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A unified approach to the design of nonlinear filters for speckle suppression in ultra- 
sound B-mode images is presented. The detection of the (lesion) signal is formulated 
as a binary hypothesis-testing problem. The structure of the optimal decision rules is 
derived both in the case where the lesion signal is assumed either a constant or random 
variable. In the case of a constant signal, the maximum likelihood (ML) estimator 
and the optimal L-estimator are derived. In the case of a random lesion signal, the 
maximum a posteriori probability estimator of the lesion signal has also been found. 
Experimental results verify the superiority of the proposed ML-estimator and the L- 
estimator over the straightforward choice of an arithmetic mean for speckle filtering in 
simulated tissue mimicking phantom ultrasound B-mode images. Q 1992 Academic ETes*, 1°C. 
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1 INTRODUCTION 

Speckle noise is a special kind of noise encountered in images formed by laser beams, 
in radar images as well as in envelope-detected ultrasound B-mode images. It is an 
interference effect caused by the scattering of the ultrasound beam from microscopic 
tissue inhomogeneities [1,2]. There is a rich literature on ultrasound image filtering and 
analysis. Smith et al. have dealt with the derivation of the contrast/detail function 
both experimentally as well as theoretically. They have shown that the same signal- 
to-noise ratio is obtained either by treating the detection of a low-contrast disk-shaped 
lesion embedded in ultrasonic speckle in the context of statistical decision theory or by 
evaluating the first and second-order moments of speckle. Smith et al. have concluded 
that the contrast/detail results for the envelope detection in diagnostic ultrasound are 
almost identical with the results for square law detection with the later serving as upper 
limit for performance in lesion detection [3]. The tissue architecture has been described 
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by the average spacing between semiperiodic tissue scatterers, the ratio of specular to 
diffuse backscatter intensities and the fractional standard deviation in the specular 
backscatter intensity under the assumption of generalized Rician statistics [4,5]. The 
concepts of the Receiver Operating Characteristic (ROC) curve, the ideal observer, the 
ideal observer signal to noise ratio constructed from the laboratory measurements and 
the application of the ideal observer approach to clinical diagnostic systems have been 
discussed by Wagner [6]. The implications of power functions of the echo envelope 
signal and the logarithm of the echo envelope signal on the first and second order 
statistics have been derived by Thijssen et al. [7]. It h as b een found both theoretically 
and practically, that the intensity display ( i.e., a power law transform of 2) corresponds 
to the optimal transform for a low contrast lesion. The detection of focal lesions from 
the point of view of communication systems has been considered by the same author 
[S]. Pattern recognition techniques have been used by Raeth et al. [9] and Insana et 
al. [lo] to determine the smallest number of tissue parameters for the detection and 
classification of the presence of disease. A number of adaptive filters, i.e., filters which 
adjust their smoothing properties at each point of the image according to the local image 
content, have been proposed for ultrasonic speckle suppression by Bamber and Daft 
[ll], Loupas et al. [12], and Koo and Park [13]. The improvement of the performance 
of adaptive filters based on the local coefficient of variation of the observed image has 
been studied by Lopes et al. [14]. H omomorphic filtering or signal adaptive median 
(SAM) filtering could also be applied in speckle suppression [15]. 

As far as ultrasonic speckle is concerned, all the filters proposed so far are applied to 
the displayed image data and are based on empirically chosen estimators (e.g. sample 
mean [11,13] or weighted median [12]). On th e contrary, the approach followed here 
focuses on the raw ultrasound signal just after envelope detection and derives optimum 
signal estimators based on the statistical properties of the data. This approach has two 
distinctive advantages: 

1. Accurate modeling. By processing raw envelope-detected data, it is possible to use 
an accurate model of their statistics. This is not the case with the displayed image 
data that have undergone excessive manipulation (e.g., logarithmic compression, 
low and high-pass filtering, postprocessing, etc.) to such an extent that modeling 
of their statistics becomes very difficult. 

2. Computational efficiency. In commercial scanners, the clock rate of the digitized 
envelope-detected signal is at least two times slower than the corresponding rate 
of the video signal [16]. Th ere ore, f  from a hardware point of view, it makes more 
sense to process the envelope-detected signal. 

However, a serious cost is paid by processing raw-envelope detected data. It has been 
shown that the mean grey level and the lateral speckle size depend greatly on the 
distance to the transducer [17]. Although, in ultrasound B-mode images the above- 
mentioned diffraction effects can be neglected in a first order of approximation, when a 
clinical image is processed the characteristics of any filter have to be adapted in order 
to take into account the dependence on the distance to the transducer. 

The main contribution of this paper is in the area of signal estimation, through the 
design of optimal nonlinear filters for speckle removal in ultrasound B-mode images and 
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the derivation of their properties. However, the important problem of signal detection 
is also examined. More specifically, the starting point is modeling of ultrasonic speckle 
as multiplicative noise [18]. At a first approach, the signal is assumed to be constant 
and the noise term to be Rayleigh random variable having unity expected value. The 
detection of the constant signal is expressed as a binary hypothesis-testing problem. 
The structure of the optimal decision rule is derived by comparing the likelihood ratio 
to a constant threshold. The optimal decision rule is examined whether it is a uniformly 
most powerful test or not. The receiver operating characteristics for the optimal deci- 
sion rule are derived by evaluating theoretically the probability of false alarm and the 
probability of detection without invoking the central limit theorem by contrast to the 

approach of Smith et al. [3]. The problem of estimating the constant signal is also 
considered. It is proven that the maximum likelihood (ML) estimator of the signal is 
the L2 mean filter [19] multiplied by a constant scaling factor. The expected value and 
the variance of this estimator have been evaluated. The mean-squared-error (MSE) in 
estimating the constant signal by using the ML-estimator has also been calculated. The 
use of an L-estimator of the constant signal is proposed. L-estimators are defined as 
linear combinations of the order statistics, i.e., the observations arranged in ascending 
order of their magnitude inside the filter window [20]. The L-estimator that minimizes 
the mean-squared-error between the L-estimator output and the signal is designed. 
The connection between the ML-estimator and the L-estimator is demonstrated. At a 
second approach, the (lesion) signal is assumed to be random variable. The structure 
of the optimal decision rule is again derived. The maximum a posteriori probability 
(MAP) estimator of the random signal has also been found. 

The outline of this paper is as follows. Section 2 describes the detection of the 
constant signal. Section 3 describes the estimation of the constant signal. The case of 
a random true signal is considered in section 4. Experimental results are included in 
section 5. Conclusions are drawn in section 6. 

2 DETECTION OF A CONSTANT SIGNAL FROM SPECKLE 

Let z be the envelope-detected observed signal, m be the signal and n be a noise 
term statistically independent of m. It is assumed that the signal m is related to the 
observation z by: 

t=mn (1) 

The probability density function (pdf) of th e observed random variable (r.v.) z is 
considered to be Rayleigh: 

%>O 

The expected value of the r.v. .z and its variance are [21]: 

(2) 

E[r] = +/2 (3) 
4-a 

var[z] = 6’(T) (4) 
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The following lemma can be easily proven: 

Lemma 1 If the signal m is constant and equals to CT ~12 and the noise term n is J- 
Rayleigh T.U. having unity expected value and variance e, then the pdf of the T.V. z 
is given by (2). 

In the following, model (1) will be used. 

2.1 Structure of the Optimal Detection Rule 

Let us assume that we have a set of N observations zr, ~2,. . . , 1’~ denoted by a 
vector 2 = (zr, z2,. . . , ZN )T in the observation space RN. Let n = (nl, n2.. . , n~)~ be 
a vector of N independent identically distributed Rayleigh noise random variables. Let 
us assume the following two hypotheses: 

Ho: z = msn 

(5) 
H,: z = mm 

created by the probabilistic transition mechanisms: 

fz,lHk(ZilHk) = $exp[-g] 2; > 0, i=l,...,N k:=O,l 
k 

Under the hypothesis Ho, the constant signal m. equals to 0s sr rr 2 and under the 

alternative hypothesis HI, we have ml = cl 0 
rr 2. It must be noted that the pixels 

constituting an ultrasound B-mode image are generally correlated. The correlation 
between image pixels can be exploited if second-order statistics, i.e., the autocorrelation 
or the autocovariance function are included in the problem formulation. This is the 
case with the lesion signal-to-noise ratio which has been studied thoroughly in [3]- 
[7]. In the context of statistical decision theory the exploitation of the correlation 
between pixels would be possible, if a functional description of the correlation existed. 
But unfortunately, such a model has not yet been proposed. Therefore, the following 
analysis is based on the independence assumption like the treatment of Smith et al. [3] 
and Thijssen [S]. 

The Bayes criterion [22] leads to the likelihood ratio test (LRT): 

~zIH,(ZIHI) ">I 

*(‘) = .f~~l~,,(z(Ho) < ’ 

Ho 

or equivalently to the log-likelihood ratio test: 

HI 

l(Z) = lnA(Z) 2 In0 

HO 

(‘i, 

(8) 
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By substituting Eq. (6) into Eq. (8) th e o f  11 owing optimal decision rule results: 

where 0, y  and y’ are thresholds. Therefore, for the above-described binary hypothesis- 
testing problem, the sufficient statistic is the sum of the squares of the observations, 
i.e.: 

The sufficient statistic Eq. (11) has also been derived in [3] and is in agreement with 
the analysis on grey levels transforms carried out in [7]. 

Let us now suppose that the signal ml under hypothesis HI is an unknown non- 
random parameter and that it is not known if it is smaller than or greater than mar 
which is assumed to be constant. It is obvious that in this case the best test would 
be that in which the value of ml would be measured correctly. Then, the optimum 
likelihood ratio test would be designed. If  an actual test’s performance comes close 
to the performance of the best (hypothetical) test outlined above, such a test will be 
called uniformly most powerful (UMP). Th e q uestion of the existence or not of a UMP 
test has to be addressed. It is known [22, pp. 911 that a UMP test exists if the likeli- 
hood ratio test for every ml can be completely defined (including threshold) without 
knowledge of ml. The following conclusions can be drawn: 

1. If  ml can take values only greater than mo, a UMP test always exist, i.e., Eq. 

(9). 

2. I f  ml can take values only smaller than mo, a UMP test always exist, i.e., Eq. 

(10). 

3. I f  ml can take values both greater than or smaller than mo, a UMP test does not 
exist. 

2.2 Receiver operating characteristic 

Let R.c be the decision region under the hypothesis Ho and RI the corresponding 
decision region under the alternative hypothesis. The probability of false alarm and 
the probability of detection are given by: 

PF = 
J RI 

fi~~o(ZlHoP (12) 
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The plot of PD versus PF for various y  as varying parameter is defined as the receiver 
operating charucterdstic. In the following, the probabilities of false alarm and detection 
will be derived theoretically for both the rules Eqs. (9,lO). 

The decision rule Eq. (9) has the following form: 

The threshold y  can be rewritten as: 

y  = ~(lnS+2Nlnd) (15) 

where d = al/so. In this case, the definitions (Eqs. 12, 13) lead to the following 
equations: 

(16) 

Therefore, the pdf of the r.v. w = C,“=, z” must be evaluated if zi are distributed 
according to the Rayleigh distribution with parameter u. We maintain that: 

Lemma 2 The pdf of the r.v. w = Cz, zf is given by: 

fuJW) = 
wN-1 

2NaZN(N - l)! exd- 21 

when z; are distributed according to the Rayleigh distribution with parameter u. 

The proof of Lemma 2 is given in Appendix A. By using Eq. (18). the probability of 
false alarm is given by: 

PF = J 
a, [N-l 

-----exp(-E)dt = 1 -&(L,N - l), d > 1 * (N - 1Y 20&/X 
(19) 

where Zr(u, kf) is the incomplete Gamma function defined as follows: 

It can also be proven that: 

PD=l-&( ’ 
2d2a;fi 

,N-l), dll (21) 

From Eqs. (19), (21) and (15), ‘t 1 can be seen that the probabilities of false alarm and 
detection are independent of ao. Similarly, it can be shown that the probabilities PF 
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and PO for Eq. (10) which has the form: 

HI 
l(Z)&~ ; y’ 

i=l 

HLI 

axe given by: 

PF = Zr( +I’ ---,N-1), d<l 
2a,2n 

PD = Zr( + 
2d2a,2fl 

,N-1), d<l 

(22) 

(23) 

(24) 

The receiver operating characteristics for some representative values of N and d are 
plotted in figure 1. Figure la shows how the shape of the receiver operating character- 
istic is changed for d = 0.8912,0.7943,0.707 keeping N equal to 9. Figure lb shows the 
corresponding receiver operating characteristics for the reciprocal values of d used in 
Figure la for the same value of N. As expected, the receiver operating characteristic 
becomes superior as d decreases when d < 1 (or increases when d > 1). The effect of 
increasing N while keeping d equal to 4 is shown in figure lc. Again, the receiver 
operating characteristic becomes better with the increase of the length N. 

3 ESTIMATION OF A CONSTANT SIGNAL FROM SPECKLE 

In this section, we estimate the parameter m in Eq. (1) if n is multiplicative noise 
independent of m which is distributed as follows: 

f,(N) = $exp[-$1 N > 0 

We shall examine the maximum likelihood estimator and the L-estimator of the con- 
stant signal. 

3.1 ML-Estimator of the Constant Signal 

The conditional density function of the observations assuming that m = M is given 
by [21]: 

(26) 

Let us suppose that we have a set of N observations. Then: 

(27) 

255 



KOTROPOULOS AND PITAS 

1.00 
3 d = O.i07 /TT 

0.20 

b 

,““““‘,“““,“,,“,,,i,‘,i,“‘,‘~ 0.00 0.20 0.40 0.60 0.80 1 O( 

15 

1.00 

0.80 

0.60 

0.40 

0.20 

C 

0.00 
0 

Fig. 1 Receiver Operating 

means (a) for d < 1 
N variable. 

Characteristic: Rayleigh random variables with unequal 

and N = 9; (b) for d > 1 and N = 9; (c) for d = fi and 

or equivalently: 

lnf,,~(Z,M)=nTin~+~ln~~-2Nln.ll-~~Z: (28) 
i=l *=l 

The ML-estimate of M maximizes the log-likelihood func.tion lnfi~m(ZIM), i.e., 

(29) 
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The solution of Eq. (29) is given by: 

fiML 

IN ULTRASOUND 

(39) 

Therefore, it has been proven that the ML-estimator of the constant signal is the L2 
mean [19] scaled by the factor g. S ince the ML-estimate commutes over nonlinear 
operations [22], if the envelope-detected ultrasound signal is log-compressed, i.e., 

y=lnz 

then the ML-estimate of the constant signal will be: 

(31) 

In the following, the expected value and the variance of the ML-estimator as well as 
the mean-squared estimation error will be evaluated. We maintain that: 

Lemma 3 Let r(N) be the following polynomial of N: 

(33) 

The expected value of the ML-estimator is: 

E[h] = n(N)M 

its variance is given by: 
var[ti] = (1 - z2(N))M2 

and the mean-squared estimation error is: 

(34) 

(35) 

E[(& - M)2] = 2 (1 - z(N))M’ (36) 

The proof of the Lemma 3 can be found in Appendix B. The terms r(N) and [l-r”(N)] 
are plotted for various values of the filter length N in figure 2. It can be seen that the 
expected value of the estimator is very close to A4 for N > 10. Also, the variance of 
the estimator as well as the mean-squared estimation error vanishes for large number of 
observations N. Furthermore, the following asymptotic properties of the ML-estimate 
dso hold [22]: 

1. The ML-estimate is consistent, i.e., the solution of Eq. (29) converges in proba- 
bility to the correct value. 

2. The ML-estimate is asymptotically efficient, i.e., 

var[rjzML(z) - A41 
hk (-E[ 

3.2 Optimal L-Estimator of the Constant Signal 

(37) 

Another class of estimators found extensive applications in digital signal and image 
processing are the L-estimators which are based on the order statistics. We have chosen 
the L-estimators for estimating the constant signal for three reasons: 
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Fig. 2 Plot of the terms r(N) and 1 - n2(N) versus N. 

1. L-estimators are a large class of robust estimators related to the ML-estimators 

l15J. 

2. There is a well-defined method for their design as minimum mean-squared-error 
estimators of location, 

3. The corresponding mean square error is always less or equal to that produced by 
the arithmetic mean. 

The output of the L-estimator of length N is given by: 

y(k) = aTz,(k) (38) 

wherea=(ai,aa,... , a~)* is the L-estimator coefficient vector and zr( k) = (z(“), z&), 

“‘1 
( 

~&,))r is the vector of the observations arranged in ascending order of magnitude 
i.e., order statistics). We shall design the L-estimator which minimizes the mean- 

squared-error (MSE) E[(y(k) - m)‘] under th e constraint of unbiased estimation for 
the model Eq. (1). The unbiasedness condition implies that the L-estimator output 
will converge to the estimated constant signal in an ensemble-average sense. Therefore, 
the following equation is satisfied: 

E[y(k)] = m * 5 a;E[nZ;,)] = 1 (39) 
i=l 

or in vector notation: 

aTji= 1 (40) 
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where P = (Wq1)1, Wq~)l, . . . , J+(N)]) ’ is the vector of the expected values of the 
order statistics. The superscript k is dropped out due to stationarity. Let n, = 

(n(l), n(2),. . .7YN)) r be the vector of the ordered noise samples and R = E[n,n,‘J 
be the correlation matrix of the ordered noise samples. The MSE is given by: 

MSE = mZ(aTRa - 1) (41) 

The L-estimator coefficient vector a which minimizes Eq. (41) under Eq. (40) is given 
by: 

R-‘ii 
a=- 

‘F~TR-‘F (42) 

In order to calculate a, we need matrix R whose elements are moments of the order 
statistics. Therefore, we have to evaluate the moments of the order statistics for the 

Rayleigh distribution with parameter u. In our case, the parameter F equals 
can be seen from Eq. (25). Th f  11 

sr 2 7~, as 
e o owing lemma will enable us to evaluate numerically 

the elements of the correlation matrix R by using the Gauss-Legendre quadrature 
formula in a computationally efficient manner: 

Lemma 4 The diagonal elements of the correlation matrix R are given by: 

Hii = E[n$ = 2a2 
(2 - 1,;; - i)! J s’(-ln[) tN-‘(l -[)“-‘dt i = I,... ,N (43) 

firthermore, the off-diagonal elements can be evaluated by: 

Ii!+ = E[n(iln(j)] = u2 
(i - l)! (j -: l)! (N -j)! JJ s1 s 

OL dz g-i-1 (1 - ($1 
x dw (1 - p)jmivl pNTi da d/3 

a 
1 < i < j < N - - (44) 

Similarly, it can be proven that the elements of the vector p are given by: 

pi = E[n(;)] = uh(, _ & _ i>! jol m (1 - A)‘-‘AN=-‘dX (45) 

The L-estimator coefficients are shown in figure 3 for various L-estimator lengths N. 
It can be seen that the higher order statistics are weighted by larger coefficients in all 
cases. It is also recognized an almost linear increase in the magnitude of the L-estimator 
coefficients a with the order number i. There is a tight connection between the ML- 
estimator derived previously and the L-estimator because the ML-estimate (i.e., the Lz 
mean) is always larger than that of the arithmetic mean and smaller than the maximal 
observation [23]. Th er ef ore, the higher order statistics play more significant role than 
the smaller ones in the ML-estimator, too. 

4 GENERALIZATION TO A RANDOM LESION SIGNAL 

In most practical cases, it is unrealistic to consider a constant signal hypothesis. 
Without any loss of generality, the following binary hypothesis problem will be assumed: 

H, :z = mn 

Ho : z=n (46) 
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Fig. 3 L-estimator coefficients for various lengths N. 

where m, n are random variables. Our aim is to perform detection and estimation based 
on this model. Since m is a T.v., the conditional density of the observations assuming 
ITI is given by: 

f*lH, (ZlHl) = /“, f*lm,H, (mff, HI 1 fm(H, (MIffI PM (47) 

where x,,, is the domain of the r.v. m. The following assumptions are made: 

1. n is a Rayleigh r.v. having unity expected value and variance F, i.e., its pdf is 
given by Eq. (25). 

2. The conditional density of the observations under the hypothesis Hi and the 
condition that m is known is given by: 

(48) 

3. The conditional density of m assuming Hi must be chosen in such a way that 
it represents a realistic model and it is mathematically tractable. A Maxwell 
density with parameter A fulfills both requirements. Thus: 

fmlff, (WHI) = 
MZ exp( -AM”) 

Ii- (49) 

The following equation must be satisfied so that Eq. (49) to be pdf: 

J 0 
‘x, fm,~l (MIHI NM = 1 (50) 
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Fig. 4 Plot of Maxwell probability density function for A = l/2,1,2. 
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M 

Therefore, the constant K is given by: 

J;; h-E------ 
4A3J2 (51) 

A plot of Maxwell pdf for A = l/2,1,2 is shown in figure 4. By substituting Eqs. (49) 
and (51) in Eq. (47), we obtain: 

fZpfl (Z/H,) = rAZ exp( -26) (52) 

It can be seen that the resulted density is a Gamma density. Such a result is very 
reasonable, because it is known that speckle can be modeled by a Gamma density 
function [15, pp. 2261. B ased on N observations the log-likelihood test leads to: 

(53) 

The problem of the estimation of the signal m will be treated next. The (MAP) estimate 
of the signal is defined by: 

(54) 
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By applying the Bayes theorem, we have: 

where 
K N4A312 n;“=, z, 

u(Z) = (5) J;;f(z) 
z 

By replacing Eq. (55) in Eq. (54), we obtain: 

Therefore, the MAP estimate of the signal m is given by: 

(55) 

(56) 

7s2MAP(z) = 11 15’) 
It can be seen that for A = 0 the MAP estimate of m reduces to the form of the 
ML-estimate of the constant signal. Indeed: 

7jZ,,.,Ap(z; il = 0) = 

5 EXPERIMENTAL RESULTS 

The proposed ML-estimator and the L-estimator designed in section 3 have been 
applied both to simulated ultrasound B-mode images as well as to real ultrasonic im- 
ages for speckle suppression. Simulated ultrasound B-mode images are used in order 
to evaluate the performance of various filters in speckle suppression and to select pa- 
rameters (such as filter length and thresholds involved) in the image processing task. 
Figure 5a and 6a are simulations of an homogeneous piece of tissue (4x4 cm) with a 
circular lesion in the middle. The lesion has a diameter of 2 cm. These ultrasound 
B-mode images have been produced and described by Verhoeven et al. [24]. The le- 
sion differs from the background in reflection strength (+3 dB). The background has 
a number density of scatterers of 5000/cm3. The lesion has a number density of scat- 
terers of either 50001 cm3 (figure 5a) or 500/cm3 (fig ure 6a). In the former case, there 
is no change in second order statistics between lesion and background. In the later 
case, the lesion is characterized by a sub-Rayleigh distribution. Both simulated image 
have dimensions 241x241 and resolution 6 bits/pixel. The grey level histograms of the 
pixels belonging to the lesion area and to the background in both images are plotted in 
figures 5b and 6b respectively. It can be seen that they are very similar to the Rayleigh 
pdf. The expected value, the variance, the SNR, i.e., the ratio of the expected value to 
the standard deviation and the parameter CJ under each hypothesis are listed in table 1. 

It has been noted that working with the correlation cell concept for intensity yields 
a very good approximation to the independence assumption [1,3]. Smith et al. argue 
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Z 

Fig. 5 (a) Simulation of an homogeneous piece of tissue with a circular lesion in the 
middle; lesion/background amplitude=+3 dB; Number density of scatterers 
in the background and the lesion 5000/cm3; (b) grey level histograms of the 
pixels belonging to the lesion and to the background areas; (c) thresholded 

original image. 

that the number of observations N must be chosen equal to the number of speckle 
correlation cells within the measurement area [3]. Since our purpose is to apply filters 
scanning the ultrasonic image in raster fashion such a recommendation cannot be used 
directly. We have investigated the effect of the lateral and axial correlation sizes in the 
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Fig. 6 (a) S im ul t a ion of an homogeneous piece of tissue with a circular lesion in the 
middle; lesion/background amplitude=+3 dB; Number density of scatterers 
in the background 5000/ cm3 and the lesion 500/cm3; (b) grey level histogram 
of the pixels belonging to the lesion and to the background areas; (c) thresh- 
olded original image. 

selection of filter window dimensions instead. Verhoeven et al. have found that the 
lateral and the axial correlation sizes for the ultrasound B-mode images used are of 
the order of 15 and 3 pixels respectively [24]. Th e a era1 correlation size refers to the 1 t 
vertical direction, whereas the axial correlation size refers to the horizontal one. We 
have been employed three different types of filter window: 
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Table 1. Mean, variance, SNR and 0 under each hypothesis for the ultrasound B-mode 
images shown in figures 5a and 6a 

Image Hypothesis Mean Variance ‘SNR u 
figure 5a Ho-background 14.38 58.86 1.875 11.4787 

H, -lesion 18.89 96.95 1.919 15.0706 
I  

figure 6a He-background 13.59 52.58 1.874 10.8448 
HI -lesion 18.69 95.15 1.916 14.914 

” ” 

(i) a square window having area approximately equal to that of the speckle 
correlation cell, e.g., a 7x7 filter window (neglect of different lateral and 
axial correlation sizes), 

(ii) a rectangular window having dimensions proportional to the lateral and 
axial correlation sizes, e.g., a 15x3 filter window, 

(iii) a rectangular window having dimensions inversely proportional to the lat- 
eral and axial correlation sizes, e.g., a 3x 15 filter window. 

The filter window dimensions correspond to the number of rows and columns. 

We have examined the success of the following strategies in lesion detectability: 

1. thresholding the original image without any processing 

2. filtering the original image by a median filter and thresholding the filtered image 

3. filtering the original image by an arithmetic mean filter and thresholding the 
filtered image 

4. filtering the original image by the ML-estimator of the constant signal and thresh- 
olding the filtered image 

5. filtering the original image by L-estimator and thresholding the filtered image. 

In the processing of ultrasound B-mode images, we have used all the types of windows 
outlined above. We have compared the performance of the above-described strategies 
using as figures of merit the area under the ROC in each case and the probability of 
detection PO for a threshold chosen so that the probability of false alarm PF to be 
21 10%. The area under the ROC corresponds to the fraction of the correct enforced 
answers when we detect the signal in two stimuli and know that the signal exists only 
in one of them [8] . As has been noted in [S], a comparison based on the probability 
of detection PO for a fked probability of false alarm PF holds only for this operating 
point and is sometimes an inadequate figure of merit, especially when ROC curves cross. 
Wagner recommends the area under the ROC as a more reliable figure of merit for a 
complete characterization of the whole ROC curve. Some experimental evaluations of 
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Table 2. Figures of merit for lesion detection on the simulated ultrasound 
B-mode image of figure 5a 

Method PF PD Threshold PD 

% % % 
Image 9.4638 23.7045 26 25.1064 
Thresholding 11.1526 26.486 25 

Median 9.1178 28.1779 22 30.2125 
7x7 11.7239 32.6070 21 
ar. mean 7.7749 27.2035 22 32.3480 

Median 8.3768 24.0322 24 25.776 
15x3 10.1573 27.3275 23 
ar. mean 8.6375 25.5381 23 26.89 
15x3 10.6066 29.4269 22 
ML-estimator 9.3194 28.2665 21 28.2665 
15x3 

L-estimator 8.2930 26.6454 21 28.8606 
15x3 10.4273 31.2517 20 

Median 8.7026 34.5203 20 34.8972 
3x15 12.3475 42.0852 19 

ar. mean 7.5761 37.8333 20 40.6348 
3x15 11.7098 46.6826 19 
ML-estimator 1 8.8842 1 41.6866 1 19 ] 41.6866 
3x15 
L-estimator 8.4326 40.5350 19 41.4017 
3x15 13.5695 50.3942 18 

1 
t 
! 
I 

Area under 
ROC 

0.628564 

0.693291 

0.717286 

0.722967 

0.724172 

0.673532 

0.686538 

0.692902 

0.696022 

0.728730 

0.767549 

0.773853 

0.774033 

these figures of merit for both images shown in figures 5a and 6a are given in tables 2 
and 3 respectively. We have also included in tables 2 and 3 a column having entries 
probabilities of detection & obtained by linear interpolation between the closest ex- 
perimental values to a reference probability of false alarm in all methods. In the case 
of figure 5a, a probability of false alarm close to 10% for the ML-estimator has been 
used as reference. In the case of figure 6a, a probability of false alarm close to 10% 
for the arithmetic mean filter has been used as reference. All comparisons between the 
probabilities of detection have been carried out by using &. 

It is seen that the selection of the filter window dimensions plays an important 
role in the results obtained. By selecting a square window that approximately has 
the same area with the speckle correlation cell, we have obtained almost identical 

266 



NONLINEAR DETECTION AND ESTIMATION IN ULTRASOUND 

Table 3. Figures of merit for lesion detection on the simulated ultrasound 
B-mode image of figure 6a 

Method PF PD Threshold PD Area under 

% % % ROC 
Image 8.7306 25.8216 25 27.81 0.650363 
Thresholding 10.5517 28.9042 24 

ar. mean 

results with a rectangular window with dimensions proportional to the lateral and 
axial correlation sizes. The best results are obtained for filter window dimensions being 
inversely proportional to the lateral and axial correlation sizes. In the later case, an 
increase of 10% in the area under the ROC as well as in the probability of detection has 
been obtained for all filtering methods. This is attributed to the fact that more speckle 
cells fall into the filter window, thus producing better noise suppression. However, it 
must be noted that using window sizes inversely proportional to the speckle correlation 
cell may enhance edge and image detail blurring in real ultrasonic images. 

It can be seen that the proposed nonlinear filters are relatively better than the me- 
dian and arithmetic mean with respect to the area under the ROC and the probability 
of detection for the same probability of false alarm. It is clear that the median filter 
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is inappropriate for speckle suppression because the area under its ROC is always less 
than that of the arithmetic mean, the ML-estimator and the L-estimator. In the se- 
quel, the performance of the proposed nonlinear filters is examined in comparison to the 
arithmetic mean. By inspecting tables 2 and 3, it can be verified that the L-estimator is 
superior than the ML-estimator and the arithmetic mean of the same dimensions with 
respect to the area under the ROC. It has been noticed that the area under the ROC 
of the L-estimator is greater than the corresponding one of the arithmetic mean for 
about 0.65%-1.3Yo. On the other hand, it is found that the ML-estimator is the most 
efficient method for the half number of tests performed with respect, to the probability 
of detection. The L-estimator gives the best results for the rest of them. An almost 
2% higher probability of detection is obtained by using the ML-estimator instead of 
the arithmetic mean. The corresponding highest probability of detection for the L- 
estimator is about 1.6yo higher than the one obtained by the arithmetic mea.n. Similar 
results have also been obtained when the amplitude of the reflections in the lesion arc 
weaker than the reflection strength in the background. 

The thresholded images (figures 5a and 6a) are shown in figures 5c and 6c respec- 
tively. Pixels classified as lesion are shown white. It can be clearly seen that the image 
thresholding itself is inadequate to detect correctly the lesion. Figures 7a,b show the 
output of the 15x3 ML-estimator applied to figure 5a and the result of thresholding 
respectively. In figures 8a,b it can also be seen the filtered image of figure 5a by the 
15x3 L-estimator and the result of thresholding. The same threshold 21 has been used 
in both cases. Figures 9a,b show the output of the 3x15 ML-estimator applied to fig- 
ure 6a and the result of thresholding respectively. The filtered image (figure 6a) by the 
3x 15 L-estimator and the result of thresholding are shown in figures lOa,b. A threshold 
equal to 17 has been used in both cases. It must be noted that similar results to those 
presented in figures 9 and 10 have also been obtained for the ultrasound B-mode image 
of figure 5a when the ML-estimator and the L-estimator of dimensions 3 x 15 have been 
employed. 

We have applied the proposed nonlinear filters to several real ultrasonic images. 
A representative real ultrasonic image of liver recorded using 3 MHz probe shown in 
figure lla. The output of the ML-estimator and L-estimator, all of dimensions 5x5, 
are shown in figures llb,c. It is seen that the proposed nonlinear filters suppress the 
speckle noise effectively. However, any spatial filtering without adjusting its smoothing 
performance at each point of the image according to the local image content results in 
edge blurring, Better edge preservation is attained by the so-called signal-adaptive fil- 
ters [15]. Based on the optimality of the proposed nonlinear filters studied in this paper: 
signal-adaptive ML-filters as well as signal adaptive L-filters can be designed to solve 
the above-mentioned problem. This topic is currently being investigated. Preliminary 
encouraging results have recently been reported [25]. 

6 CONCLUSIONS 

The detection and estimation of a lesion signal in ultrasound B-mode images has 
been treated thoroughly. Optimal decision rules have been derived both in the case 
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0 1 

Fig. 7 (a) Output of the 15x3 ML-estim 
thresholding. 

Fig. 8 (a) Output of the 15x3 L-estimal 
thresholding. 

tator 

;or a 

. applied to figure 5a; (b) Result of 

.pplied to figure 5a; (b) Result of 

of a constant signal as well as in the case of a random lesion signal. In the first case, 
the probabilities of false alarm and detection have been evaluated theoretically. The 
ML-estimator and the L-estimator for estimating a constant signal from speckle have 
been designed. The MAP estimate of the lesion signal has also been found under the 
assumption that the lesion signal is distributed according to the Maxwell distribution. 
The use of the ML-estimator and the L-estimator has been proposed for speckle sup- 
pression. It has been verified by simulations that both these filters are better than 
the arithmetic mean filter in lesion detection. The figures of merit used are the area 
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C 9 

Fig. 9 (a) Output of the 3x15 ML-estimator applied to figure 6a; (b) Result of 
thresholding. 

Fig. 10 (a) Output of the 3x15 L-estimator applied to figure 6a; (b) Result of 
thresholding. 

under the ROC and the probability of detection for fixed probability of false alarm. 
The performance of the proposed filters can be further enhanced by using a measure 
of local signal activity that will enable space-varying processing and thus will take 
into account the local image content. Signal-adaptivity can be combined with region 
segmentation, so that the filter can perform differently in the various image regions. 
Neural networks can be used for ultrasonic region segmentation. This approach which 
leads to a signal-adaptive ML-estimator or L-estimator currently is a subject of ongoing 
research. 
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(a t) Real ultrasound image of liver recorded using 3 MHz probe; 
of ’ the 5x5 ML-estimator; (c) Output of the 5x5 L-estimator. 

(b) output 
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Appendix A 

Proof of Lemma 

The joint pdf of z; is given by: 

2 

(A-1) 

where Z = (Zi,&, . . (2~)~. Let y  = (yiryzr.. ,y,v)r. By making the following 
random variable transformation: 

w = Yl = ZTZ 

Yz = il 

(A-2) 

yN = ZN-1 

we obtain: 

fy(Y) = L!$l exp[-&] (A - 3) 

where 3 is the region of integration defined by the set of the following N- 1 inequalities: 

o < YN < @ - (Y;” +. ‘. + Y;-,) 

o<yN-, < j/w-(y,2+-+y$-2) 

(A-5) 

Carrying out the integration over J (18) results. 0 

Appendix B 

Proof of Lemma 3 

It can be easily proven by using Eq. (18) that the pdf of the T.v. I defined by: 

P - 1) 
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where z; are i.i.d. Rayleigh random variables having parameter n = TM& is given 
by: 

2( &)NX2N-’ 
fi(W = (N _ l)! exP[-$J? (B - 2) 

Therefore: 

E[TiL] = E[r] = lrn Xfz(X)dX = r(N)M (B-3) 

var[h] = E[m*] - E’[&] = (1 - T’(N))M’ 

E[(& - M)‘] = E[m2] - 2ME[h] + M2 

= 2 (1 - +V))M’ 

0 

(B-4) 

(B-5) 

Proof of Lemma 4 

The mean-squared value of the i-th order statistic of a set of N observations is given 
by [23]: 

N! 
E[nEd = (; - l)! (jJr - ;)! o J 

O3 cc2P(x) [l - F(r)]N-i f(r) da: P - 6) 

where F(z) is the Rayleigh cumulative density function (cdf). By making the substi- 
tution E = exp(-s), Eq. (43) results. The expected value of the product of the i-th 
and j-th order statistics, where i < j, is given by [23]: 

where 

E[n(i)n(j)l = irn dx Jrm dy XY fij(x, Y) (B - 7) 

N! 
fiAx,Y) = ci _ l)! cj _ i _ l)! (N _ j)! F’-‘(X) [F(Y) - F(~:)Y+’ 

x [l - F(y)jN-’ f(x)f(y) 1 I i < J’ L N (B-8) 

By making the following change of variables o = exp( -&) and p = exp(-&), Eq. 
(44) results. 0 
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