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Abstract

The methods introduced so far regarding Discriminant Non-negative Matrix Factorization (DNMF)
do not guarantee convergence to a stationary limit point. In order to remedy this limitation, a novel
DNMF method is presented that uses projected gradients. The proposed algorithm employs some
extra modifications that make the method more suitable for classification tasks. The usefulness of
the proposed technique to frontal face verification and facial expression recognition problems is

demonstrated.

Index Terms

Non-negative Matrix Factorization, projected gradients, Linear Discriminant Analysis, frontal

face verification, facial expression recognition.

I. INTRODUCTION

Over the past few years, the Non-negative Matrix Factorization (NMF) algorithm and its alternatives
have proven to be very useful for several problems, especially in facial image characterization and
representation problems [1]-[9]. NMF, like the Principal Component Analysis (PCA) algorithm [10],
represents a facial image as a linear combination of basis images and does not allow negative elements
in either the basis images or the representation coefficients used in the linear combination of the
basis images. Thus, it represents a facial image only by additions of weighted basis images. The
nonnegativity constraints correspond better to the intuitive notion of combining facial parts to create
a complete facial image. The bases of PCA are the Eigenfaces, resembling distorted versions of the
entire face, while the bases of NMF are localized features that correspond better to the intuitive notion
of facial parts [1]. The original NMF algorithm does not incorporate any sparseness constraints in
the decomposition, even though, in many cases it has been experimentally verified that it produces
sparse bases (i.e., bases with components that are spatially distributed without any connectivity).

The belief that NMF produces local representations is mainly intuitive (i.e., addition of different
nonnegative bases using nonnegative weights). Recently, some theoretical work has been done [11]
in order to determine whether NMF provides a correct decomposition into parts and at the same time
a set of requirements has been defined. This set of requirements is quite restrictive and cannot be
satisfied by all kinds of image databases (e.g. facial image databases) [9]. Nevertheless, the sparsity
of NMF in various facial image characterization problems has been verified by many researches [1],
(41, [91.

In order to enhance the sparsity of NMF, many methods have been proposed [3], [6], [8]. NMF has
been further extended to supervised alternatives, the so-called DNMF or Fisher-NMF (FNMF) methods
[S1, [7], [9] by incorporating discriminant constraints in the decomposition (for simplicity reasons,
we will refer to all these methods [5], [7], [9] as DNMEF variants). The intuitive motivation behind
DNMF methods is to extract bases that correspond to discriminant facial regions for facial expression
recognition [5], face recognition [7] and facial identity verification [9]. An important issue related
to visual representation when DNMEF is applied to facial identity verification or facial expression
recognition problems, is the fact that almost all features found by its basis images are represented by

salient facial features such as eyes, eyebrow or mouth [5], [9], [12]. While discarding less important
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information (which is not the case for NMF, which provides a not so localized representation), or
emphasizing it less, DNMF approximately preserves the spatial topology of salient features (which
are mostly absent in the case of other sparse NMF approaches like Local-LNMF (LNMF) [3])
by emphasizing them. The features retrieved by LNMF have rather random positions [3], [5], [9].
Although there is no external intervention, we believe that the preservation of these salient features in
the learning process of DNMF is caused by the class information taken into account by the algorithm,
since these features are of great importance for the classification framework (for both facial identity
verification and facial expression recognition) [5], [9], [12].

In order to calculate the update rules for the weights and basis images of DNMEF, a similar procedure
to the one followed in the NMF decomposition [2], [5], [7], [9] was used. More precisely, the cost
optimization of the decomposition has been calculated using an auxiliary function [9]. Although this
auxiliary function guarantees the non-increasing behavior of the cost function, it does not ensure the
convergence of the algorithm to a limit point that is also a stationary point of the optimization problem
[13], [14] (i.e., the first derivative of the cost function at the limit point is equal to zero). Furthermore,
in the DNMF methods [5], [7], [9] the discriminant analysis is employed on representation coefficients
and not on the actual features used in the classification procedure. The actual features used for
classification in [5], [7], [9] are derived from the projection of the facial images to the bases matrix
and only implicitly depend on the representation coefficients.

In this paper, a novel DNMF method that takes into consideration all the above mentioned issues
is proposed. A discriminant analysis is employed on the classification features and not on the
representation coefficients. The NMF-based optimization problems [2], [3], [5], [7], [9] are non-
convex. They may have several local minima and produce a sequence of iterations. A common
misunderstanding is that the limit points of this sequence are local minima [14]. In optimization
theory most non-convex optimization methods guarantee only the stationarity of the limit points.
Such a property is very useful as a local minimum must be a stationary point. In order to assure
stationarity, projected gradients are used in order to solve the constrained optimization problem.
Similar methods have been successfully applied to the original NMF [14]. The proposed technique
has been applied to facial expression recognition and face verification where it is demonstrated that, it
outperforms other DNMF methods [5], [7], [9], while having well established theoretical properties.
The basis images that are produced by the proposed algorithm have, as well, the same property with
those derived using the DNMF method [9] and are represented by salient facial features.

The rest of the paper is organized as follows. In Section II, the main concepts of the DNMF methods
and the proposed approach are outlined. In Section III, the novel DNMF algorithm using projected
gradients is presented. The experimental results are described in Section IV. Finally, conclusions are

drawn in Section V.

II. DISCRIMINANT NON-NEGATIVE MATRIX FACTORIZATION ALGORITHMS

In this Section, the NMF algorithm and the procedure followed to formulate the DNMF approach
[9] are briefly presented. For simplicity reasons, the formulation in [9] will be used, since the methods
presented in [5], [7] are very similar to the one proposed in [9]. The method proposed in [5] is a mix
of DNMF and Local NMF (LNMF) [3] algorithms and the only difference of the DNMF method
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presented in [9] with the one proposed in [7] is the definition of the between-class scatter matrix.
From now onwards, y; will denote the i-th element of a vector y, while A; ; the element stored in
the ¢, 7 position of a matrix A.

An image scanned row-wise is used to form a vector x = [z1...2p]? for the NMF algorithm.
The basic idea behind NMF is to approximate the image x by a linear combination of the basis
images in Z € %EXM , whose coefficients are the elements of h € %% such that x ~ Zh. Using
the conventional least squares formulation, the approximation error x ~ Zh is measured in terms of
L(x||Zh) £ ||x — Zh||? = >_,(z; — [Zh];)*. Another way to measure the error of the approximation
is using the Kullback-Leibler (KL) divergence, K L(x||Zh) £ 3" (x;In [Zz—h} +[Zh]; — z;) [2] which
is the most common error measure for all DNMF methods [5], [7], [9]. A limitation of KL-divergence
is that it requires both x; and [Zh]; to be strictly positive (i.e., neither negative nor zero values are
allowed).

In order to apply the NMF algorithm, the matrix X € §Ri xT — [xi;] should be constructed, where
x;j is the ¢-th element of the j-th image vector. In other words, the j-th column of X is the facial
image x;. NMF aims at finding two matrices Z € R = [z, ;] and H € RY*T = [n,, ;] such that:

X ~ ZH. (1)

After the NMF decomposition, the facial image x; can be written as x; ~ Zh;, where h; is the j-th
column of H. Thus, the columns of the matrix Z can be considered as basis images and the vector
h; as the corresponding weight vector. The vector h; can be also considered as the projection of x;
in a lower dimensional space.

The defined cost for the decomposition (1) is the sum of all KL divergences for all images in the

database:

D(X||ZH) = Y KL(x;||Zh) = Y (M mﬁ) + 3 iy — :1:]> )
. ’J k

J 0.
The NMF factorization is the outcome of the following optimization problem:
1%11131 D(X]||ZH) subject to 3)

ik 20, by >0, ) zi5=1,Vj.
i

In order to formulate the DNMF algorithm, let the matrix X that contains all the facial images
be organized as follows. The j-th column of the database X is the p-th image of the r-th image
class. Thus, j = Z;:ll N; + p, where N; is the cardinality of the image class i. The r-th image
class could consist of one person’s facial images, for face recognition and verification problems.
For facial expression recognition, the r-th class could consist of the images of one of the six basic
facial expression classes i.e., anger, disgust, fear, happiness, sadness and surprise. The vector h; that
corresponds to the j-th column of the matrix H, is the coefficient vector for the p-th facial image

of the r-th class and will be denoted as 1\ = | ff% . .77/()7”])\4]7“. The mean vector of the vectors 7'

for the class r is denoted as p(") = [,ugT) . ,ug\?]T and the mean of all classes as g = [pq ... pas]”.
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Then, the within-class scatter matrix for the coefficient vectors h; is defined as:

w_zz — DY) — )T )

r=1 p=1
whereas the between-class scatter matrix is defined as:

K
= N = ) () — )T )
r=1

The matrix S,, defines the scatter of the sample vector coefficients around their class mean. The
dispersion of samples that belong to the same class around their corresponding mean should be as
small as possible. A convenient measure for the dispersion of the samples is the trace of S,,. The
matrix S; denotes the between-class scatter matrix and defines the scatter of the mean vectors of
all classes around the global mean p. Each class must be as far as possible from the other classes.
Therefore, the trace of S; should be as large as possible.

To formulate the DNMF method [9], discriminant constraints have been incorporated in the NMF
decomposition inspired by the minimization of the Fisher’s criterion [9]. The DNMF cost function is

given by:

Da(X|[ZH) = D(X[|ZH) + ytr[Sy] — 6tr[Sy] (©)

where v and § are non-negative constants. The update rules that guarantee a non-increasing behavior
of (6) for the weights h ; and the bases z;;, under the constraints of (2), can be found in [9].
Unfortunately, the update rules only guarantee a non-increasing behavior for (6) and do not ensure
that the limit point will be stationary.

Two more issues arise regarding the DNMF algorithm. The first is that in DNMF methods [5],
[7], [9] the discriminant constraints are not employed in the features used for classification but in the
weights of the representation. Therefore, the vectors h; are considered to be the projected vectors
of the original facial vectors x; in a lower dimensional feature space. Actually, the features used
for classification using the DNMF bases matrix, Z, are derived from either the projection X =
(ZTZ)_lsz or the projection X = ZTx [5], [9]. In all cases, the actual features used in the
classification framework depend directly on Z7X and only implicitly on the coefficient matrix H.
Hence, it is reasonable to incorporate discriminant constraints for the feature vectors X and remove
the discriminant constraints of the coefficient vectors h.

Moreover, the cost in (2) is not well defined at any point of the bounded region, since the In(u)
function is not well defined for zero argument w. Thus, in order to measure the approximation of the
decomposition least squares will be used.

III. PROJECTED GRADIENT METHODS FOR DISCRIMINANT NON-NEGATIVE MATRIX
FACTORIZATION

In the previous Section, the use of a new cost function for discriminant nonnegative matrix
factorization has been motivated. Let E = X — ZH be the error signal of the decomposition. The

modified optimization problem should minimize:

Dy(X||ZH) = [[E||%: + 1tr[S,] — 6ufSy), ©)
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under non-negativity constraints, where ||.|| is the Frobenius norm. The within-class scatter matrix
S, and the between-scatter scatter matrix S are defined using the vectors X; = Zij and the
definitions of the scatter matrices in (4) and (5).

The minimization of (7) subject to nonnegative constraints yields the new discriminant nonnegative
decomposition. The new optimization problem is the minimization of (7) subject to non-negative
constraints for the weights matrix H and the bases matrix Z. This optimization problem will be
solved using projected gradients in order to guarantee that the limit point will be stationary. In order

to find the limit point, two functions are defined:
J2(H) = D,(X||ZH) and fu(Z) = D, (X||ZH) ®)

by keeping Z and H fixed, respectively.

The projected gradient method used in this paper, successively optimizes two subproblems [14]:
mzin fu(Z) subject to, z;; >0, ©)

and
niiln fz(H) subject to, hy; > 0. (10)

The method requires the calculation of the first and the second order gradients of the two functions
in (8):
Vfz(H) =ZT(ZH - X)
V2fz(H) =7Z"Z
Via(Z) = (ZH - X)H” +~Vt[S,] — 6Vir[Sy]
V2fu(Z) =HHT +1V2u[S,] — 6V2t[S).

1D

The detailed calculations of Vtr[S,], Vtr[Sy], V2tr[S,] and V2tr[S;] can be found in Appendix I.
The projected gradient DNMF method is an iterative method that is comprised of two main phases.
These two phases are iteratively repeated until the ending condition is met or the number of iterations
exceeds a given number. In the first phase, an iterative procedure is followed for the optimization of
(9), while in the second phase, a similar procedure is followed for the optimization of (10). In the
beginning, the bases matrix Z(!) and the weight matrix H(}) are initialized either randomly or by

using structured initialization [15], [16], in such a way that their entries are nonnegative.

A. Solving the Subproblem (9)

Consider the subproblem of optimizing with respect to Z, while keeping the matrix H constant.
The optimization is an iterative procedure that is repeated until Z® becomes a stationary point of
(9). In every iteration, a proper step size a; is required to update the matrix Z(). When a proper
update is found, the stationarity condition is checked and, if met, the procedure stops.

1) Update the matrix Z: For a number of iterations ¢ = 1,2,... the following updates are
performed [14]:

Z(t+) — p [z“) _ atVfH(Z(t))} (12)

where a; = 39 and g is the first non-negative integer such that:

fa(ZD) — fu(Z0) < o (Vfu(Z0), 20D —Z0), (13)
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The projection rule P[.] = max][.,0] refers to the elements of the matrix and guarantees that the

update will not contain any negative entries. The operator (.,.) is the inner product between matrices

defined as:
<A,B> = Zzai7jbi’j (14)
(2]

where [A]; j = a;; and [B]; j = b; ;. The condition (13) ensures the sufficient decrease of the f1(Z)
function values per iteration. Since the function fy; is quadratic in terms of Z, the inequality (13)

can be reformulated as:
1
(1-0) <VfH(Z(t)), Z(H+D z<t>> +3 <z(t+1> 0 v2fH(z<t+1>)> <0 (15)

which is the actual condition checked.

The search of a proper value for a; is the most time consuming procedure, thus, as few iteration
steps as possible are desired. Several procedures have been proposed for the selection and update
of the a; values [17], [18]. The Algorithm 4 in [14] has been used in our experiments and (3, o
are chosen to be equal to 0.1 and 0.01 (0 < 8 < 1, 0 < o < 1), respectively. These values are
typical values used in other projected gradient methods as [14]. The choice of ¢ has been thoroughly
studied in [14], [17], [18]. During experiments it was observed that a smaller value of (3 reduces
more aggressively the step size, but it may also result in a step size that is too small. The search for
a; is repeated until the point Z(*) becomes a stationary point.

2) Check of Stationarity: In this step it is checked whether or not in the limit point the first
order derivatives are close to zero (stationarity condition). A commonly used condition to check the

stationarity of a point is the following [17]:
IVF fa(ZO)||F < e2||V fu(Z0)]|r (16)
where V7 fy(Z) is the projected gradient for the constraint optimization problem defined as:

Vfa(Z))ik if 2% >0
min(O, [fo(Z”Z,k-) Zi,k =0.

and 0 < ez < 1 is the predefined stopping tolerance. A very low ez (i.e., ez =~ 0) leads to a

VP fu(Z))ik = { (17)

termination after a large number of iterations. On the other hand, a tolerance close to one will result

in a premature iteration termination.

B. Solving the Subproblem (10)

A similar procedure should be followed in order to find a stationary point for the subproblem (10)
while keeping fixed the matrix Z and optimizing in respect of H. A value for ay is iteratively sought

and the weight matrix is updated according to:
HD = p [H(t) — @V fz(H@))} (18)
until the function fz(H) value is sufficient decreased and the following inequality holds (a, b):

1
(1=0) (Vf2(HO), HD —HO) 4 = (RO - HO, 92 fHOY)) <0, (19)
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This procedure is repeated until the limit point H® is stationary. The stationarity is checked using

a similar criterion to (16), i.e.:
V7 fz(HD)| | < enl|V f2(HD)||p (20)

where ep is the predefined stopping tolerance for this subproblem.

C. Convergence Rule

The procedure followed for the minimization of the two subproblems, in Sections III-A and III-B,

is iteratively followed until the global convergence rule is met:
V@D + V@) | < e (IVFED)1p+ [VFED)Ir) @

which checks the stationarity of the solution pair H®) Z®).

IV. EXPERIMENTAL RESULTS

The proposed DNMF method will be denoted as Projected Gradient DNMF (PGDNMF) from now

onwards. It has been applied to the frontal verification and facial expression recognition problems.

A. Frontal Face Verification Experiments

The experiments were conducted in the XM2VTS database using the protocol described in [19].
The images were aligned semi-automatically according to the eyes position of each facial image using
the eye coordinates. The facial images were down-scaled to a resolution of 64 x 64 pixels. Histogram
equalization was used for the normalization of the facial image luminance.

The XM2VTS database contains 295 subjects, 4 recording sessions and two shots (repetitions) per
recording session. It provides two experimental setups namely, Configuration I and Configuration II
[19]. Each configuration is divided into three different sets: the training set, the evaluation set and the
test set. The training set is used to create client and impostor models for each person. The evaluation
set is used to learn the verification decision thresholds. In case of multimodal systems, the evaluation
set is also used to train the fusion manager [19]. For both configurations the training set has 200
clients, 25 evaluation impostors and 70 test impostors. The two configurations differ in the distribution
of client training and client evaluation data. For additional details concerning the XM2VTS database
an interested reader can refer to [19].

The experimental procedure followed in the experiments was the one also used in [9]. For com-
parison reasons the same methodology using the Configuration I of the XM2VTS database was used.
The performance of the algorithms is quoted by the Equal Error Rate (EER) which is the scalar
figure of merit that is often used to judge the performance of a verification algorithm. An interested
reader may refer to [9], [19] for more details concerning the XM2VTS protocol and the experimental
procedure followed. In Figure 1, the verification results are shown for the various tested approaches,
NMF [2], LNMF [3], DNMF [9], Class Specific DNMF [9], PCA [20], PCA plus LDA [21] and
the proposed PGDNMF. EER is ploted versus the dimensionality of the new lower dimension space.
As can be seen, the proposed PGDNMF algorithm outperforms (giving a best FER ~ 2.0%) all
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Fig. 1. EER for Configuration I of XM2VTS versus dimensionality.

the other part-based approaches and PCA. The best performance of LDA has been 1.7% which very
close to the best performance of PGDNMEF.

Moreover, in order to boost further the verification performance we have employed during training
and testing Support Vector Machines (SVMs) [22] in all the tested approaches (producing NMF+SVMs,
DNMF+SVMs etc approaches). For the training of SVMs we have used additional samples from the
evaluation dataset. The best EER achieved for the PGDNMF+SVMs has been measured at 0.8%
while for LDA+SVMs at 0.7%. As can be seen PGDNMEF is as good as LDA in XM2VTS database,
while it outperforms all the other tested approaches. In the XM2VTS database contest [23] an LDA

classifier has been among the best in the Configuration I.

B. Facial Expression Recognition Experiments

The database used for the facial expression recognition experiments was created using the Cohn-
Kanade database [24]. This database is annotated with FAUs. These combinations of FAUs were
translated into facial expressions according to [25], in order to define the corresponding ground truth
for the facial expressions. All the subjects were taken into consideration and their difference images,
created by subtracting the neutral image intensity values from the corresponding values of the fully
expressive facial expression image, were calculated. Each differences image was initially normalized,
resulting in an image built only from positive values and afterwards scanned row-wise to form a
vector x € §R£ of dimension ' = 40 x 30 (40 and 30 are the rows and columns of the image
respectively). The differences images are used instead of the original facial expressive images, due to
the fact that in the differences images, the facial parts in motion are emphasized. In Figure 2, 5 basis
images extracted from the Cohn-Kanade database for PCA, NMF, LNMF, DNMF and PGDNMF
algorithms are shown. As can be seen, the bases extracted by the proposed algorithm are visually
better related to facial parts that participate in expression development than those derived from the
other representations.

In the experimental procedure, five sets containing 20% of the data for each of the six facial
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DNMF PGDNMF

Fig. 2. Basis images extracted for PCA, NMF, LNMF, DNMF and PGDNMF algorithms from the facial expression

experiments in the Cohn-Kanade database.

expression classes, chosen randomly, were created. One set containing 20% of the samples for each
class is used as the test set, while the remaining sets form the training set. After the classification
procedure is performed, the samples forming the test set are incorporated into the current training
set while a new set of samples (20% of the samples for each class) is extracted to form the new test
set. The remaining samples create the new training set. This procedure is repeated five times. The
average classification accuracy is the mean value of the percentages of the correctly classified facial
expressions.

The tested approaches have been the NMF, the LNFM, the DNMEF, PCA, PCA plus LDA and the
proposed PGDNMEF. Figure 3 shows the performance of the tested approaches in facial expression
recognition using 200 basis images in every approach, except from PCA plus LDA that gives a total
of 5 features (six class problem). As can be seen, the proposed PGDNMF method outperforms all
the other tested part-based approaches in facial expression recognition. The best facial expression
recognition accuracies achieved when using NMF, LNFM, DNMF and PGDNMF were equal to
75.6%, 82.2%, 86.7% and 88.4%, respectively. Therefore, an increase of the recognition accuracy by
1.7% (in comparison with the DNMF results) is introduced due to the use of the proposed PGDNMF.

In order to boost the performance of all the tested methods, we have incorporated multiclass SVMs
[22]. The best performance of the proposed PGDNMF+SVMs has been about 93% followed by the
DNMF+SVMs method that achieved a recognition rate of 90%. The LDA method in this problem has
not achieved a recognition rate more than 70%. Thus, the proposed method significantly outperforms
LDA in facial expression recognition.

Moreover, in order to understand if the proposed approach is statistically significantly better than the
other tested approaches, the McNemars test [26] has been used for the facial expression recognition

experiments. The McNemars test is a null hypothesis statistical test based on a Bernoulli model.
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Fig. 3. Facial expression recognition rate versus dimensionality in Cohn-Kanade database

If the resulting value is below a desired significance level (for example, 0.02), the null hypothesis
is rejected and the performance difference between two algorithms is considered to be statistically
significantly better. Using this test, it has been verified that the proposed PGDNMF + SVMs classifier
outperforms the other tested classifiers (i.e., DNMF + SVMs etc.) in the demonstrated experiments,
at a significant level less that p = 107>,

V. CONCLUSIONS

A novel DNMF method has been proposed based on projected gradients. The incorporated dis-
criminant constraints focus on the actual features used for classification and not on the weight
vectors of the decomposition. We believe that this incorporation results in classification performance
increase. Moreover, we have applied projected gradients in order to assure that the limit point is
stationary. The proposed technique has been applied in supervised facial feature extraction for facial
expression recognition and face verification, where it was shown that it outperforms several others
subspace methods. We have observed that the basis images obtained from the proposed approach are
approximately represented by salient facial features like eyes, eyebrows, mouth etc, which are features
that are very important for facial identity verification and facial expression analysis and recognition.
Such features cannot be retrieved neither by other holistic representations like PCA and LDA nor by
sparse NMF approaches like LNMF. A possible drawback of the proposed method, which is actually
a drawback of all NMF based methods, is that it can be sensitive to the initialization of the basis
images and the weights. Nevertheless, we have not observed significant variance in performance
(i.e., in face verification experiments the variance has been less than 0.1% in terms of EER and less
than 0.3% in terms of facial expression recognition rate after 10 restarts with different initializations).
Further research on the topic includes the theoretical investigation on how PGDNMF can be combined
with biological inspired models of vision. These models can be incorporated with the help of proper

constraints inside the decomposition. Another interesting topic could be the investigation on how
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PGDNMF can be used to model receptive fields (e.g., neural receptive fields [12], [27], [28]). Also,
future research includes the attempt to create online NMF and DNMF methods.

VI. ACKNOWLEDGMENT

This work was supported by the "SIMILAR” European Network of Excellence on Multimodal
Interfaces of the IST Programme of the European Union (www.similar.cc) for Ms. Kotsia and by
project 03ED849 co-funded by the European Union and the Greek Secretariat of Research and
Technology (Hellenic Ministry of Development) of the Operational Program for Competitiveness

within the 3rd Community Support Framework for Mr. Zafeiriou.

APPENDIX I
CALCULATION OF V1r[S,], Vir[S], V1r[S,,] AND V21r[S))]

Let m(") and m be the mean of the projected vectors X for the r-th class and the total mean vector,

respectively. The gradient [Vtr[éw]} = %g‘k] is given by:
ofS,] O Sog @y — )2 i (g, — )2
Ozif 0z T T omy
K
= 2> ) (miy - m{")(@r; — ) (22)
r=1x;eU,
since j'lc,j = [ij}lc = Z%X]’ 8;?: = xi,j-
The [Vtr[gb]]ik = %{iﬂ is given by:
oulSy) | O () — ) L oG] — i)’
azl,kﬂ o aZ%k N r=1 azl,k
— 2 Z mi) (i) — ). (23)
For the second partial derivative of tr[S,,] and of tr[Sy), L[az} =0and 2 tr([as;] =0 for [ # k,
while for [ = k:
d*r[S 2 &[S
7822 . QTZM% zij —m™)? and 82Z1k = 22 —m;)?, (24)

where m(™) and m are the mean of the vectors x for the r-th class and the total mean vector,
respectively. Using the above calculations the calculation of Vtr[S,], Vtr[Sy], V2tr[S,] and V2tr[Sy]

is now straightforward.

REFERENCES

[1] D.D. Lee and H.S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature, vol. 401, pp.
788-791, 1999.
[2] D.D. Lee and H.S. Seung, “Algorithms for non-negative matrix factorization,” in NIPS, 2000, pp. 556-562.

DRAFT April 18, 2007



(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

(12]

[13]

[14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]
(23]

(24]

[25]

[26]

S.Z. Li, X.W. Hou, and H.J. Zhang, “Learning spatially localized, parts-based representation,” in CVPR, Kauai, HI,
USA, December 8-14 2001, pp. 207-212.

I. Buciu and L. Pitas, “Application of non-negative and local non negative matrix factorization to facial expression
recognition,” in /CPR, Cambridge, United Kingdom, 23-26 August 2004, pp. 288-291.

I. Buciu and I. Pitas, “A new sparse image representation algorithm applied to facial expression recognition,” in
MLSP, Sao Lus, Brazil, Sep. 29 - Oct. 1st 2004.

P. O. Hoyer, “Non-negative matrix factorization with sparseness constraints,” Journal of Machine Learning Research,
vol. 5, pp. 1457 — 1469, 2004.

Y. Wang, Y. Jia, C. Hu, and M. Turk, “Non-negative matrix factorization framework for face recognition,” International
Journal of Pattern Recognition and Artificial Intelligence, vol. 19, no. 4, pp. 1-17, 2005.

A. Pascual-Montano, J.M. Carazo, K. Kochi, D. Lehmann, and R.D. Pascual-Marqui, “Nonsmooth nonnegative matrix
factorization (nsSNMF),” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 3, pp. 403-415,
2006.

S. Zafeiriou, A. Tefas, 1. Buciu, and I. Pitas, “Exploiting discriminant information in nonnegative matrix factorization
with application to frontal face verification,” IEEE Transactions on Neural Networks, vol. 17, no. 3, pp. 683 — 695,
2006.

M. Kirby and L. Sirovich, “Application of the Karhunen-Loeve procedure for the characterization of human faces.,”
IEEE Transactions Pattern Analysis and Machine Intelligence, vol. 12, no. 1, pp. 103-108, Jan. 1990.

D. Donoho and V. Stodden, “When does non-negative matrix factorization give a correct decomposition into parts ?,”
Advances in Neural Information Processing Systems, vol. 17, 2004.

I. Buciu and I. Pitas, “NMF, LNMF, and DNMF modeling of neural receptive fields involved in human facial
expression perception,” Journal of Visual Communication and Image Representation, vol. 17, no. 5, pp. 958-969,
October 2006.

E. Gonzalez and Y. Zhang, “Accelarating the Lee-Seung algorithm for nonnegative matrix factorization,” Tech. Rep.
TR-05-02, Rice University, 2005.

C.-J. Lin, “Projected gradient methods for non-negative matrix factorization,” Tech. Rep., Department of Computer
Science, National Taiwan University, 2005.

S. Wild, J. Curry, and A. Dougherty, “Improving non-negative matrix factorizations through structured initialization,”
Pattern Recognition, vol. 37, pp. 2217-2232, 2004.

I. Buciu, N. Nikolaidis, and . Pitas, “On the initialization of the DNMF algorithm,” in Proc. of 2006 IEEE International
Symposium on Circuits and Systems, Kos, Greece, 21-24 May 2006.

C.-J. Lin and J.J. More, “Newton’s method for large-scale bound constrained problems,” SIAM Journal on Optimization,
vol. 9, pp. 1100 — 1127, 1999.

PH. Calamai and J.J. More, “Projected gradient methods for linearly constrained problems,” Mathematical
Programming, vol. 39, pp. 93 — 116, 1987.

K. Messer, J. Matas, J.V. Kittler, J. Luettin, and G. Maitre, “XM2VTSDB: The extended M2VTS database,” in
AVBPA’99, Washington, DC, USA, 22-23 March 1999, pp. 72-77.

M. Turk and A. P. Pentland, “Eigenfaces for recognition.,” Journal of Cognitive Neuroscience, vol. 3, no. 1, pp.
71-86, 1991.

P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition using class specific
linear projection.,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 711-720, July
1997.

V. Vapnik, Statistical Learning Theory, J.Wiley, New York, 1998.

K. Messer, J.V. Kittler, M. Sadeghi, S. Marcel, C. Marcel, S. Bengio, F. Cardinaux, C. Sanderson, J. Czyz,
L. Vandendorpe, S. Srisuk, M. Petrou, W. Kurutach, A. Kadyrov, R. Paredes, B. Kepenekci, E.B. Tek, G.B. Akar,
F. Deravi, and N. Mavity, “Face verification competition on the XM2VTS database,” in AVBPAO3, Guildford, United
Kingdom, 9-11 June 2003, pp. 964-974.

T. Kanade, J. Cohn, and Y. Tian, “Comprehensive database for facial expression analysis,” in Proceedings of IEEE
International Conference on Face and Gesture Recognition, March 2000, pp. 46-53.

M. Pantic and L. J. M. Rothkrantz, “Expert system for automatic analysis of facial expressions,” Image and Vision
Computing, vol. 18, no. 11, pp. 881-905, August 2000.

J. Devore and R. Peck, Statistics: The Exploration and Analysis of Data, third ed. Brooks Cole, 1997.

April 18, 2007 DRAFT



[27] P.O. Hoyer, ‘“Non-negative sparse coding,” in Proc. IEEE Workshop on Neural Networks for Signal Processing,
Martigny, Valais, Switzerland, September 4-6 2002, pp. 557-565.

[28] P. O. Hoyer, “Modeling receptive fields with non-negative sparse coding,” Neurocomputing, vol. 52-54, pp. 547-552,
2003.

DRAFT April 18, 2007



