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Abstract

In this paper, two novel methods for facial expression recognition in facial image sequences are presented. The

user has to manually place some of Candide grid nodes to face landmarks depicted at the first frame of the image

sequence under examination. The grid tracking and deformation system used, based on deformable models, tracks

the grid in consecutive video frames over time, as the facial expression evolves, until the frame that corresponds to

the greatest facial expression intensity. The geometrical displacement of certain selected Candide nodes, defined as

the difference of the node coordinates between the first and the greatest facial expression intensity frame, is used as

an input to a novel multi-class Support Vector Machine (SVM) system of classifiers, that are used to recognize either

the six basic facial expressions or a set of chosen Facial Action Units (FAUs). The results on the Cohn-Kanade

database show a recognition accuracy of 99.7% for facial expression recognition using the proposed multi-class

SVMs and 95.1% for facial expression recognition based on FAU detection.
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Index Terms

Facial expression recognition, Facial Action Unit, Facial Action Coding System, Support Vector Machines,

Candide grid.

I. INTRODUCTION

During the past two decades, facial expression recognition has attracted a significant interest in the scientific

community, as it plays a vital role in human centered interfaces. Many applications such as virtual reality, video-

conferencing, user profiling and customer satisfaction studies for broadcast and web services, require efficient facial

expression recognition in order to achieve the desired results. Therefore, the impact of facial expression recognition

on the above mentioned application areas, is constantly growing.

Several research efforts have been done regarding facial expression recognition. The facial expressions under

examination were defined by psychologists as a set of six basic facial expressions (anger, disgust, fear, happiness,

sadness and surprise) [1]. In order to make the recognition procedure more standardized, a set of muscle movements

known as Facial Action Units (FAUs) that produce each facial expression, was created, thus forming the so

called Facial Action Coding System (FACS) [2]. These FAUs are combined in order to create the rules

responsible for the formation of facial expressions as proposed in [3].

A. Facial expression recognition

A survey on the research made regarding facial expression recognition can be found at [4], [5]. The approaches

reported regarding facial expression recognition can be distinguished in two main directions, the feature-based ones

and the template based ones, according to the method they use for facial information extraction. The feature-based

methods use texture or geometrical information as features for expression information extraction. The template-based

methods use 3-D or 2-D head and facial models as templates for expression information extraction.

Feature based Approaches

Facial feature detection and tracking is based on active InfraRed illumination in [6], in order to provide visual

information under variable lighting and head motion. The classification is performed using a Dynamic Bayesian

Network (DBN).
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A method for static and dynamic segmentation and classification of facial expressions is proposed in [7]. For the

static case, a DBN is used, organized in a tree structure. For the dynamic approach, multi level Hidden Markov

Models (HMMs) classifiers are employed.

The system proposed in [8] automatically detects frontal faces in the video stream and classifies them in seven

classes in real time: neutral, anger, disgust, fear, joy, sadness and surprise. An expression recognizer receives image

regions produced by a face detector and then a Gabor representation of the facial image region is formed to be

later processed by a bank of SVMs classifiers.

Gabor filters are also used in [9] for facial expression recognition. Facial expression images are coded using a

multi-orientation, multi-resolution set of Gabor filters which are topographically ordered and aligned approximately

with the face. The similarity space derived from this facial image representation is compared with one derived from

semantic ratings of the images by human observers. The classification is performed by comparing the produced

similarity spaces.

The images are first transformed using a multiscale, multiorientation set of Gabor filters in [10]. The grid is

then registered with the facial image region either automatically, using elastic graph matching [11] or by manual

clicking on fiducial face points. The amplitude of the complex valued Gabor transform coefficients are sampled on

the grid and combined into a single vector, called Labelled Graph Vector (LGV). The classification is performed

using the distance of the LGV from each facial expression cluster center. Gabor features are used for facial feature

extraction given a set of fiducial points in [12]. The classification is performed using Bayes, SVMs, Adaboost and

Linear Programming classifiers.

A Neural Network (NN) is employed to perform facial expression recognition in [13]. The features used can be

either the geometric positions of a set of fiducial points on a face or a set of multi-scale and multi-orientation Gabor

wavelet coefficients extracted from the facial image at the fiducial points. The recognition is performed by a two

layer perceptron NN. A Convolutional NN was used in [14]. The system developed is robust to face location changes

and scale variations. Feature extraction and facial expression classification were performed using neuron groups,

having as input a feature map and properly adjusting the weights of the neurons for correct classification. A method

that performs facial expression recognition is presented in [15]. Face detection is performed using a Convolutional
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NN, while the classification is performed using a rule-based algorithm. Optical flow is used for facial region

tracking and facial feature extraction in [16]. The facial features are inserted in a Radial Basis Function (RBF)

NN architecture that performs classification. Discrete Cosine Transform (DCT) is used in [17], over the entire face

image as a feature detector. The classification is performed using a one-hidden layer feedforward NN.

A feature selection process that is based on Principal Component Analysis (PCA) is proposed in [18]. A decision

tree-based classifier that uses successive projections onto more precise representation subspaces, is employed. The

image pixels are used in [19] as input to PCA and Linear Discriminant Analysis (LDA) to reduce the original

feature space dimensionality. The resulted features are lexicographically ordered and concatenated to a feature

vector, which is used for classification according to the nearest neighbor rule.

The approach followed in [20] uses structured and geometrical features of a user sketched expression model.

The classification is performed using Linear Edge Mapping (LEM). Expressive face modelling, using an Active

Appearance Model (AAM) is employed in [21]. The facial model is constructed based on either three or one PCA.

The classification is performed in the space of AAM.

Model-template based Approaches

Two methods for facial expression recognition are proposed in [22], based on a 3-D model enriched with muscles

and skin. The first method estimates facial muscle actuations from optical flow data. The classification is performed

according to its similarity to the classical patterns of muscle actuation. The second method uses the classical patterns

of muscle actuation to generate the classical pattern of motion energy associated with each facial expression, thus

resulting in a set of simple facial expression “detectors”, each of which looks for the particular space-time pattern

of motion energy associated with each facial expression.

A face model, defined as a point-based model composed of two 2-D facial views (frontal and profile views)

is used in [3]. The deformation of facial features is extracted from both the frontal and profile views and its

correspondence with the FAUs is established. The facial expression recognition is performed based on a set of

decision rules.

A 3-D facial model is proposed in [23]. Anatomically-based muscles are added to it. A Kalman filter in

correspondence with optical flow computation are used to extract muscle action in order to form a new model
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of facial action, the so-called FACS+.

A 3-D facial model used for facial expression recognition is also proposed in [24]. First, the head pose is

estimated in a facial video sequences. Subsequently, face images are warped onto a face model with canonical face

geometry, then they are rotated to frontal ones and are projected back onto the image plane. Pixels brightness is

linearly rescaled and resulting images are convolved with a bank of Gabor kernels. The Gabor representations are

then channelled to a bank of SVMs to perform facial expression recognition.

B. FAU based facial expression recognition

For FAUs detection, the approaches followed were also feature based. Many techniques for FAUs recognition

are proposed in [25]. PCA, Independent Component Analysis (ICA), Local Features Analysis (LFA), LDA, Gabor

wavelet representations and Local Principal Components (LPC) are investigated more thoroughly.

A group of FAUs is detected in [26]. The facial feature contours are adjusted and both permanent and transient

facial features changes are automatically detected and tracked in the image sequence. The facial parameters are

then fed into two NN classifiers, one for the upper face and one for the lower face.

FAUs detection is also investigated in [27]. Facial expression information extraction is performed either by using

optical flow, or by facial feature point tracking. The extracted information is used as an input in a HMMs system

that has as an output upper face expressions at the forehead and brow regions.

HMMs are also used in [28]. Dense optical flow extraction is used to track flow across the entire face image, after

the input image sequence is aligned. Facial feature tracking of a small set of pre-selected features is performed and

high-gradient component detection uses a combination of horizontal, vertical, and diagonal line and edge feature

detectors to detect and track changes in standard and transient facial lines and furrows. The results from the above

system are fed to a HMMs system to perform facial expression recognition.

A NN is employed for FAUs detection in [29]. The geometric facial features (including mouth, eyes, brows and

cheeks) are extracted using multi-state facial component models. After extraction, these features are represented

parametrically. The regional facial appearance patterns are captured using a set of multi-scale and multiorientation

Gabor wavelet filters at specific locations. The classification is performed using a back-propagation NN.
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In the current paper, two novel fast feature-based methods are proposed, that use SVMs classifiers for recognizing

dynamic facial expressions either directly or by firstly detecting the FAUs. SVMs were chosen due to their

good performance in various practical pattern recognition applications [30], [31]-[33], and their solid theoretical

foundations. A novel class of SVMs, which incorporates statistic information about the classes under examination,

is also proposed. The classification on both cases (facial expression recognition using multi-class SVMs or based

on FAU detection) is performed using only geometrical information, without taking into consideration any facial

texture information.

Let us consider an image sequence containing a face, whose facial expression evolves from a neutral state (first

frame) to a fully expressed state (last frame). The proposed method is based on mapping and tracking the facial

model Candide onto the video frames. The proposed facial expression recognition system is semi-automatic, in the

sense that the user has to manually place some of the Candide grid nodes [34] on face landmarks depicted at the

first frame of the image sequence under examination. The tracking system allows the grid to follow the evolution

of the facial expression over time till it reaches its highest intensity, producing at the same time the deformed

Candide grid at each video frame. A subset of the Candide grid nodes is chosen, that predominantly contribute to

the formation of the facial deformations described by FACS. The geometrical displacement of these nodes, defined

as the difference of each node coordinates at the first and the last frame of the facial image sequence, is used as

an input to a SVMs classifier (either the classical or the proposed one). When facial expression recognition using

multi-class SVMs is performed, the SVMs system consists of a six-class SVMs classifier, each class representing

one of the six basic facial expressions (anger, disgust, fear, happiness, sadness and surprise). When FAU based

facial expression recognition is performed, 8 or 17 FAUs are chosen that corresponds to the new empirically derived

facial expressions rules and to the rules proposed in [3]. Thus, the recognition system used is composed of a bank

of two-class SVMs, each one detecting the presence or absence of a particular FAU that corresponds to a specific

facial expression. The experiments were performed using the Cohn-Kanade database and the results show that the

proposed novel facial expression recognition system can achieve a recognition accuracy of 99.7% or 95.1%, when

recognizing six basic facial expressions on the Cohn-Kanade database by the multi-class SVMs approach or by the

FAU detection based approach, respectively.
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Summarizing, the contributions of this paper are:

• The presentation of a real-time system able to correctly classify facial expressions and FAUs, taking under

consideration only geometrical displacement information based on the standard and well known Candide grid

[35], in contrary to other approaches that use their own models without having explicitly defined them [7],

[9], [23], [36], [37].

• The introduction of a new class for multi-class SVMs classification, based on the extension of the approach

described in [30].

• The presentation of a new set of empirical rules for facial expression recognition using FAUs, as well as a

simplified Candide model whose nodes correspond to the above mentioned FAUs.

Our system is different from the method proposed in [38] as it:

• uses a general and well known model (Candide facial grid) for tracking and information extraction, and not

an arbitrary grid that the author chose not having been properly defined for public use

• a method for FAU recognition and facial expression recognition through the FAUs appearing in a facial grid

is also presented

• a novel modified SVMs system is proposed and used to solve the facial expression recognition problem,

proving at the same time that its performance greatly outperforms the maximum margin SVMs approach [39].

This paper is organized as follows: The system used for facial expression classification is described in Section

II. The facial expression rules used for the synthesis of the six basic facial expressions as proposed in [3] are

presented in Section II-C. The modified SVMs for a two-class and multi-class problem are presented in Sections III

and IV respectively. The database used for the experiments and their description for both approaches are presented

in Section V-A. The newly proposed rules for the simplified Candide grid and the facial expressions are described

in Section V-B. The accuracy rates achieved when the chosen subset of FAUs was used as well as when facial

expression recognition was attempted using multi-class SVMs are shown in Sections V-C and V-E respectively.

Conclusions are drawn in Section VI.
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II. SYSTEM DESCRIPTION

The facial expression recognition system is composed of two subsystems: one for Candide grid node information

extraction and one for grid node information classification. The grid node information extraction is performed by a

tracking system, while the grid node information classification is performed by a SVMs system. The flow diagram

of the proposed system is shown in Figure 1.

6 class SVM
system

Classified
facial expression

Grid node
displacements

gj

FAU 2
SVM

FAU 26
SVM

…
FAU 1
SVM

FAUs detection

grid

First frame

Last  frame

Grid tracking

Deformed
grid

Deformed
grid

-

FAU to
facial expression

conversion

Classified
facial expression

17 FAUs

Fig. 1. System architecture for facial expression recognition in facial videos

A. Tracking system initialization

The initialization procedure is performed in a semi-automatic way in order to attain reliability and robustness of

the initial grid displacement. The facial wireframe model used in the tracking procedure is the well-known Candide

wireframe model [34], in the contrary to the other approaches that use their own models without having explicitly

defined them. Candide is a parameterized face mask specifically developed for model-based coding of human faces.

A frontal and a profile view of the model can be seen in Figure 7. The low number of its triangles allows fast face

animation with moderate computing power.

In the beginning, the Candide wireframe grid is randomly placed on the facial image depicted at the first frame.

The grid is in its neutral state. The user has to manually select a number of point correspondences that are matched
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against the facial features of the actual face image. Future research involves the automatical placement of the grid

on the face, using elastic graph matching algorithms. The most significant nodes (around the eyes, eyebrows and

mouth) should be chosen, since they are responsible for the formation of facial deformations modelled by FACS.

It has been empirically determined that 5 to 8 node correspondences are enough for a good model fitting. These

correspondences are used as the driving power which deforms the rest of the model and matches its nodes against

face image points. The result of the initialization procedure, when 7 nodes (4 for the inner and outer corner of the

eyes and 3 for the upper lip) are placed by the user, can be seen in Figure 2.

Grid initialization

Fig. 2. Result of initialization procedure when 7 Candide nodes are placed by the user on a facial image.

B. Model based tracking

Wireframe node tracking is performed by a pyramidal variant of the well-known Kanade-Lucas-Tomasi (KLT)

tracker [40]. The loss of tracked features is handled through a model deformation procedure that increases the

robustness of the tracking algorithm.

The algorithm, initially fits and subsequently tracks the Candide facial wireframe model in video sequences

containing the formation of a dynamic human facial expression from the neutral state to the fully expressive

one. The facial features are tracked in the video sequence using a variant of KLT tracker [40]. If needed, model

deformations are performed by mesh fitting at the intermediate steps of the tracking algorithm. Such deformations

provide robustness and tracking accuracy.

The facial model is assumed to be a deformable 2-D mesh model. The facial model elements (springs) are

assumed to have a certain stiffness. The driving forces that are needed, i.e., the forces that deform the model, are

determined from the point correspondences between the facial model nodes and the face image features. Each force
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is defined to be proportional to the difference between the model nodes and their corresponding matched feature

points on the face image. If a node correspondence is lost, the new node position is the result of the grid deformation.

This solves a major problem of feature-based tracking algorithms, the gradual elimination of features points with

respect to time. In the modified tracking algorithm, the incorporation of the deformation step enables the tracking

of features that would have been lost otherwise. The tracking algorithm provides a dynamic facial expression

model for each video sequence, which is defined as a series of frame facial expression models, one for each video

frame.

An example of the deformed frame facial expression models produced for each one of the 6 basic facial

expressions can be seen in Figure 3.

Happiness
Surprise

Fear

Disgust

Neutral

Sadness

Anger

Fig. 3. An example of the deformed Candide grids for each one of the 6 facial expressions.
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C. Grid node displacement extraction

In the proposed approach, the facial expression classification is performed based only on geometrical information,

without taking directly into consideration any facial texture information. The geometrical displacement information

of the grid node coordinates is used either for facial expression recognition using multi-class SVMs or for FAU-

based facial expression recognition. In the FAU-based recognition, the activated FAUs should be detected in the

grid, before employing them to produce one of the six basic facial expressions using a set of rules that maps them

to facial expressions.

Let U be the video database that contains the facial image sequences. In the case of facial expression recognition

using multi-class SVMs, it is clustered into 6 different classes Uk, k = 1, . . . , 6, each one representing one of

6 basic facial expressions (anger, disgust, fear, happiness, sadness and surprise). In the case of FAU-based facial

expression recognition, for every FAU, the database is clustered into 2 different classes U ik, i = 1, 2 for the k-th

FAU, k = {1, . . . , 17}. The first class, U1
k , represents the presence of the FAU under examination at the grid being

processed, while the second one, U2
k , represents its absence.

The geometrical information used for facial expression recognition is the displacement of one node di,j , defined

as the difference of the i-th grid node coordinates at the first and the fully formed expression facial video frame:

di,j = [∆xi,j ∆yi,j ]
T i = 1, . . . , E and j = 1, . . . , N (1)

where ∆xi,j , ∆yi,j are the x, y coordinate displacement of the i-th node in the j-th image respectively. E

is the total number of nodes (E = 104 for the Candide model) and N is the number of the facial image

sequences. This way, for every facial image sequence in the training set, a feature vector gj is created, called

grid deformation feature vector containing the geometrical displacement of every grid node:

gj = [d1,j d2,j . . . dE,j ]T , j = 1, . . . , N (2)

having L = 104·2 = 208 dimensions. We assume that each grid deformation feature vector gj j = 1, . . . , N belongs

to one of the six facial expression classes Uk, k = 1, . . . , 6 (for facial expression recognition using multi-class

SVMs) and activates a number of FAUs (for FAUs detection based facial expression recognition).

Facial expressions can be described as combinations of FAUs, as proposed in [3]. As can be seen in the original
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TABLE I

THE FACIAL EXPRESSION SYNTHESIS RULES AS PROPOSED IN [3].

Expression FAUs coded description [3]

Anger 4 + 7 + (((23 or 24) with or not 17)or (16 + (25 or 26)) or (10 + 16 + (25 or 26)))with or not 2

Disgust ((10 with or not 17) or (9 with or not 17)) + (25 or 26)

Fear (1 + 4) + (5 + 7) + 20 + (25 or 26)

Happiness 6 + 12 + 16 + (25 or 26)

Sadness 1 + 4 + (6 or 7) + 15 + 17 + (25 or 26)

Surprise (1 + 2) + (5 without 7) + 26

rules (Table I), the FAUs that are necessary for fully describing all facial expressions are FAUs 1, 2, 4, 5, 6, 7, 9,

10, 12, 15, 16, 17, 20, 23, 24, 25 and 26. Therefore, these 17 FAUs are responsible for describing face deformations

according to FACS. The operators +, or refer to the logical AND, OR operations respectively. Therefore, FAUs can

be easily used for facial expression recognition. In the following, we will formulate the SVMs-based classification

problems used for FAUs detection in the grid and for facial expression recognition.

III. FAU DETECTION USING SVMS

Here we shall describe two such classification algorithms. One is based on the well-known SVMs [39] and the

other one is a modified version of SVMs as proposed in [30].

A. Two Class SVMs FAU detection

In our approach in order to detect the activated FAUs, the grid deformation feature vector gj ∈ <L j = 1, . . . , N

is used as an input to 17 two class SVMs systems, each one detecting a specific FAU. Each SVMs system, uses the

grid nodes geometrical displacements to decide whether a specific FAU is activated at the grid under examination

or not. The k-th SVM k = 1, . . . , 17 is trained with the examples in U 1
k = { (gj , ykj ), j = 1, . . . , N, ykj = 1 } as

positive ones and all other examples U2
k = { (gj , ykj ), j = 1, . . . , N, ykj = −1 } as negative ones.

In order to train the k-th SVMs network, the following minimization problem has to be solved [41]:

min
wk,bk,ξ

k

1

2
wT
k wk + Ck

N∑

j=1

ξkj (3)
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subject to the separability constraints:

yki (wT
k φ(gj) + bk) ≥ 1− ξkj , ξkj ≥ 0, j = 1, . . . , N

where bk is the bias for the k-th SVM, ξk = [ξk1 , . . . , ξ
k
N ] is the slack variable vector and Ck is the term that

penalizes the training errors.

After solving the optimization problem (3) subject to the separability constraints (4) ([39], [42]), the function

that decides whether the k-th FAU is activated by a test displacement feature vector g is:

fk(g) = sign(wT
k φ(g) + bk) (4)

where H is an arbitrary dimensional Hilbert space [43] and φ : <L → H. In this formulation, a nonlinear mapping

φ has been used for a high dimensional feature mapping for obtaining a linear SVMs system in which it should

be φ(g) = g. This mapping is defined by a positive kernel function, h(gi, gj), specifying an inner product in the

feature space and satisfying the Mercer condition [39], [42]:

h(gi, gj) = φ(gi)
Tφ(gj). (5)

The functions used as SVMs kernels were the d degree polynomial function:

h(gi, gj) = (gi
T gj + 1)d (6)

and the Radial Basis Function (RBF) kernel:

h(gi, gj) = exp(−γ ‖ gi − gj ‖2). (7)

where γ is the spread of the Gaussian function.

B. A Modified Two Class SVMs

The other classifier tested for FAU detection is based on a modified two class SVMs formulation proposed in

[30]. The approach in [30], was motivated by the fact that the Fisher’s discriminant optimization problem for two

classes is a constraint least-squares optimization problem [30], [44], [45]. The problem of minimizing the within-

class variance has been reformulated so that it can be solved by constructing the optimal separating hyperplane

for both separable and nonseparable cases. The modified SVMs class [30] has been applied successfully in order
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to weight the elastic graph nodes local similarity value according to their corresponding discriminant power for

frontal face verification. It has been shown that it outperforms the classical1 SVMs approach. More details about

the motivations of this modified SVMs can be found in [30].

1) The Linear Case: In order to form the optimization problem of the SVMs proposed in [30] we should define

the within class scatter matrix of the training set:

Skw =
∑

gi∈U1
k

(gi − µ1
k)(gi − µ1

k)
T +

∑

gi∈U2
k

(gi − µ2
k)(gi − µ2

k)
T (8)

where µ1
k and µ2

k are the mean vectors of the classes U1
k and U2

k , respectively. In this approach we assume that

the within scatter matrix Skw is invertible (which is true in our case, since the dimensionality of the vector gi

is classically smaller than the number of available training examples). The optimization problem of the modified

SVMs is [30]:

min
wk,bk,ξ

k
wT
k Skwwk + Ck

N∑

j=1

ξkj (9)

subject to the separability constraints (4) (here we refer to the linear case where φ(g) = g). The solution of the

optimization problem (9) subject to the constraints (4) is given by the saddle point of the Lagrangian:

L(wk, bk,α
k,βk, ξk) = wT

k Skwwk + Ck

N∑

i=1

ξki −
N∑

i=1

aki [y
k
i (wT

k gi − bk)− 1 + ξki ]−
N∑

i=1

βki ξ
k
i (10)

where αk = [αk1 , . . . , α
k
N ] and βk = [βk1 , . . . , β

k
N ] are the vectors of Lagrangian multipliers for the constraints (4).

The vector wk can be derived from the Kuhn-Tucker (KT) conditions [30]:

wk =
1

2
Skw
−1

N∑

i=1

aki y
k
i gi. (11)

Instead of finding the saddle point of the Lagrangian (10), we find the maximization point of the Wolf dual problem

[30]:

W (αk) =

N∑

i=1

αki −
1

4

N∑

i=1

N∑

j=1

αki α
k
j y
k
i y

k
j g

T
i Skw

−1
gj (12)

subject to:

0 ≤ αki ≤ Ck, i = 1, . . . , N

∑N
i α

k
i y
k
i = 0.

(13)

1The term classical SVMs refers to the maximal margin SVMs proposed in [39]
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The above optimization problem can be solved using optimization packages like [46] or using the “quadprog”

function of MATLAB [47].

The linear decision function that decides whether the k-th FAU is activated in the geometrical displacement

vector g, or not, is:

fk(g) = sign(wT
k g + bk) = sign(

1

2

N∑

j=1

yki a
k
i g

T
j Skw

−1
g + bk). (14)

2) The Non-Linear Case: The nonlinear multi-class decision surfaces can be created in the same manner as

the two class non-linear decision surfaces that have been proposed in [30]. That is, in the dual Wolf problem the

term gTi Skw
−1

gj is employed. Assuming that the within scatter matrix is invertible, this term can be written as

(Skw
− 1

2 gi)
T (Skw

− 1

2 gj). Applying the nonlinear function φ to the vectors Skw
− 1

2 gi, we have h(Skw
− 1

2 gi,S
k
w
− 1

2 gj) =

φ(Skw
− 1

2 gi)
Tφ(Skw

− 1

2 gj) [30]. Then, we can apply kernel functions in (15) as:

W (αk) =
N∑

i

αki −
1

4

N∑

i=1

N∑

j=1

αki α
k
j y
k
i y

k
j h(Skw

− 1

2 gi,S
k
w
− 1

2 gj). (15)

The corresponding non-linear decision function that detects the k-th FAU in the geometrical displacement vector

g is given by:

fk(g) =
1

2

N∑

j=1

yki α
k
i h(Skw

− 1

2 gj ,S
k
w
− 1

2 g) + bk. (16)

IV. FACIAL EXPRESSION RECOGNITION USING MULTI-CLASS SVMS

For facial expression recognition using multi-class SVMs, the grid deformation feature vector gj ∈ <L is used as

an input to a multi class SVMs system [48]. Six classes were considered for the experiments, each one representing

one of the basic facial expressions (anger, disgust, fear, happiness, sadness and surprise). The SVMs system,

classifies the set of the grid geometrical displacements to one of the six basic facial expressions. More specifically,

the grid deformation vectors gj , j = 1, . . . , N , are used as an input to the SVMs system. The output of the SVMs

system is a label that classifies the grid deformation under examination to one of the six basic facial expressions.

In this Section we will also show how the two class SVMs described in Section III-B.2 can be extended to

multi-class classifications problems using the multi-class SVMs formulation presented in [39], [49], [50]. In the

experimental results section we will show that the modified multi-class SVMs outperforms the ones proposed in

[39], [49], [50].
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A. Multi-class SVMs

A brief conversation about the optimization problem of the multi-class SVMs will be given below. The interested

reader can refer to [39], [41], [49], [50] and the references therein for formulating and solving multi-class SVMs

optimization problems.

The training data are (g1, l1), . . . , (gN , lN ) where gj ∈ <L are the grid deformation vectors and lj ∈ {1, . . . , 6}

are the facial expression labels of the feature vector. The multi-class SVMs problem solves only one optimization

problem [49]. It constructs 6 facial expressions rules, where the k−th function wT
k φ(gj) + bk separates training

vectors of the class k from the rest of the vectors, by minimizing the objective function:

min
w,b,ξ

1

2

6∑

k=1

wT
k wk + C

N∑

j=1

∑

k 6=lj
ξkj (17)

subject to the constraints:

wT
ljφ(gj) + blj ≥ wT

k φ(gj) + bk + 2− ξkj (18)

ξkj ≥ 0, j = 1, . . . , N, k ∈ {1, . . . , 6}\lj .

φ is the function that maps the deformation vectors to a higher dimensional space, where the data are supposed to

be linearly or near linearly separable. C is the term that penalizes the training errors. The vector b = [b1 . . . b6]T

is the bias vector and ξ = [ξ1
1 , . . . , ξ

k
i , . . . , ξ

6
N ]T is the slack variable vector. Then, the decision function is:

h(g) = argmax
k=1,...,6

(wT
k φ(g) + bk). (19)

Using this procedure, a test grid deformation feature vector is classified to one of the six facial expressions using

(19). Once the six-class SVMs system is trained, it can be used for testing, i.e., for recognizing facial expressions

on new facial image sequences. For the solution of the optimization problem (17) subject to the constraints (18)

someone can refer to [39], [49], [50].

B. A Modified Class of Multi-class SVMs

In this section, a novel multi-class SVMs method extending the constraint optimization problem in (9), is proposed.

This novel multi-class SVMs method is the generalization of the two class modified SVMs described in Section

III-B.
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1) The Linear Case: Let that the within class scatter matrix of our grid deformation feature vectors gi is defined

as:

Sw =
6∑

k=1

∑

gi∈Uk
(gi − µk)(gi − µk)T (20)

where six is the number of facial expression classes and µk is the geometrical displacement vector for the class

k. In this Section we assume that the within class scatter matrix Sw is invertible, which holds in our case, since

classically for our deformation the feature vector dimension is smaller than the available training examples.

The modified constraint optimization problem is:

min
wk,b,ξ

6∑

k=1

wT
k Swwk + C

N∑

j=1

∑

k 6=lj
ξkj (21)

subject to the separability constraints in (18) (in the linear case φ(g) = g). The solution of the above constraint

optimization problem can be given by finding the saddle point of the Lagrangian:

L(w,b, ξ,α,β) =
∑6

k=1 wT
k Swwk + C

∑N
i=1

∑6
k=1 ξ

k
i −

∑N
i=1

∑6
k=1 α

k
i [(wli −wk)

Tgi + bli − bk − 2 + ξki ]

−∑N
i=1

∑6
k=1 β

k
i ξ
k
i

(22)

where α = [α1
1, . . . , α

k
i , . . . , α

6
N ] and β = [β1

1 , . . . , β
k
i , . . . , β

6
N ] are the Lagrangian multipliers for the constraints

(18) with :

αlii = 0, ξlii = 2, βlii = 0, i = 1, . . . , N (23)

and constraints:

αki ≥ 0, βki ≥ 0, i = 1, . . . , l, k ∈ {1, . . . , 6}\li. (24)

The Lagrangian (22) has to be maximized with respect to α and β and minimized with respect to w and ξ. In

order to produce a more compact equation form let us define the following variables:

Ai =
6∑

k=1

αki and cki =





1, if li = k

0, if li 6= k.
(25)

After a series of manipulations shown in Appendix I, the search of the saddle point of the Lagrangian (22) is

reformulated to the maximization of the Wolf dual problem:

W (α) = 2
N∑

i=1

6∑

k=1

αki +
1

4

∑

i,j,k

(−1

2
c
lj
j AiAj + αki α

li
i −

1

2
αki α

k
j )giS

−1
w gj (26)
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which is a quadratic function in terms of α with the linear constraints:

N∑

i=1

aki =
N∑

i=1

ckiAi, k = 1, . . . , 6. (27)

The above optimization problem can be solved using optimization packages like [49]. The corresponding decision

hyperplane is:

f(g) = argmax
k=1,...,6

(wT
k g + bk) = argmax

k=1,...,6
[
1

2

N∑

i=1

(ckiAi − αki )gTi S−1
w g + bk]. (28)

as is detailed in Appendix I.

2) The Non-Linear Case: The nonlinear multi-class decision surfaces can be created in the same manner as the

two class non-linear decision surfaces that have been proposed in [30] and are described in Section III-B.2. That

is, we exploit the fact that the term gTi S−1
w gj can be written in terms of dot products as (S

− 1

2
w gi)

T (S
− 1

2
w gj). Then,

we can apply kernels in (26) as:

W (α) = 2
N∑

i=1

6∑

k=1

αki +
1

4

∑

i,j,k

(−1

2
c
lj
j AiAj + αki α

li
i −

1

2
αki α

k
j )h(S

− 1

2
w gi,S

− 1

2
w gj), (29)

and the corresponding decision surface is:

f(g) = argmax
k=1,...,6

1

2
[
N∑

i=1

(ckiAi − αni )h(S
− 1

2
w gi,S

− 1

2
w g) + bk]. (30)

V. EXPERIMENTAL RESULTS

A. Database description

The Cohn-Kanade database [2] was used for the facial expression recognition in 6 basic facial expressions classes

(anger, disgust, fear, happiness, sadness and surprise). This database is annotated with FAUs. These combinations

of FAUs were translated into facial expressions according to [3], in order to define the corresponding ground truth

for the facial expressions. All the subjects were taken under consideration to form the database for the experiments.

In Figure 4, a sample of an image for every facial expression for one poser from this database, is shown.

The most usual approach for testing the generalization performance of a SVMs classifier, is the leave-one cross-

validation approach. The leave-one out method [7] was used in order to make maximal use of the available data and

produce averaged classification accuracy results. The term leave-one out cross-validation, does not correspond to

the classic leave-one-out definition here, as a variant of leave-one-out is used (i.e., leave 20% out) for the formation
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Anger

Disgust

Surprise

Sadness

Happiness Fear

Fig. 4. An example of each facial expression for a poser from the Cohn-Kanade database.

of the test dataset. However the procedure followed will be called leave-one-out from now on. More specifically,

all image sequences contained in the database are divided into 6 classes, each one corresponding to one of the 6

basic facial expressions to be recognized. Neutral state is not considered as a class, as the system tries to recognize

the fully expressed facial expression starting from the neutral state. Five sets containing 20% of the data for each

class, chosen randomly, were created. One set containing 20% of the samples for each class is used for the test set,

while the remaining sets form the training set. After the classification procedure is performed, the samples forming

the testing set are incorporated into the current training set, and a new set of samples (20% of the samples for each

class) is extracted to form the new test set. The remaining samples create the new training set. This procedure is

repeated five times. A diagram of the leave-one-out cross-validation method can be seen in Figure 5. The average

classification accuracy is the mean value of the percentages of the correctly classified facial expressions.

The accuracy achieved for each facial expression is averaged over all facial expressions and does not provide

any information with respect to a particular expression. The confusion matrices[10] have been computed to handle

this problem. The confusion matrix is a n × n matrix containing the information about the actual class label

labac (in its columns) and the label obtained through classification labcl (in its rows). The diagonal entries of the

confusion matrix are the rates of facial expressions that are correctly classified, while the off-diagonal entries are
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Sadness 20% Sadness 20% Sadness 20%Sadness 20%

Surprise 20% Surprise20% Surprise20% Surprise 20%

...

...

...

...

...

...

Training test Test set}
Fig. 5. Diagram of leave-one-out method.

the percentages corresponding to misclassification rates. The abbreviations an, di, fe, ha, sa and su represent

anger, disgust, fear, happiness, sadness and surprise respectively.

B. Representative FAU and grid node selection

The rules proposed in [3] require the detection of 17 FAUs. The use of so many FAUs makes the rules sensitive

to false FAU detection or rejection. In order to simplify the rules, a small set of rules are proposed for facial

expression classification that yield better performance in the experiments performed.

From all the FAUs appearing in the facial expression description rules, many describe two or more facial

expressions. Those that appear once in all facial expression rules are chosen to describe uniquely the facial

expressions under examination. For example, FAU 26 appears in every facial expression. Thus, its presence is

irrelevant when defining a facial expression, as no facial expression could be specified. Therefore, a FAU that exists

in only one facial expression rule should be specified for each facial expression. Where it is not possible, a unique

combination of FAUs should be defined instead. Therefore:

• For facial expression anger, the FAUs that appear once are the FAUs 23 and 24. The rest FAUs that participate

in the facial expression rule are observed 2 or more times in all facial expression rules. FAUs 23 and 24 do not
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participate in the rest of facial expressions rules for the other 5 facial expressions. Anger should be therefore

defined by the appearance of those two FAUs.

• For disgust facial expression, the FAU that appears only once is the FAU 9. It is also uniquely observed in

disgust rules, thus making it appropriate for disgust classification.

• For fear facial expression, the FAU that appears only once is the FAU 20. Since it appears only in fear facial

expression rule, it will be the only one taken under consideration when recognizing fear.

• For happiness facial expression, the FAU that appears only once is the FAU 12. However, in Figure 6 it can

be seen that FAUs 12 and 16 appear the same. Therefore, facial expression happiness will be recognized if

FAUs 12 and 16 exist (both of them).

• For sadness facial expression, the FAU that appears only once is the FAU 15. Since it appears only in sadness

facial expression rule, it will be the only one taken under consideration when recognizing sadness.

• For surprise facial expression, the FAUs that appear only once are FAUs 2, 5. Since they appear only in surprise

facial expression rule, they will be the ones taken under consideration when recognizing surprise.

The deformed Candide grid produced by the grid tracking algorithm [51] that corresponds to the greatest intensity of

the facial expression shown, contains 104 nodes. Only some of these nodes are important for facial expression recog-

nition. For example, nodes on the outer face contour do not contribute much to facial expression recognition. Thus,

a subset of 62 nodes is chosen that controls the facial deformations. The grid that is composed of these nodes can be

seen in Figure 7. From this time onwards, this grid will be called Primary Facial Expression Grid (PFEG).

Figure 6 presents the 8 FAUs chosen as the most representative for each facial expression. The FAU definition image,

as provided by Ekman and Friesen [52], is depicted, as well as its application to a poser from the Cohn-Kanade

database used in our experiments.

C. FAUs detection

In this Section, only FAUs detection is described. The method followed was the application of either the classical

two class SVMs (described in Section III-A) or the modified two class SVMs (described in Section III-B). The

accuracy rates obtained for FAUs detection using RBF and polynomial functions as kernels, for both the classical

two class SVMs as well as the modified two class SVMs and the original set of FAUs (FAUs 1, 2, 4, 5, 6, 7, 9, 10,
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Fig. 6. The 8 most representative FAUs used for facial expression recognition.

Original Candide model

104 nodes

Primary Facial Expression Grid (PFEG)

62 nodes

( )Simplified Candide model

Nodes selection

Fig. 7. The Primary Facial Expression Grid (PFEG) according to FACS, used for the experiments.

12, 15, 16, 17, 20, 23, 24, 25 and 26, 17 FAUs in total) proposed in [3], are presented in Figure 8. The equivalent

FAUs detection accuracies obtained when using our proposed set of rules (corresponding to FAUs 5, 9, 12, 15, 16,

20, 23 and 24, 8 FAUs in total), are presented in Figure 9.

1) FAUs detection using Candide grid: The FAUs detection accuracy was measured as the percentage of the

correctly recognized FAUs. The ground truth for FAUs was provided by the Cohn-Kanade database annotation. The

achieved FAUs detection accuracy when the set of 17 FAUs was under examination and the modified two class

SVMs and Candide grid were used, was equal to 82.7%. The equivalent FAUs detection accuracy rate, when our

set of FAUs (subset of the 17 set of FAUs) was taken under consideration was equal to 93.5%.
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Fig. 8. Accuracy rates obtained for the set of 17 FAUs detection.
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Fig. 9. Accuracy rates obtained for the set of 8 FAUs detection.

2) FAUs detection using PFEG grid: The achieved FAUs detection accuracy when the original set of FAUs

was under examination and the modified two class SVMs and PFEG grid were used, was equal to 84.7%. The

equivalent FAUs detection accuracy when our set of FAUs was taken under consideration was equal to 94.5%. The

detection accuracy achieved by the proposed method for FAUs detection is quite satisfactory, when compared with

the state of the art facial expression recognition performance for the Cohn-Kanade database [26]. More specifically,

in [26] the recognition accuracy achieved was equal to 95,6%, when using the Cohn-Kanade database. The detected

FAUs can be separated in 2 groups, those of upper and those of lower face. The accuracies achieved were 95.4%

and 95.6% respectively although the classification method followed was not the leave-one-out procedure, as used

in this paper.
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Fig. 10. Accuracy rates obtained for facial expression recognition from the detected FAUs using the PFEG grid.

D. Facial expression recognition using the detected FAUs

In this Section, facial expression recognition from the already detected FAUs is performed, either using the

original set of rules as proposed in [3], or the newly proposed one. When the original set of FAUs (17 FAUs in

total) was used to describe the six basic facial expressions, and the Candide grid, taking under consideration 104

nodes was applied, the facial expression recognition accuracy achieved was equal to 87.9%. When the chosen FAUs

subset (FAUs 5, 9, 12, 15, 16, 20, 23 and 24, 8 FAUs in total) was used to describe the six basic facial expressions,

and the Candide grid was applied, the equivalent recognition accuracy achieved was equal to 92.5%.

Regarding the application of PFEG grid (taking under consideration 62 grid nodes), the recognition accuracy

obtained for the six basic facial expressions when the original set of 17 FAUs was used, was equal to 93.75%.

The equivalent recognition accuracy achieved when the PFEG grid and the proposed set of 8 FAUs were used,

was equal to 95.1%. Thus, when the FAUs annotation is available, the equivalent depicted facial expression can be

recognized with an recognition accuracy of 95.1%, if only the FAUs 5, 9, 12, 15, 16, 20, 23 and 24, are taken into

consideration.

The accuracy rates obtained for facial expression recognition from the detected FAUs using the proposed set of

rules (8 FAUs) and applying the PFEG grid are presented in Figure 10. The first confusion matrix shown in Table

III, presents the results obtained while using the Candide grid and the new set of rules proposed. As can be seen,

the most ambiguous facial expression was disgust, since it was misclassified the most times (as anger and then

sadness). The facial expressions that follow, are anger and sadness, with a similar misclassification rate. The second
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TABLE II

CONFUSION MATRICES FOR FAU DETECTION BASED FACIAL EXPRESSION RECOGNITION WHEN USING THE CANDIDE AND PFEG GRID

AND THE PROPOSED SET OF FAU RULES

labcl\labac an di fe ha sa su

an 80% 9.6% 0% 0.3% 5.5% 2.2%

di 6.7% 77% 0.3% 0.8% 1.5% 1.5%

fe 0% 3% 98.8% 3.2% 0% 1.9%

ha 0% 0% 0.9% 95.4% 0% 0%

sa 13.3% 8.9% 0% 0.3% 93% 0%

su 0% 1.5% 0% 0% 0% 94.4%

labcl\labac an di fe ha sa su

an 91.3% 9.5% 0% 0.3% 4.4% 1.9%

di 2.7% 80% 0.3% 0.5% 0.7% 1.1%

fe 0% 3% 99.1% 0.8% 0% 1.5%

ha 0% 0% 0.6% 98.1% 0% 0%

sa 6% 6% 0% 0.3% 94.9% 0%

su 0% 1.5% 0% 0% 0% 95.5%

confusion matrix shown in Table II, presents the results obtained while using the PFEG grid and the new set of

rules proposed. As can be seen, the most ambiguous facial expression remained disgust, since it was misclassified

most times, followed by anger and then sadness.

labcl\labac an di fe ha sa su

an 80% 9.6% 0% 0.3% 5.6% 2.2%

di 6.7% 77% 0.3% 0.8% 1.5% 1.5%

fe 0% 3% 98.9% 3.2% 0% 1.9%

ha 0% 0% 0.9% 95.5% 0% 0%

sa 13.3% 8.9% 0% 0.3% 93% 0%

su 0% 1.5% 0% 0% 0% 94.4%

E. Facial expression recognition using multi-class SVMs

In this Section, facial expression recognition directly from the grid nodes displacements is described. The method

followed was the application of either the classical six class SVMs (described in Section IV-A) or the modified six

class SVMs (described in Section IV-B).

1) Facial expression recognition using Candide grid: When the classical six class SVMs were applied to the

classic Candide grid, taking under consideration 104 nodes, the facial expression recognition accuracy achieved
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TABLE III

CONFUSION MATRICES FOR FACIAL EXPRESSION RECOGNITION USING MULTI-CLASS SVMS AND THE MODIFIED SVMS TO THE

CANDIDE AND PFEG GRID

labac\labcl an di fe ha sa su

an 81.3% 0% 0% 0% 0% 0%

di 4.7% 100% 0% 0% 0% 0%

fe 0% 0% 100% 0% 0% 0%

ha 0% 0% 0% 100% 0% 0%

sa 14% 0% 0% 0% 100% 0%

su 0% 0% 0% 0% 0% 100%

labac\labcl an di fe ha sa su

an 96.7% 0% 0% 0% 0% 0%

di 0% 100% 0% 0% 0% 0%

fe 0% 0% 100% 0% 0% 0%

ha 0% 0% 0% 100% 0% 0%

sa 3.3% 0% 0% 0% 100% 0%

su 0% 0% 0% 0% 0% 100%

was equal to 91.4%. The equivalent facial expression recognition accuracy, when the modified six class SVMs were

used, was equal to 98.2%. Therefore, the introduction of the modified six class SVMs increases the recognition

accuracy by 6.8%. The first confusion matrix shown in Table III, presents the results obtained while applying the

modified six class SVMs to the Candide grid. As can be seen, the most ambiguous facial expression was anger,

being misclassified as sadness or disgust.

2) Facial expression recognition using PFEG grid: When the classical six class SVMs were applied to the

PFEG grid, taking under consideration 62 nodes, the facial expression recognition accuracy achieved was equal to

95.75%. The equivalent facial expression recognition accuracy when the modified six class SVMs were used, was

equal to 99.7%. Therefore, the introduction of the modified six class SVMs increases the recognition accuracy by

3.95%. The second confusion matrix shown in Table III, presents the results obtained while applying the modified

six class SVMs to the PFEG grid. As can be seen, the most ambiguous facial expression remains anger, since it

was the only one being misclassified as another facial expression (sadness). The recognition accuracies obtained for

facial expression recognition using six class SVMs, RBF and polynomial functions as kernels for both the classical

as well as the modified six class SVMs, are presented in Figure 11. Polynomial kernels offer better recognition

performance.

The recognition accuracy achieved by the proposed method for facial expression recognition is better than any
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Fig. 11. Accuracy rates obtained for facial expression recognition using multi-class SVMs.

other reported in the literature so far for the Cohn-Kanade database, at least according to the authors knowledge.

More specifically, in [7] the recognition accuracy achieved was equal to 74.5% for the Cohn-Kanade database

and leave-one-out approach, while in [8], it was 90.7%. Generally speaking, the best facial expression recognition

accuracy reported so far, is equal to 96,1% [53].

In order to understand if the proposed modified class of SVMs approach is statistically significant better than the

classical SVMs approach, the McNemar’s test [54] has been used. McNemar’s test is a null hypothesis statistical

test based on a Bernoulli model. If the resulting p-value is below a desired significance level (for example, 0.02), the

null hypothesis is rejected and the performance difference between two algorithms is considered to be statistically

significant. Using this test it has been verified that the modified class of SVMs outperforms the other tested classifiers

in the demonstrated experiments at a significant level less that p = 10−5.

The experiments indicated that for both approaches, the whole system is fast enough to perform almost real-time

facial expression recognition, on a PC having an Intel Centrino (1,5 GHz) processor with 1GB RAM memory,

since it is able to classify expressions at a rate of 20 frames per second during testing.

VI. CONCLUSIONS

Two novel methods for facial expression recognition using SVMs for facial expression recognition are proposed

in this paper. A novel class for SVMs classifiers that incorporates statistical information of the classes under

examination, is also proposed. The user initializes some of the Candide grid nodes on the facial image depicted

at the first frame of the image sequence. The tracking system used, based on deformable models, tracks the facial
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expression as it evolves over time, by deforming the Candide grid, eventually producing the grid that corresponds to

the facial expression’s greatest intensity, classically depicted at the last facial video frame. Only Candide nodes that

influence the formation of FAUs are used in our system.Their geometrical displacement, defined as their coordinate

difference between the last and the first frame, is used as an input to the SVMs system (either the classical one

or the modified one). In the case of facial expression recognition, this system is composed of one six-class SVMs,

one for each one of the 6 basic facial expressions (anger, disgust, fear, happiness, sadness and surprise) to be

recognized. When FAUs detection based facial expression recognition is attempted, the SVMs system consists of 8

two-class SVMs, one for each one of the 8 chosen FAUs used. The proposed methods, achieve a facial expression

recognition accuracy of 99.7% and 95.1% respectively. The achieved accuracy for facial expression recognition

using multi-class SVMs (99.7%) is better than any other reported in the literature so far for the Cohn-Kanade

database, at least according to the authors knowledge.
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APPENDIX I

WOLF DUAL PROBLEM FOR THE MODIFIED MULTI-CLASS SVMS

In order to find the optimum separating hyperplanes for the optimization problem (21) subject to the constraints

(18), we have to define the saddle point of the Langragian (22).

In the saddle point, the solution should satisfy the K-T conditions, for k = 1, . . . , 6:

∂L(w,b, ξ,α,β)

∂wk
= 0 =⇒ wk =

1

2
S−1
w

N∑

i=1

(ckiAi − aki )gi (31)

∂L(w,b, ξ,α,β)

∂bk
= 0 =⇒

N∑

i=1

αki =

N∑

i=1

ckiAi (32)

∂L(w,b, ξ,α,β)

∂ξk
= 0 =⇒ βkj + αkj = C and 0 ≤ αkj ≤ C (33)
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Substituting (31) back into (22) we obtain:

L(w,b, ξ,α,β) =
∑6

k=1

∑N
i=1

∑N
j=1(ckiAi − αki )

(ckjAj − αkj )(gTi S−1
w gj)−

−∑6
k=1

∑N
i=1 α

k
i [
∑N

j=1(clij Aj − αlij )

(gTi S−1
w gj)−

∑N
j=1(ckjAj − αkj )

(gTi S−1
w gj) + bli − bk − 2]−

−∑6
k=1

∑N
i=1 α

k
i ξ
k
i +

+C
∑6

k=1

∑N
i=1 ξ

k
i −

∑N
i=1

∑6
k=1 β

k
i ξ
m
i .

(34)

Adding the constraint (33) the terms in ξ disappear. Considering the two terms in β only:

B1 =
∑

i,k α
k
i bli =

∑
k bk(

∑
i c
k
iAi) and

B2 = −∑i,k α
k
i bk = −∑k bk(

∑
i α

k
i ).

(35)

But, from (32) we have
N∑

i=1

αki =
N∑

i=1

ckiAi (36)

so B1 = B2 and the two terms cancel, giving:

L(w,b, ξ,α,β) = W (α) = 2
∑

i,k α
k
i +

+1
4

∑
i,j,k(

1
2c
k
i c
k
jAiAj − 1

2c
k
iAiα

k
j−

−1
2c
k
jAiα

k
i + 1

2α
k
i α

k
j − clij Ajαki

+αki α
li
j + ckjAjα

k
i − αki αkj )(gTi S−1

w gj)

(37)

Since
∑

k c
k
iAiα

k
j =

∑
k c

k
jAjα

k
i we have:

W (α) = 2
∑

i,k α
k
i + 1

4

∑
i,j,k(

1
2c
k
i c
k
jAiAj − clij AiAj+

+αki α
li
j − 1

2α
k
i α

k
j )(gTi S−1

w gj)

but
∑

k c
k
i c
k
j = clii = c

lj
j so:

W (α) = 2
∑

i,k α
k
i + 1

4

∑
i,j,k[−1

2c
yi
j AiAj + αki α

yi
j −

−1
2α

k
i α

k
j ](g

T
i S−1

w gj)

(39)

which is a quadratic function in terms of alpha with linear constraints:

N∑

i=1

αki =
N∑

i=1

ckiAi, k = 1, . . . , 6 (40)
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and

0 ≤ αki ≤ C, alii = 0 (41)

i = 1, . . . , N k ∈ {1, . . . , 6}\li.

This gives the decision function:

f(g, x) = argmax
k=1,...,6

[
N∑

i=1

1

2
(ckiAi − αki )(gTi S−1

w g) + bk] (42)

or equivalently:

f(g, x) = argmaxk=1,...,6[1
2

∑
i:yi=k

Aig
T
i S−1

w g−

−1
2

∑
i:yi 6=k α

k
i g

T
i S−1

w g + bk].
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