequately accurate deformable surface
representation. A typical a priori value for �Bc , covering many
types of standard deformations, is equal to one quarter of the
total number of the vibration modes.

A significant advantage of this formulation, in the full as
well as in the truncated modal space, is that the vibration
modes (eigenvectors) Z F and the frequencies (eigenvalues) ^ F
of a plane topology have an explicit formulation [31] and
they do not have to be computed using eigen-decomposition
techniques:^ ` � i��<i c �]� 
 '& j�k�l m `on�p i���"�Eqsr k�l m `ontp i c���%$uqwv � (6)

x�y K y f � i��<i c �z��{}| k p i��~�D�#�sh8��"� {}| k p i c �~�D� c �sh8��%$ � (7)

where i������9h��919191E���"���Ch , i�co�6���9h��919191����%$s��h , ���h������919191����"� , �:cC��h������919191E���%$ , ^ ` � i��<i�c@����^ `� ;GX�� � f ,x�y K y f � i��<i c � is the ���g��� c � -th element of matrix Z � i��<i c � , whereZ � i��<i�c@�z� Z � ;GX�� � f .In the modal space, (1) can be written as:R- R. � R,�� (8)

where R- ��P ? - P and R,Q��P ? , , , being the external
force vector. Hence, by using (3), (6) and (7), equation (8)
is simplified to ��� scalar equations:^]`F RJ F�K � � R� F�K � � (9)

where i/����������� and RJ F�K � is the i -th component of the O -th
vector of R. .

In our case, the components of the forces in , along the �
and � axes are taken to be equal to zero, i.e.

� F�K L � � F�K M ��� .
On the other hand, the components of these forces along
the � (intensity) axis are taken to be proportional to the
Euclidean distance between the point ��������������������� ) of the
intensity surface and the corresponding model node position
in its initial configuration ������������� , i.e., equal to the intensity����������� of pixel ��������� : ��� L�� 7���;GX�� M8K N � � �����������6����������� ,
where

��� L�� 7���;GX�� M8K N is the component along the � axis of the���%�3h8���%$ r � -th element , � L�� 7���;GX�� M of vector , . Moreover,
the model is not allowed to deform along the x and y
axes i.e. RJ F�K L � RJ F�K M �2� . Hence, the ��!s� generalized
displacement vector can be simplified by ignoring these com-
ponents and constructing a � -dimensional vector that contains
only the � components: R. ��5 RJ:78�919191:� RJ F �919191E� RJ�;WV9;GX�=@?��

5 RJ:7 K N �919191:� RJ F�K N �919191E� RJ�;WV9;GX K N = ? . By using (3), (6), (7) and
(9) along with the force values mentioned above, one can
explicitly compute RJ:� as follows:RJ � F�� 7���;GX�� � � � ;WVy TG7 � ;GXy f TG7 �����g���:c*� x�y K y f ��O��<i����h r ^ ` ��O��<i����}� � ;WVy TG7 � ;GXy f TG7 x `y K y f ��O��<i�� 1

(10)

It should be noted that the deformable model achieves only
an approximation of the intensity surface of the target image.

For the problem at hand, facial areas of the video sequence
are described in terms of the vibrations of an initial model.
Figure 2 illustrates the approximation by a deformable surface
model (Figures 2b,c) of the intensity surface (Figure 2b) of the��� image of a facial image shown in Figure 2a. The size of
the model (in nodes) that was used to parameterize the image
surface was equal to the image size (in pixels).

The generalized displacement vector �. of equations (8), (10)
is exploited, as will be shown in the following sections, in
order to track facial regions on ��� images and estimate the ���
head pose. A flow diagram of the proposed algorithm is shown
in Figure 4. The details of the algorithm will be provided in
the following sections.

III. FACE TRACKING AND DERIVATION OF THE POSE
FEATURE VECTOR

A real-time frontal face detection algorithm [37] is applied
on the first image of the video sequence in order to initialize
the face tracking and pose estimation procedure. The face de-
tection scheme is based on simple features that are reminiscent
of Haar basis functions [38]. These features were extended in
[37] to further reduce the number of false alarms. The output
of the face detection procedure is a window around the face
center, i.e., around the nose, that tightly encloses the face area.

Subsequently, a region based tracking approach similar to
the one proposed in [36] is used to track the central face
region. The main difference between the tracking algorithm
used here and the one introduced in [36], is that the latter
aims at tracking feature points (by utilizing information from
the surrounding region), while the former is adapted to track
regions. Additional information for the tracking algorithm
along with numerous experimental results can be found in [36].
The following assumptions are adopted by this algorithm:
 The face window (bounding box) is of constant size,

i.e., the person does not move significantly towards or
away from the camera. This is a realistic assumption
for most applications that require head pose estimation
(e.g. human-computer interaction, face recognition, gaze
estimation, etc.).
 A part of the human face is always visible (images
depicting the back of the head are not handled) and no
occlusions occur. Both these assumptions are also realis-
tic for most applications. If needed the tracking algorithm
can be enhanced with occlusion handling mechanisms.

Region-based tracking is performed by applying the de-
formable model described in the previous section on a small
window � (e.g. one of dimensions ���#!t��� pixels) around
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Fig. 4. Flow diagram of the proposed head pose estimation algorithm.

the face center �W 4�¡��������� and evaluating the generalized
displacement vector �.  }��������� of equation (8) for this window:�.   ���������]�C5 RJ   7 ���������¢� RJ   ` ���������¢�919191:� RJ   ;W£:;g¤ ���������<= ? � (11)

where ¥ is the time instance and �"¦ , � § are the height
and width of the deformable surface model (equal to the
dimensions of the window). We will call vector �.  ¢��������� the
characteristic feature vector (CFV). It has been shown [36]
that this vector is the combination of the output of various
line and edge detection masks applied on the tracking window.
As a result, tracking by matching the CFV along images is
sufficiently robust to illumination changes.

In order to find the position �W  �G7 ������c~����c*� of the center

of the �%¦¨!t� § face window � in the next frame �   �G7 ,
the algorithm computes the CFV �.   �G7 �~'���(~� for all windows
whose center �~'���(~� lie within a search region © with height�%¦«ª�¬<­ and width � § ª�¬<­ , centered at coordinates ��������� in
image �   �G7 . The new location of the center of � is found as
the location ����c~����c*� in the search region whose CFV is closer
to that of �   in the current frame. More specifically:�   �G7 ����� c ��� c �«��®6¯�°�±g² l m��³ ��´��.   �G7 �~'���(~�G�µ�.   ���������9´9�¢� (12)

where 'B¶/·��#� ;W£�¸º¹~» � 7` �o19191:�u���%19191:�u� r ;W£�¸º¹~» � 7` ¼ and(o¶½·��¾� ;g¤]¸º¹~» � 7` ��19191E� ���#19191:�"� r ;g¤«¸º¹~» � 7` ¼ and ´À¿�´
denotes the Euclidean distance.



6

The choice of the Euclidean distance was based on a
set of experiments which aimed at providing results for the
performance of the proposed tracking algorithm when different
measures are used in order to select the next position of the
face. The Euclidean distance was found to perform better than
both the normalized correlation and Á Â  L�K M �¾Â   �G7� K ³ Á , where Â  L�K M
is given by:

Â  L�K M � ;W£�;g¤Y F TG7�ÃÃ RJ   F ��������� ÃÃ 1 (13)

The experiment is described in detail in Section V.
Since the motion characteristics of the face to be tracked

might change over time, i.e. the face can speed up or slow
down at certain video frames, the algorithm uses a search
region © of variable size. For each video frame, the algorithm
tries to locate the new center of the face window � using
initially a small search region (e.g. Ä�!ÅÄ ). However, if for
the best candidate position the Euclidean distance (equation
(12)) is above a certain threshold, the algorithm increases the
search region size, trying to find a better match (a match
corresponding to a matching error below the threshold) in the
larger search area. If this is again not feasible, the size increase
continues up to a certain maximum region size ( ©A�Æ��� ).
Some tracking results on the IDIAP database are presented in
Figure 5.

In addition to its use for tracking, the CFV of the face
window � is used for deriving the head pose. The CFV
contains information about the central visible face region,
i.e. the region around the nose in the frontal images or the
cheek in profile images (Figure 5), since its elements are
related to the displacements of the deformable surface model
which approximates the intensity surface in this area. As the
face/head changes orientation in the ��� space, its projection
on the image ( ��� space) changes. Thus, the fixed-size window� includes the central part of the face in different perspective
views (Figure 5). Hence, this information can be used to
derive the orientation of the face. The characteristics of the
deformable surface model used in the experimental setup,
were set so that the model is a rigid one. Thus, the final
state of the deformable surface was a smoothed version of
the face intensity surface, in order to be insensitive to clutter,
differences between faces of persons and varying illumination
conditions. By utilizing the truncated space of the modal
analysis, one can reduce the size of the CFV feature length to��Ç�È of its original size (in our case to h���� elements, down
from ���B!0����� 
 ��� elements), without losing significant
information. The information contained in the CFV was used
along with appropriately trained RBF interpolation networks
to derive pose information, as will be described in the next
Section.

IV. RADIAL BASIS FUNCTION INTERPOLATION

The design of an interpolation system can be seen as a
surface fitting problem in a high-dimensional space [39]. In
such a situation, learning is equivalent to finding a smooth
surface, which interpolates (or approximates) the training data.

Radial Basis Functions have been used in our case for this
purpose. RBFs were chosen for the following reasons:
 they have a simple structure,
 they have the property of “best approximation”,
 they have the property of best learning and reduced

sensitivity to the order of presentation of training data.
Let us assume a set of �ÊÉ -dimensional vectors5 ËG7ÌË ` 19191ÍË:;u= , Ë F ¶¨ÎWÏ and a set of scalar values5 (Ð7Ñ( ` 19191�(@;>= , ( F ¶4Î , which correspond to samples of an

unknown function
�ÓÒ ÎgÏÔ®ÕÎ , i.e.

� ��Ë F � ��( F . The RBF
interpolation solves the problem of finding a smooth functionb� ��Ë�� that satisfies the following relation:b� ��Ë F �]�0( F �ÖOg�Óh��919191E���/� (14)

i.e. interpolates ��Ë F ��( F � and hopefully approximates suffi-
ciently well

� ��Ë�� elsewhere.
Radial basis function interpolation is defined as:� ��Ë��z� ;Y 7Q× F © F ��Ë��¢� (15)

where © F are the chosen radial basis functions and × F are
linear weights used to combine the RBF.

In our case, isotropic Gaussian radial basis functions were
used: © ��´¢Ë�� . ´}`��z�_Ø}Ù�Ú���� h��Û ` ´¢Ë�� . ´}`�´9�¢1 (16)

The parameters to be learnt in such an RBF interpolation are
the weights × F in (15), the means

. F
and the standard devia-

tions Û F of the RBF © F . Many approaches for training an RBF
interpolation network have been proposed [39]. According to
one of them, the vectors

. F
can be chosen to be equal to the

vectors Ë F , i.e.
. F �µË F , so that each RBF is centered at one

training sample Ë F . The standard deviation for all the Gaussian
basis functions can be set equal to [39]:Û/� ÜÝ ��� � (17)

where � is the number of the training data and Ü is the maxi-
mum Euclidean distance between any two training samples Ë F ,Ë � . This choice of Û ensures that the RBFs are neither too flat
nor too peaky and that they will “fill” the space sufficiently
well. Once the RBF have been fully defined, a straightforward
procedure for solving for the weights × F in (15), so that the
network satisfies (14) is to use the pseudoinverse method [40]
on the following linear system:Þ�ß ��à (18)

where the element á � F of R is equal to © F ��´¢Ë � �CË F ´ ` � ,
vectors

ß
and à contain the weights × F and the scalar values( F respectively and i���Oâ��h������919191E��� . Obviously, this linear

system has the following solution:ß � Þ � à�� (19)

where

Þ � is the pseudoinverse of

Þ
.

Radial basis function interpolation was used in our case,
to estimate values for the three pose angles (pan, tilt, roll) of
frame ��  by using as input the CFV �.   of the corresponding
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Fig. 5. Face tracking results obtained in video sequences depicting persons in various poses.

frame. Thus, the input vector in the training and testing
procedure was the CFV of the area over the face that was
derived by the tracking algorithm, whereas the output was
the pose angle value. More specifically, three RBF networks,
each handling a different angle (pan, tilt, roll) of the face
pose, were used. The value range of each of these parameters
varied from 5 �>ã��w19191�ã��D= for pan, 5 �>ä��w19191�ä��D= for tilt and5 �>���w19191����D= for roll. During the training of the RBF system,
i.e. during the evaluation of the mean and variance of the
RBFs and the weights × F , a set of CFVs �.   along with the
corresponding pose angle derived from the ground truth, was
used as input. This set was a subset of the CFV-pose angle
pairs, derived from the training sequences and the ground truth.
In accordance to the training procedure described above, the
network consisted of as many RBFs as the training samples�.   . In other words, the number of RBFs was equal to the
number of frames of the training sequences. To perform
testing, an unlabelled feature vector Ë c �Æ�.   f is used as an
input. The trained RBF system that handles a certain pose
angle, interpolates the test data in the surface derived from
the training data and estimates the pose angle value.

In order to increase the performance of the system in terms
of pose angles estimation accuracy, the input vectors of the
RBF interpolation were expanded to consist of a concatenation
of the CFV �.   with the pose angle of the previous frame. More
specifically, the RBF interpolation networks were fed at time
instant ¥ with vectors of the form:5��.   Á å   � 7�= ? (20)

where å   � 7 denotes the pan, tilt or roll angle in the previous
frame. During training the ground truth pose angles were used,
whereas during testing, the estimates from the application of
the system in the previous frame were inserted. The use of the
pose angle of the previous frame into the input vectors intro-

duces the notion of coherence. Indeed, if videos of sufficient
frame rate are available and the head movements are smooth,
the pose angles in the current frame will not differ significantly
from those in the previous frame. Thus, by including this
information the system can cope more efficiently with tracking
errors. On the other hand, if abrupt head motions occur, the
pose angles of the previous frame would be uncorrelated to
those of the current frame and this information will affect the
result in a negative way. However, such movements are rather
infrequent and the user can hope that the tracking will succeed
in following the target and thus, will provide correct values
for the CFV part of the input vector.

The head pose for the first frame during the testing pro-
cedure was assumed to be known. More specifically, it was
assumed that on the first frame the person under examination
is looking straight ahead with no rotations in any of the three
axes, so that all three angles (pan, roll, tilt) are equal to zero.
This scenario is not unrealistic, since in many applications
the face is in a frontal/neutral pose at the beginning of the
video sequence and many algorithms that are applied on facial
images adopt the same assumption. Moreover, the face detector
used to initialize the tracking and head pose estimation, is a
frontal face detector and thus, this assumption is necessary for
its proper operation.

V. PERFORMANCE EVALUATION

A. Evaluation Setup and Dataset

Experiments were conducted to evaluate the performance
of the proposed algorithm in video sequences recorded under
realistic conditions.

The aim of the first set of experiments was two-fold: to
evaluate the performance of the tracking part of the algorithm
and find a suitable metric for measuring the similarity of
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TABLE I
Precision and recall of the region tracking algorithm when using Euclidean

distance, normalized correlation and absolute difference of æ�çè�é ê (13) in

order to match CFVs between consecutive frames.

Metric P R
Euclidean distance 96.9 95.2
Normalized correlation 89.7 85.3ë æ�çè�é êgì æ ç@í�îï é ð ë 96.1 94.6

CFVs. The performance of the algorithm was evaluated at the
object level, i.e., on the basis of whether the entire object under
examination was correctly tracked or not. True positives ( ñuò ),
false positives ( óâò ) and false negatives ( óâ� ) were obtained
using manually extracted ground truth data. Cases where the
bounding box of the tracked face region contained more thanÄD��È of the face, were considered as ñuò . When more than����È of the bounding box consisted of background area, the
frame was considered as contributing to óâò . Situations where
the tracking algorithm loses the target (i.e., it tracked the
background), were considered as contributing to óâ� . Based
on these numbers, the well-known precision ( òô� ?�õ?�õ �:ö õ )
and recall measures ( ©÷� ?�õ?�õ �:ö:; ) were calculated. The
algorithm was tested in Ç indoor and outdoor video sequences
( Ç�ä���� frames) with motions frequently encountered in tracking
situations, such as translation and rotation. The studio (in-
door) sequences depict one person moving on a predefined
or random trajectory, under either optimal (uniform lighting)
or suboptimal (hard shadows and bright/dark areas) lighting
conditions created using the studio’s lighting equipment. The
outdoor video sequences depict one person moving on a
random trajectory under realistic conditions. The results for the� different metrics, namely the Euclidean distance, the normal-
ized correlation and the absolute difference of Â  L�K M in (13) are
summarized in Table I. One can see that the Euclidean distance
achieves the best performance. In addition, these experimental
results provide quantitative evidence regarding the satisfactory
performance of the tracking algorithm. Since the tracking
algorithm is not the focus of this paper and the algorithm
used here resembles the one proposed in [36], no additional
experiments were performed towards this direction. Readers
are encouraged to consult [36] for more tracking experiments
with various types of motion and lighting conditions.

In the second set of experiments, the proposed method was
used to estimate the ��� head pose on parts of the IDIAP
video database [12]. This database was selected because it
contains ground truth data and because the video sequences
were recorded under realistic conditions and depict realistic
situations. Each of the ��� video clips lasts from



to h��

minutes and has a resolution of ��ä��W!w��ø�ø pixels, ��Ç frames per
second. There are two parts of the database. The one depicts
an office environment and the other a meeting environment.
The main scenario of the IDIAP database is that subjects act
as in their daily life in their office or in a meeting. In total,h�ä different subjects participate in the video database. The
database contains head pose ground truth in the form of pan,
tilt and roll angles (i.e. Euler angles with respect to the camera
coordinate system) for each frame of the video sequences.

Eleven of the video sequences were used for training the
RBF interpolation network and the rest for testing the system.
In total, ã�Ç���� frames were used to train the system. Thus,
an equal amount of RBFs were utilized. For each RBF, one
needs to store its center (in our case a h���� -dimensional vector
for the input and one value for the output) the standard
deviation (same for all RBFs) and the corresponding weight.
The parameters of the deformable surface model were defined
so as to give a smooth representation of the face intensity
surface, i.e. a ratio �ù �úh�� ( ' being the stiffness of the
springs and & the mass of the nodes) was used. Thus, the
final state of the deformable surface was a smoothed version of
the face intensity surface, in order to be insensitive to clutter,
differences between faces of persons and varying lighting
conditions.

One minute, i.e. h8Ç���� frames, were selected from each of theh8� test video sequences. The selection of the part of each video
sequence that was used in the experiments was not random.
We tried to choose h8Ç���� frames depicting rich person activity,
covering as many head pose angles as possible. Face detection
was performed in the first frame of the selected part of each
video sequence and the tracking technique described in Section
III was applied to the rest of the frames in order to track the
position of the face. For each frame, the CFV was calculated
in order to be further used either for training or testing the
RBF network. The tracking results showed that the proposed
tracking algorithm offers satisfying results. However, in some
frames the tracking algorithm can lose part of the target, i.e.
the face rectangle might contain part of the background. This
can happen either when the movement of the face is abrupt and
extreme or in instances that do not involve such movements. In
the first case, the head pose of the previous frame does not help
in the estimation of the pose angle in the current frame and the
algorithm might provide estimates with significant error (e.g.ø�û ). In the second case, the head pose of the previous frame
can improve the estimation in the current frame. In both cases,
the tracking algorithm usually recovers within a few frames.

The metrics used for the evaluation of the proposed algo-
rithm was the error (absolute difference) in degrees between
the ground truth and the estimated value for pan (PE), tilt (TE)
and roll (RE) angles. Moreover, the head pose defines a vector
in the ��� space which indicates where the head is pointing
at. The angle (DE) between the pointing vector defined by
the head pose ground truth and the pose estimated by the
proposed system was used as a pose estimation error measure,
as proposed in [12]. DE is given by the following equation:��ü�� h�ø��pþý +}ÿ��

�Y F TG7 ���D­���O�������¬D��O����¢� (21)

where ý +}ÿ�� is the inverse cosine, ��­���O�� and ��¬D��O�� are the O -th
components of the pointing vectors ��­ and ��¬ respectively,
which are constructed from the ground truth data and the
estimated pose respectively, as follows [12]:

�
	>�C5 k�l m ��å����¢�9� k�l m ��å   �
�«{}| k ��å����¢��{}| k ��å   �
�«{}| k ��å����<=�� (22)

where 
3��·������ ¼ , å�� and å   are the pan and tilt angles of
the face. Because this vector depends only on the pan and
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tilt values, another error metric was also used. This metric
denoted by AE, is the angle between the unit length vectors� ­ , � ¬ defined by rotating the “neutral” direction vector � y �5 h��������D= ? by the estimated and ground truth pan, tilt and roll
angles å�� , å   , åDª as follows:

� � Þ ��� Þ ��� Þ � ¸ � y � (23)

where

Þ
��� ,
Þ
��� and

Þ
� ¸ are the rotation matrices for the pan,

tilt and roll axes defined in Table II.

B. Experimental Results

Figure 6 depicts the estimated pan, tilt and roll angles along
with the corresponding ground truth values over time for three
of the test video sequences. Moreover, the absolute error in
degrees between the three estimated angles and the ground
truth values, namely the values of PE, TE, RE over time,
are presented in Figures 7. One can see that the proposed
algorithm can estimate the ��� head pose with very good
accuracy. In certain cases, when the movement of the face
is extreme and sudden, or in large rotation angles, the error
is bigger than usual. The angle AE between the ��� direction
vector defined by the estimated angles and the direction vector
defined by the ground truth is shown in Figure 8. For example,
the absolute error averaged over all frames for the first test
video sequence (Figure 8a) is h�1 ÄDä degrees and its variance is��1 ä�ã degrees.

Tables III, IV and V present the mean, variance and median
values (with respect to time) of the aforementioned errors for
five of the test video sequences. Average values over all video
sequences are also provided. One can see that the average
value (over all sequences) of AE is ��1 ��� degrees and the
average value of variance is ��1 ��h degrees. The average values
for the other error metrics are also very small. Thus it is
evident that the proposed system can accurately estimate the��� face pose in a video sequence.

The values of PE, TE, RE, DE errors obtained by the best
algorithm in [12] are reported in Table VI for comparison
purposes. One can see, that the proposed algorithm achieves
far better results than the method in [12]. For example, the
mean error in the pointing vector (DE) for the proposed
algorithm is ��1 ø�û , a large improvement over the error of ��h�1 ��û
achieved by [12].

In terms of computational complexity, ��1 � seconds per frame
are required for the tracking procedure and ��1 ��Ç seconds
per frame for the pose estimation procedure on an Intel
Pentium



( ��1 ��h GHz) processor PC with h�1 Ç GB of RAM.

Thus the algorithm requires in total ��1 ��Ç seconds per frame
in this modest hardware configuration and without any code
optimization.

VI. CONCLUSION

A ��� head pose estimation algorithm based on the use
of a parameterized ��� physics-based deformable model was
proposed in this paper. In this approach, the intensity surface
of the facial area is represented by a ��� physics-based
deformable model. We have shown how to tailor the model
deformation equations to efficiently track the human face in

TABLE VI
Mean, variance and median values for the PE, TE, RE and DE errors (in

degrees) achieved on the IDIAP database by the best algorithm presented in

[12].

PE TE RE DE
mean 8.7 19.1 9.7 21.3

variance 9.1 15.41 7.1 15.2
median 6.2 14.0 8.6 14.1

a video sequence and concurrently feed three properly trained
RBF interpolation networks that estimate the pan, tilt and roll
angles of the face. Results obtained on the IDIAP database
show that the proposed method produces accurate results.

Future work includes the use of SVM regression instead of
RBF interpolation networks in order to estimate the ��� face
pose. Additionally, we plan to test our system on an even larger
data set and explore the influence of the adopted classifier into
our method’s performance.
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Rotation matrices for the pan, tilt and roll axes.
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Fig. 6. The angles (in degrees) estimated by the proposed system and the corresponding ground truth values for parts of three test video sequences that
contain significant head motion: (a)-(c) pan angles, (d)-(f) tilt angles and (g)-(i) roll angles.
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Fig. 7. The absolute error in degrees between the angles estimated by the proposed system and the ground truth angles for parts of three test video sequences
that contain significant head motion: (a)-(c) pan angles, (d)-(f) tilt angles and (g)-(i) roll angles.
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Fig. 8. The angle AE in degrees between the (*) direction vector of the angles estimated by the proposed system and the direction vector of the ground
truth angles for parts of three test video sequences that contain significant head motion.
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