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Multichannel L Filters  Based 
on Marginal Data Ordering 

Constantine Kotropoulos, Member, IEEE, and Ioannis Pitas, Senior Member, IEEE 

Absfruct- The extension of single-channel nonlinear filters 
whose output is a linear combination of the order statistics 
of the input samples to the multichannel case is presented in 
this paper. The subordering principle of marginal ordering (41- 
ordering) is  used for multivariate data ordering. Assuming a 
multichannel signal corrupted by additive white multivariate 
noise  whose components are generally correlated, the coefficients 
of the multichannel L filter  based on marginal ordering are 
chosen to minimize the output mean-squared-error (MSE) ei- 
ther subject to the constraints of unbiased or location-invariant 
estimation or without imposing any constraint. Both the  case 
of a constant multichannel  signal corrupted by additive white 
multivariate noise as well as the case of a nonconstant signal 
is considered. In order to  test the performance of the designed 
multichannel  marginal L filters, long-tailed multivariate dis- 
tributions are required. The derivation and design of such a 
distribution, namely, the Laplacian (biexponential) distribution 
that belongs to Morgenstem’s family in the 2-D case is discussed. 
It is shown by simulations that the proposed multichannel L 
filters perform  better  than other multichannel nonlinear filters 
such as the vector median, the marginal a-trimmed mean, the 
marginal median, the multichannel modified  trimmed mean, the 
multichannel double-window trimmed mean, and the  rnultivari- 
ate ranked-order estimator RE proposed elsewhere as well as 
their single-channel counterparts. 

I. INTRODUCTION 

M ULTICHANNEL 1-D and 2-D signals appear fre- 
quently in practice, for example, in the cases involving 

multiple  sources  and  receivers, as in geophysics,  underwater 
acoustics,  multiple-antenna  transmission systems,  and in the 
processing of color  images  and sequences of images. A 
multichannel  signal is defined as a  vector of components called 
channels,  which  are  generally  correlated and characterized 
by their joint probability  density function  (pdf). If each 
signal component is processed  separately,  this  correlation 
is not utilized.  Although  transformation  techniques  such 
as  the  Karhunen-Loeve  transformation  can be used first 
to decorrelate  the  signal  components in order to apply 
single-channel  signal  processing  techniques  afterwards:  a 
more natural way is to  apply  multichannel  signal  processing 
techniques. 

A class of nonlinear  filters  that  has  found  extensive  appli- 
cations in digital  signal  and image processing are the L filters 
(sometimes  also called  order  statistic filters) whose  output is 
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defined as a  linear  combination of the  order  statistics of the 
input  sequence [l], [ 2 ] .  The design of an  optimal L filter for 
estimating a constant  signal  corrupted by additive  white noise 
has originally  been  proposed in [l] and  has been  extended to 
the  restoration of a  Markov  signal in additive  white noise [3], 
[4] as  well  as in the case of dependent  noise and arbitrary 
waveforms [SI. 

Recently,  increasing  attention  has  been  given  to  nonlinear 
processing of vector-valued  signals. Vector median  operations 
have been derived from multidimensional  exponential  pdfs 
using  the  maximum  likelihood  estimate  approach in [ 6 ] .  The 
use  of  ordering of multivariate data  in multichannel  signal 
processing  has  been  described in (71. Various multichannel es- 
timators  such  as  the  marginal  median. the marginal a-trimmed 
mean,  and  modified  trimmed  mean filters have been proposed 
in [7] and [8]. The ordering of multivariate data according  to 
their  respective  distance from the  population  centroid has led 
to  ranked-order-type  estimators  for  multivariate image fields 
in [9]. Another class of multichannel L filters based on radial 
medians  has  been  proposed in [IO]. 

The main contribution of the  paper is the  design of mul- 
tichannel L filters based on marginal  ordering (Ad ordering) 
using  the  mean-squared-error (MSE) as fidelity criterion. M 
ordering implies  independent data ordering in each  channel. 
We assume that a  multichannel  signal is  corrupted by additive 
white  multivariate  noise,  which  generally  exhibits  correlation 
between  different channels. The unconstrained  minimization 
of the MSE is treated first. Structural  constraints  such  as 
unbiasedness  and  location  invariance  are also incorporated in 
the  minimization  procedure. The unconstrained  minimization 
is shown that it leads  to a  global  minimum. The design 
procedure  involves  moments of the order statistics  of input 
samples derived  from the same  channel  as well as  from 
different  channels. The theoretical framework required for the 
computation of the  above-mentioned  moments is outlined, and 
a  discrete  algorithm for their  computation is derived  based  on 
vector  quantization. In order  to test the  performance of the 
designed  multichannel  marginal L filters,  long-tailed  multi- 
variate  distributions  are  required. The derivation and design 
of such  a  distribution,  namely,  the Laplacian (biexponential) 
distribution  that  belongs  to  Morgenstern’s family in the  two- 
channel  case is discussed. The noise-reduction  capability of 
the  designed  multichannel  nonlinear filters is examined  for 
bivariate  distributions  ranging from the  short-tailed  to  the 
long-tailed  ones. The following  bivariate  pdfs  are  considered: 
uniform, joint Gaussian,  contaminated  Gaussian, and Lapla- 
cian  distributions.  It is shown by simulations that the  proposed 
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multichannel L filters perform better  than other multichannel 
nonlinear  filters  such as the vector median  [6],  the  marginal 
cu-trimmed mean  [7],  [8],  the  marginal  median  [7],  [8],  the 
multichannel modified trimmed  mean  [8] and the multichannel 
double-window trimmed  mean  [8] the  multivariate  ranked- 
order estimator RE [9],  and their single-channel  counterparts 
[I]. 

The work  presented in this  paper extends previously  re- 
ported  work [6]-[8]. We have tried to make the paper suf- 
ficiently self-contained to  be  read without  extensive use of 
references. The outline  of  the  paper is as  follows. After a short 
revision  of  the  basic concepts of multivariate data ordering, 
we  proceed to the  design of multichannel  marginal L filters in 
Section 11. The calculation of the moments of the  multivariate 
order  statistics is  examined in Section 111. The derivation  of 
the  bivariate  Laplacian  distribution is treated in Section IV. 
Simulation examples are included in Section V.  Conclusions 
are drawn in Section VI. 

11. MULTICHANNEL L FILTERS BASED ON M ORDERING 

Univariate  ordering  operations have proven  to be useful in 
robust  estimation  techniques because if outliers exist  in a  set 
of input samples, they will generally be located in the extreme 
sorted data [ l l ] ,  [12].  Therefore, the outliers can  be isolated by 
sorting  the  input data and can  be deemphasized or discarded 
before  the  desired estimate  is  computed by weighting the order 
statistics  appropriately. 

The notion of data  ordering cannot  be  extended in a  straight- 
forward  manner  from the  univariate case to  the  multivariate 
one.  There are  several ways to order multivariate  data,  but 
none of them is unambiguous  nor  universally accepted, Specif- 
ically,  the following  four so-called  subordering  principles are 
discussed in [14]:  marginal  ordering ( M  ordering), partial 
ordering, conditional  ordering, and reduced ordering.  In the 
sequel,  we  shall  confine  ourselves to the  definition  of M 
ordering. For more details,  the  interested  reader can refer to 
the  statistical  literature  [14],  [15] or [7]-[9]. 

Let xl. . . . , x , ~  be a  random sample of N observations of a 
p-dimensional random  variable X. Each vector-valued  obser- 
vation xi = (z;l ,zi~,  . . . . xip)* belongs  to a p-dimensional 
space denoted by RP, 

Dejnirion I :  The  M-ordering  scheme orders each of the 
vector components independently,  yielding 

ZJ(1) 5 XJ(2) I " '  5 X C j ( N )  j = 1, .  . . : P  (1) 

Le., the  vector-valued  observations  are ordered along each of 
the  p  dimensions (or channels)  independently. 
z1(1). Q ( ~ ) > .  . . zP(l) are  the  minimal elements  in  each 

channel. zl(.v), z 2 ( ~ ) .  . . . , z p ( . ~ )  are  the  maximal  elements 
in each channel. By definition,  the (i1: 2 2 , .  . . ,ip)-marginal 
order statistic is the following (p x 1) vector: x ( ~ ~ , ~ ~ , . . . , ~ ~ )  = 
( z1 ( i l ) ,~2 ( i2 ) : .  . . , x p ( i 4 ) ) *  where 1 5 ij 5 N ;  j = 1:. . . !  
p .  The probability distnbutions of the  p-dimensional  marginal 
order statistics  have been derived in [7] and [8]. Having de- 
scribed  the M-ordering principle, we proceed to the  definition 
and design  of  multichannel L filters  based  on  the  above- 
mentioned  subordering  principle. 

Dejinirion 2: The  output of a  p-channel  marginal L filter 
of  length N operating on a  sequence  of  p-dimensional  vectors 
{ x ( k ) }  for N odd  is given by 

P 

y(k)kfT[x(k)] = CA,X?(k) (2) 
j=1 

where Aj are  appropriate (p x N )  coefficient  matrices, and 
xj(k) = ( ~ ~ ( ~ ) ( k ) ,  . . . , ~ ~ ( , ~ ~ ) ( k ) ) ~  are the ( N  x 1) vectors of 
the order statistics  along each  channel. 

It can easily be proven that the  Definition 2 is  fully 
equivalent  to  the  alternative  definition  given in [7]. 

Let us suppose  that  the  observed  p-dimensional  signal 
{x(k)} can  be  expressed  as  the  sum of a known p-dimensional 
signal s ( k )  and a noise vector  sequence {n(k)} of zero- 
mean  vector  having  the same dimensionality, Le., x(k) = 
s ( k )  + n(k) .  The noise vector n(k) = ( n l ( k ) ,  . . . , 7 ~ ~ ( l C ) ) ~  
is a  p-dimensional  vector of random variables  characterized 
by the joint pdf of its  components, which are assumed  to  be 
correlated in the  general case. In addition,  we assume that 
the noise vectors at different  time  instants  are  independent 
identically  distributed  (i.i.d.) and that at  every time  instant, 
the  signal s ( k )  and  the noise vector n (k )  are uncorrelated. 

We shall  design  the  p-channel  marginal L filter that  operates 
on  the  p-dimensional  observed  signal { x ( k ) }  and  is the 
optimal  estimator  of s (k)  by using  the MSE between s ( k )  
and  the  output of the p-channel marginal L filter as fidelity 
criterion.  Strictly  speaking, we define as  MSE the  trace of 
the  mean-squared-error  matrix. The case p = 2 is treated 
first for notation  simplicity, and generalizations are deduced 
in the  sequel. For p = 2, the MSE E = E[(y(k) - ~ ( k ) ) ~  
( y ( k )  - s ( k ) ) ]  is given by 

- 2sT(k )E  [kAiX;(k)] i=l + s* (k ) s (k ) .  (3) 

In the  following,  the time index k will be suppressed  without 
any lack of  generality. The (2  x N )  matrices Ai can  be 
partitioned  as follows: 

where a:, 1 = 1 , 2  are (1 x N )  row  vectors  corresponding 
to the rows of matrix A;. Let Rji denote the  correlation 
matrix of the  ordered input  samples in channels j and i ,  i.e., 
Rji = E [XjXT]. Since Rii, i = 1 , 2  consist of moments 
of the  order  statistics from a univariate  population, they will 
be called  autocorrelation  matrices of the order statistics. The 
remaining  matrices Rlz and R21 are related by transposition, 
Le., R12 = RTl. Therefore, we are dealing  only  with R12. 

Its elements are  product moments of the order statistics from 
a  bivariate  population. In addition, let p ., j = 1 . 2  denote the 
mean  vector of the order statistics in channel j ,  i.e. 

-9 
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By using the partitioning  (4) and the  definition of Rji, the first 
term of the right-hand side of (3) is rewritten  as 

r 2  1 

where t r [  ] stands for the  trace of the  bracketed matrix. After 
some algebraic  manipulation, (6) can  be rewritten in the form: 

where R 2  is the  following  matrix: 

By substituting (4)-(8) into (3), we  obtain 

In the  general p-dimensional  case, the MSE is given by 

In the sequel,  we shall treat first the  unconstrained  minimiza- 
tion  of  the MSE,  and then,  we  shall  impose  constraints  on  the 
output of the  multichannel  marginal L filter. 

A. Unconstrained Solution 

Let us consider  the case p = 2. Minimizing (9) over a]<, 
i = 1 .2  is a  quadratic  optimization  problem  that  has  a  unique 
solution,  provided that the  symmetric  matrix R2 is positive 
definite. The  components of the  vectors of the  order  statistics 
along  each  channel xj, j = 1.2 are  linearly  independent 
variables  with  probability 1 (see pp. 179-180 of [16]) due to 
the independence of the  observations at different  time  instants. 
Thus, the  diagonal  submatrices of Rz, R,,, j = 1; 2, are 
positive  definite with probability 1. The 2N random  variables 
that  form the  vector of the  order  statistics from both  channels 
(XTx;)' are linearly dependent in the  general case,  due to 
the  correlation  that  exists  between  the  ordered samples that 
correspond to the same time  instant.  Consequently, Rz *is 
positive  semi-definite in general. We shall  assume  that RZ 
is not singular, i.e., that Rz is indeed  positive  definite. Such 
an assumption  has been verified in all simulations  performed 
in Section V. 

Equating the  derivatives of ir with respect to a,; with zero, 
Le., e = 0, the  following two sets of equations  result: 

which yield the optimal two-channel  marginal L filter coeffi- 
cients,  provided  that all inverse  matrices  exist [17], [18]: 

s2 
a:,) = Gail) 

(13) 
where E = Rzz - RT2R;:R12 and F = R;;R12. The 
resulting  minimum MSE (MMSE) is given by cmin = (1 - 
A ) s T s .  where A = k;RT1&, The  fact that E is always 
nonnegative  implies that €,in 2 0. Therefore, 0 5 h 5 1. 

In the  general p-dimensional  case, the  minimization of the 
MSE (10) results in the following p sets of equations: 

which yield the  optimal p-channel marginal L filter Coeffi- 
cients: 

The MMSE associated with the  optimal  coefficients (15) is 
€,,in = (1 - f i T R - l p  ) s T s .  In (13) or (15), the  optimal co- 
efficients for the unconstrained  multichannel  marginal L filter 
depend  on  the knowledge of the  signal s (to be estimated). In 
addition,  the  distributional  model  (i.e.,  the  marginal and  joint 
probabilitylcumulative  density functions)  of the components of 
the  input vecJor-valued signal x ( k )  must  be known in order 
to  calculate Rp and ii , as is analyzed in Sections 111-B and 
C. In many practical -;plications, the  signal s to be estimated 
is  unknown, unless the detection of a  known  signal in noise 
is investigated,  Furthermore, in general, the  distributional 
model of input  vector  data is unknown.  Even in the case 

-P p -P 
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that the joint probability  density  function of noise  samples 
fn, ,..., n , (n l r . .  . . npj is  known, the joint probability  density 
function of the  input  vector-valued  observations depends  ex- 

sl.. . . ~ xy - s p ) .  Efficient  procedures for estimating s and 
for  the  calculation of R, and Ep based on  estimates of the 
marginal and  joint probability  density  function of the  input 
vector data are developed in Section 11-D. 

plicitly  on s since fz ,,.... r , (Zlr  ' '  ' : .p) = fn, ,..., n,(x1 - 

B. Unbiased Solution 

In the  univariate  case, L filters  are  designed by imposing 
local  structural  constraints on the  output  of  the L filter. Two 
types of constraints  have  been  incorporated in the  design 
of single-channel L filters [ l] ,  [4],  [5]:  unbiasedness and 
location-invariance. The unbiasedness  constraint is examined 
in this  section and the  location-invariance will be  considered 
in Section 2-C. 

Definition 3: A multichannel  marginal L filter is said to  be 
an  unbiased  multichannel  estimator of location, if E[y(kj] = s, 
that  is,  the  coefficients of the  multichannel  marginal L filter 
should  satisfy  the set of equations 

a&$ = 3i i = 1:. . . , p .  (16) 

The case p = 2 is  considered first. Under  the set of 
constraints (16), the MSE given by (9) is rewritten as 

Eunb = a't;)iiza(l) + aT,)Rza(2) - sTs. (17) 

The minimization of (17)  subject  to  (16) can  be solved by 
using  Lagrange  multipliers. The  Lagrangian  function is given 
by 

Differentiating A(ali, X j ;  j .  i = I, 2) with  respect  to a?;. j :  i = 
1 , 2  and equating  the  result  with zero yields  the following  two 
sets of equations in terms  of  the Lagrange multipliers X 1 ,  X2: 

The Lagrange  multipliers XI, Xz can be found by solving 
(19) with  respect to a(l) and a(2) and by substituting these 
vectors into (16). Provided that R12 and E are  nonsingular, the 
Lagrange  multipliers are given by XI = and X2 = EX1. 
Then,  the optimal coefficients of the  unbiased  two-channel 
marginal L filter can  be expressed as 

The MMSE associated  with  the  optimal  coefficients (20) is 
(E,nb)& = 9 , ' s .  If it, is positive  definite,  then a > 0.  
It has also  been  shown in Section 11-A that A 5 1. Therefore, 

the MMSE associated  with  the  optimal  unbiased  two-channel 
marginal L filter is always  greater than  the MMSE produced 
by the  optimal  unconstrained  two-channel  marginal L filter. 

It can  be easily shown that the optimal coefficients of the 
unbiased  p-channel  marginal L filter are  given by 

and the MMSE associated  with  the  optimal  coefficients (21) is 

The.need  for an estimate S ( k )  of s as  well  as  for the  design 
of  unbiased  multichannel L filters  based on estimates of 
the  marginal and  joint probability  density  functions of input 
vector-valued  observations is recognized in this case as  well. 

C. Location-Invariant Solution 

Definition 4: A multichannel  marginal L filter is said to 
be location  invariant if its  output is  able to  track  small 
perturbations of its input, Le., if x'(k)  = x(kj + b, then 

y ' ( k )  = T[x'(k)] = y(k) + b (23) 

where y(k) = T[x(k)]. 
Such an L filter is also called smoothing L filter because 

it  preserves zero frequency or dc signals [5].  The definition 
of  a  location-invariant  multichannel  marginal L filter (23) 
yields  the  following  set of constraints  imposed  on  the  filter 
coefficients: 

erajj = 1 V j ,  j = 1,. . . . p  
eTaji = 0 Vi. i # j :  j = I ,  . . .  . p  (24) 

where e denotes the ( N  x 1) unitary  vector, Le., e = (1,1, 
, . , .1)=. By incorporating (24) into (9), we  obtain q o c  = a;, 
R2a(l) + a$)Rza(z), where 

with Rj; = E[fijn'], j :  i = 1,2 ,  and i i l  = 
(nl(l) ,  . . . nl(.y))T, I = 1 , 2 .  The minimization of €Ioc 
subject to (24) is formulated  as  minimization of the  following 
Lagrangian  function: 

A(aji. X j ; ; j ,  i = 1.2) 

= aT,)Rzacl) + aT,)Rzqz) 
2 I  2 

where Xji,j, i = 1, and 2 are Lagrange  multipliers.  Differen- 
tiating A(aji, Xji;j, i = 1.2) with  respect to aj; and  equating 
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the  result  with  zero  yields  the  following two sets of equations 
in terms  of Xji: 

The Lagrange  multipliers  can be found by solving (27) with 
respect  to ai,) and ai,) and substituting  the  results  into (24). 
Let us define [17], [18] 

P I 1  = ( R l l  - R12R;;R:*)-1, 

P I 2  = - R m R ; & - 1  

Pz2 = ( R 2 2  - R:2R;;RL12)-1 (28)  
PZl = Pl,, r 

and 

where det() st;tnds for the dete_rmi?ant pf the  matrix  inside 
parentheses. If R12 and (RZ2 - RT2R;:R12) are nonsingular, 
the  Lagrange  multipliers Ajij, i = 1,, and 2 are given by 

By using (27)-(30), the  optimal  coefficients of the  location- 
invariant  two-channel  marginal L filter are 

The  MMSE associated with the  optimal coefficients  (31) is 

In the  general  p-dimensional case, the  Lagrangian  function 
e T P 2 2 e + e T P l , e  

(E1oc)min = V 

to be minimized  has  the following  form: 

A(a,i. Xj, ;  j ,  i = 1.. . . . p )  
P 

= a$&zv,)  
i = l  

p {  3=1 i=li#j } P 

+ A J J ( l  - eTajj) - XjieraJl . (32) 

Differentiating A(a,i, Xji: j .  i = 1 , .  . . . p )  with  respect  to a,, 
and  equating  the  partial  derivatives  with  zero, p independent 

sets of equations  result, i.e. 

which  give  the optimal coefficients ati, in terms of the 
Lagrange  multipliers XI,, . . . . Xpi .  Let us assume that a;' 
exists  and can be decomposed  as  follows: 

(34) 

lPpl . "  Pp,J 

where Pi,, i . j  = 1 , .  . . . p  are ( N  x N )  square matrices. 
The Lagrange  multipliers Al;... . , X,i are  obtained by solving 
the  following set of equations: 

or equivalently Xj, = 25'hr(Gp), where G p  = {G,j};Z,j = 
1, . . , . p is the left-hand side ( p  x p )  square matrix of (35), and 
cij(Gp) stands for the cofactor of the ij element of G,. In the 
following, the  subscript p will be dropped  out  for  notational 
simplicity. By substituting  into (33), the  optimal  coefficients of 
the  location-invariant  p-channel  marginal L filter are obtained, 
i.e. 

( G P )  

and  the  associated MMSE  is given by 

It is known that Gj,ci,(G) = Sj;det(G) [181, where h,, 
denotes  Kronecker's delta. Therefore 

It is  seen that the  optimal  coefficients (3 1) or  (36) are  indepen- 
dent of the two-channel  signal  to be estimated.  Unfortunately, 
the  location-invariant  two-channel  marginal L filter leads  only 
to  a  slightly  higher  noise  suppression  than its single-channel 
counterparts,  as will be seen later on. 
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D. Practical Considerations 

As can be seen in the  preceding  analysis,  the following 
difficulties are met in the  design  of  the  unconstrained and 
the  unbiased  multichannel L filters: i) The marginal L filter 
coefficients depend explicitly on the  signal s (to  be  estimated). 
ii) The marginal and  joint probability  density functions of the 
input  vector-valued  observations  must be  known in order  to 
calculate R, and jl . In the  following,  the  estimation of s is 
treated  both for a  multichannel constant signal corrupted by 
additive  white  multivariate  noise  as well as  for a nonconstant 
one.  The design of unconstrained and unbiased  multichannel 
marginal L filters based on estimates of the  marginal and  joint 
probability  density functions of the components of x ( k )  is 
considered  as  well. 

Let us consider first the case of a constant signal s. We 
restrict  the  discussion in 1-D signals  without  any loss of 
generality. In this  case, an initial estimate O(k) for s could 
be the  arithmetic  mean  of  the  past L filter  outputs y ( l ) ,  
1 = k - 1, k - 2 , .  . ., Le., s ( k )  = y ( l ) ,  where 
N e  is chosen to be sufficiently  large. The initial estimate 8 ( k )  
can be used in the  place of s in (13)  and (15) or (20) and (21) 
to determine  the  multichannel  marginal L filter coefficients at 
each time  instant k ,  provided that R;' and ,ii have already 
been  computed  based on the knowledge of c: distributional 
model of input  vector-valued  observations. For IC < N e ,  
the marginal  median can  be used to initialize  filtering. An 
even  better  estimate 8 ( k )  can  be obtained by employing the 
arithmetic  mean or the  marginal  median either of the Ne past 
input vector-valued  observations (i.e., noisy  observations) or 
of window  size N c  that is centered on the sample x ( k ) .  

A segmentation  of  a  multichannel  nonconstant  signal (e.g., 
a  multichannel edge)  to homogeneous  regions  where  the  signal 
s ( k )  is locally  constant (Le., edges  do not occur) and to transi- 
tion regions  where  an edge occurs in a  certain  input channel by 
using an  edge detection  algorithm (e.g., the one described in 
[19]) is proposed. We may  then use one of the  previously 
described  techniques to estimate  the  constant  multichannel 
signal  within each homogeneous  region by restricting  either 
the  past L filter outputs or the past noisy  input  vector-valued 
observations  to  lie  within  the homogeneous region. 

Next, the  design of multichannel  marginal L filters  based on 
estimates of the  marginal and  joint pdf of input  vector-valued 
observations is considered. Both in the  case of a  multichannel 
constant  signal  corrupted by additive  white  multivariate noise 
as  well as within  the  homogeneous  regions in the case of 
a  noisy  nonconstant  multichannel  signal,  the  proposed  filters 
will operate on identically  distributed  observations.  Therefore, 
we  can  estimate  the  marginal  statistics  of  input  vector data 
from the  empiric  pdf,  i.e., by uniformly quantizing the  range 
of input  observations in each  channel to  a  number, say M,  
of discrete  values and constructing  their  histogram. Moreover, 
the  input joint statistics  can be estimated from the  empiric joint 
pdf,  i.e., by exploiting  the  uniform  quantization of any  couple 
of input  vector  data  components to a  set of pairs of discrete 
values  and by estimating their cooccurrence matrix. As can  be 
seen in Section V, such  an  estimation  procedure is found  to 
be very successful.  Consequently, for homogeneous  regions, 

-P 

we  may  proceed to the  calculation of R, and fi  as  described 
in Section 111-B by using  the formulae for  i.i.d.  input  variates. 

It remains  to  be  examined what actions  are taken in the 
transition  regions,  where  an edge occurs in a  certain channel. 
In the  transition  regions,  input  vector-valued  observations 
may be considered  to  a first approximation  as  independent 
nonidentically  distributed random variables. Moreover, our 
problem  formulation leads  to the  design of a filter bank 
where  several  different  filters  should be designed  to  cope 
with each instance of the  running  filter  window. However, 
the formulae  for calculating Rp and b for independent  i.i.d. 
input  variates do not  hold anymorF'in the  design  of  the 
(unconstrainedhnbiased) multichannel  signals  that  fall into the 
transition  region. Even if a  least  squares  criterion  were  invoked 
in order  to reduce  the number of multichannel L filters,  as 
is proposed in the  single  channel case [ 5 ] ,  the framework 
for calculating R, and jl for independent  nonidentically 
distributed  input  variates ;'very complicated. In this paper, 
we  shall  confine  ourselves  only  to  a brief discussion on the 
the  theoretical  treatment of multichannel  nonconstant  signals, 
and we  shall employ the  marginal  median for filtering the  input 
vector  data that  belong  to  transition  regions. 

-.? 

111. COMPUTATION OF THE MOMENTS OF 
THE MULTIVARIATE-ORDER STATISTTCS 

In the  previous  section,  it  has  been shown that  the  design 
of the optimal multichannel  marginal L filters depends on  the 
calculation of the composite matrix Rp and the composite vec- 
tor ,ii . The diagonal  submatrices of R p  R,, j = 1. . . . , p 
con& of moments of the order statistics from a  univariate 
population. The off-diagonal  submatrices  of R,, R,,, j = 
1: . . . ~ p :  i # j consist of moments of the  order  statistics from 
a  bivariate  population. The moments  of  the  order  statistics 
are referred  to  input  signal  vector components  except in the 
location-invariant  solution. In that case,  the moments of the 
order statistics of input noise vector components are needed. 
The vector p is necessary  only in the  unconstrained and 
unbiased  solution.  Its  elements E,, j = 1,. . . , p  consist of 
first-order  moments of the  order  statistics from a  univariate 
population. 

A discrete  calculation of the  correlation  matrices and mean 
vectors is described in this  section. Such a discrete  calculation 
is needed in order  to  avoid  the extensive numerical  integration 
involved in the  definition of the moments of the order statistics 
[13]. For i.i.d.  variates whose distributional  model is known, 
the  calculation  can be based  on  the  optimal  quantization of 
each input  signal  (noise)  vector component  in the  mean- 
squared-error  sense. Thus, in the  univariate case, a  discrete 
calculation of the moments of the  order  statistics can  be  de- 
vised by mapping each  component of the  input  vector,  which is 
a continuous random  variable, into a discrete  random  variable 
by employing  the optimum Lloyd-Max quantizer [20], [21]. 
Similarly, a  discrete  calculation of the moments of the order 
statistics in the  bivariate case is also needed. To do so, the 
2-D vectors  of continuous random  variables for all  possible 
painvise combinations  between  different channels should be 
mapped  into 2-D vectors of discrete  random  variables by 

-P 
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employing  vector  quantization. In such an approach,  numerical 
integration is required  only in the design of Lloyd-Max quan- 
tizer, as will be seen  later on. For independent  nonidentically 
distributed  variates  as  well as when  the  distributional  model 
of  the  input  vector-valued  observations is  unknown, we  may 
relax  the  requirement for optimal  quantization by confining 
ourselves  to  uniformly quantizing  each input  signal  vector 
component. Two-dimensional  vector  quantization is treated 
first. Next,  we  proceed to the calculation of correlation  ma- 
trices  and  mean  vectors for i.i.d.  input  observations.  However. 
for the  sake of completeness,  the  calculation of correlation 
matrices  and  mean  vectors  for  independent  nonidentically dis- 
tributed  variates  using  inclusion-exclusion  identities is briefly 
discussed. 

A. 2 - 0  Vector Quantization 

Let us assume the following 2-D vector x = ( ~ 1 . ~ 2 ) ~  of 
continuous  random  variables z1 and x 2  without  any loss of 
generality.  Let Tl = { t l k !  k = 1.. , . ~ Ml + 1) and T2 = 
{ t z k ,  k = 1, . . . , Mz + l} be the sets of increasing  decision 
levels along each dimension  where til and ti , .bI,+l, a = 1 , 2  
denote  the  minimum and  maximum  values of z;, respectively. 

Definition 5: A 2-D ( M I ,  Mz)-level vector quantizer (VQ) 
maps a  vector x = (x l7  of continuous random  variables 
el and x2 into a  vector xd =   xi,^;)^ of discrete random 
variables e;, x; such that the  pair (xi, zz) takes  values from 
the  Cartesian  product U = U1 x U z  = { I J ~ ~ ,  k = 1.. , . , AIl} x 
{ u ~ l ; ,  IC = 1,.  . . . M z }  by using  the rule 

xd = Q(x)  
= ( V l r n !  V Z n )  

T 

if ( t ~ . ~  5x1 <tl.m+l and t z , n  5 x 2  < t2,7tt1) (39) 

where 1 5 m 5 M 1  and 1 5 n 5 AI2, 
The optimum  quantizer minimizes  the MSE  for given  num- 

bers of quantization  levels All ! M z .  Let fZ1 + 2  ( 5 1 .  z2) be the 
joint pdf of the  continuous random variables x1:x2. It is 
desired to find the  decision  levels t l ,m! t 2 , n  and the  discrete 
values ~ 1 . ~ .  ~ 2 , ~  for an (MI:  h4z)-level VQ such  that  the MSE 

is minimized. 

Lemma I: If tl,,\fl+l = - t l , l  = +x and t2,.2d2+1 = 
-t2.1 = +x, then  the  optimal  2-D ( M I .  hlz)-level VQ is 
equivalent to two  marginal Lloyd-Max quantizers  operating 
on  each dimension  independently and designed by using 
the  marginal  pdfs, that is,  the  decision  levels tl,m, m = 
2 , .  . . .A41 + 1 and t 2 , n ,  n = 2 , .  . . . M 2  + 1 are  given, 
respectively, by 

and the  optimal  discrete  values ~ t l , ~ ,  7n = 1.. . . , M1 and 
~ 2 , ~ .  n = 1.. . , ~ M2 are  obtained,  respectively, as follows: 

Therefore, the 2-D  vector  quantization  degenerates  into two 
independent  quantizations  along  each  dimension and  can be 
done  at no  additional cost since  1-D  quantization is necessary 
to the  calculation of the moments of the order statistics in 
the  univariate case.  In other  words,  there  exists  a unified 
framework  for the  discrete  calculation  of  the  moments of the 
order  statistics in both  the  univariate and bivariate case. rn- 
D vector quantization is not  treated  because  moments of the 
order statistics from a  bivariate  population are required  only 
in the  design of the multichannel  marginal L filters  described 
in Section 11. 

B. Calculation of Correlation Matrices and Mean 
Vectors for i.i.d. Input  Observations 

This section is devoted to the  calculation  of  the  moments 
of  the  order  statistics of the  signal  vector  components for  i.i.d. 
input  observations. The  same procedure can also be applied 
to  the  calculation  of  the moments of the order statistics of the 
noise  vector components, if the  signal  components  are  replaced 
by the  noise components. 

Let us assume  that zJ,  j = 1,. . . , p  has  been  quantized 
to ;ti( discrete  values, Le., the discrete random  variable 2; E 

of Rp. say RJi, j . i  = 1, .  . . . p  are given by 
I;. - { , . , ~ The  elements of any submatrix ~- L ' ~ , ~ .  

.\I h f  

(43) 
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where  we  have (44), which  appears at the  bottom of the 
previous  page. For i = j ,  F(T,s i j , j ) (v j ,m; wj,*) denotes  the 
value at ( u ~ , ~ .  ~ j , ~ )  of  the cumulative distribution  function 
(cdf) of the order  statistics from a univariate population, and 
the  well-known formulae  [13], [ l ]  can  be applied: 

F(r,s:j , j)(uj ,m: uj.n) 

if V L ' ~ . ~  > ' ~ j , ~ .  (46) 

The values of F., ( ~ j , , )  at uj,m are calculated in terms of the 
probabilities of discrete events {x; = q q } ,  i.e. 

m 

~ ~ ~ ( w ~ , ~ )  = C p r { z ~  = uj.*)  m = 1,. . . , M .  (47) 

The probabilities  involved in  (47) depend  on  the optimal  de- 
cision  levels  along  the j t h  dimension  of  the  signal  determined 
by the Lloyd-Max quantizer design 

q=1 

Pr{zJ = w '  3.9 } - - l Y q q - I  fz, ("j)dZcj (48) 

where f., ( z J )  denotes  the  marginal pdf of the j t h  random 
variable zJ  . 

Next,  we  shall  proceed to the  calculation  of  the  cdf  values 
for i # j ,  i.e.,  the cdf values of the  2-D order statistic 
( z j ( s ) , z i i r ) )  at vi,n). To do so, the  results  reported in 
pp. 25 and  26:  Exercise  2.2.2 of [13]  and [7] and [8]  will be 
exploited. More specifically, it has been  proved 

F(i-,s;j,i)(vj,m, %n) = I+{%jiT) I q . m :  "Z(S) 5 %I1 def 

A- Y min(ql ,qz)  = cc  c 
ql=rqi=sp=t l lax(O.q1+q2- . *y I )  

X 
N !  

d ( 4 1  - P I ! ( @  - P)!(N - 41 - 42 + P I !  
X F:(tjJ,m. 2ji.n)3192-P(vj,m, vi,n)F;l-P(uj.m. vi,n) 
x 3 t - q l - q a + p  (53 ,rnr  V i ,n )  (49) 

where F ~ ( v ~ . ~ .  l i j , n ) r  k = 0,. . . ! 3 are  the  probability  masses 
in the four regions of the ( z j ,  zi) plane  defined by the 
following  equations: 

Fo(2'j.m: U i , n )  = P r { z j  5 uj,m: Xi 5 Q,n} 

= Fzj,*z(vj,m; %nj 

F1(uj:m: ~ i , n )  = Pr{zj  > uj,m: zi I ~ i , n }  

32(LJj:m; Vi,n) = Pr{z, 5 uJ,m; 2; > W,n} 

7 3 ( ~ ) J , m :  ZI;,"~) = Pr{zj  > uj,m: > ui ,n)  (50) 

and F., ,z, ( ~ j , ~ ,  vi,,,) is the value of the joint cdf of random 
variables xj,xi at ( ~ j , ~ ,  The above-defined  probability 
masses can  be easily  calculated in terms of the  probabilities  of 
the  discrete events {x; = ~ ~ , ~ , z f  = vi,%}. The computation 
of these  probabilities  depends on the  decision  levels  along  the 
j t h  and  ith dimensions  provided by the Lloyd-Max quantizers 
and  can  be  done without any difficulty. 

The calculation of the elements of each mean  vector l j ,  
j = 1, . . . , p  is performed by using 

.bf 

E[z,(r)] zz vj;mf(T:j)(uj,m) T = 1 , s . .  (51) 
m=l 

where 

and F(?;~) (u j , , ,~ )  are calculated by using (46). 

C. Calculation of Correlation  Matrices and Mean Vectors for  
Independent  Nonidentically Distributed Observations 

For independent  nonidentically  distributed  observations, 
(45),  (46),  and  (49)  no  longer hold. Two approaches  can 
be  found in the  literature  for  the  calculation of the first- 
and second-order moments of  the order statistics from a 
univariate  population. The first approach  exploits  the  notion 
of the permanent of a  matrix and is proposed by Vaughan and 
Venables [22]. Descriptions of that  approach can also be  found 
in [ l ]  and [5]. The  second  one is proposed by Maurer  and 
Margolin [23]. It is based  on  multivariate  inclusion-exclusion 
identities.  It has been  used  successfully in the development 
of recursive  discrete  algorithms for  computing the  marginal 
and  joint  cumulative function  (cdf)  of  the  order  statistics 
from a  univariate  population in polynomial  time [3]. A similar 
approach based  on  inclusion-exclusion  identities has  also been 
proposed for the  computation of the joint  cumulative function 
of the  order  statistics from a  bivariate  population [24], [25]. 

IV. MULTIVARIATE  DISTRIBUTIONS 
Single-channel L filters have been  proved  efficient for 

nonGaussian,  long-tailed, or short-tailed  noise  filtering. The 
previous  attempts to use  nonlinear  filters  based  on order 
statistics for vector-valued  signal  processing have been  derived 
either from a  natural  generalization of univariate  exponential 
distributions  [6]  (that are not Laplacian  as  explained later on) 
or have  been  tested on a  contaminated  multinormal  distribution 
that has been  used to  model long-tailed  multivariate  distri- 
butions [7]-[9]. Therefore,  the  need emerges for  the  design 
of long-tailed  multivariate  distributions,  especially  Laplacian 
ones, in order to test the  performance of nonlinear  filters 
based  on  order  statistics  for  vector-valued  signal  restoration. 
The multichannel  marginal L filters examined  in the  present 
paper are designed to  be used for nonGaussian  bivariate  noise 
filtering. 

Let us define first the  notion of the uniform, Gaussian, 
Laplacian,  etc. multivariate  distributions. 
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Dejnition 6 [26],  [28]: A multivariate  distribution  is  said 
to  be uniform,  Gaussian,  Laplacian,  etc.  when  the  univariate 
marginal  distributions  are  all  uniform,  Gaussian,  Laplacian, 
etc. 

It is  known that a  distribution of the  form f ( x )  = 7 
exp[-a/(x - 8/12], where / I  ( ( 2  denotes the L2 norm,  has led 
to  the  definition of the  vector  median  using  the L2 norm 
(VML,).  Although,  the  authors  claim  that such a  distribution 
is  a  bivariate  biexponential  distribution, in fact,  it is a  gen- 
eralization of the  so-called  Subbotin  univariate  distribution, 
and  its  univariate  marginal  distributions  are  not  Laplacian 
[26].  Consequently,  this  distribution  is  not  Laplacian  according 
to  Definition  6. In the  following,  the  design of a  bivariate 
Laplacian  distribution  is  examined. 

Long-tailed  elliptically  symmetric  distributions  can  be  found 
in the  literature  [26].  They  have  density  functions  depending 
only on  quadratic  functions of the  variables. We shall  follow 
a  different  approach in the design of a  bivariate  Laplacian 
joint pdf [26], [28]. The  derivation of a  bivariate  Laplacian 
distribution is based on Lemma  2. 

Lemma 2: A joint  distribution Fzl,z2(z1, z2) given by: 

F z 1 , z 2 ( ~ c 1 ~ ~ z )  = F z l ( x 1 ) F Z 2 ( ~ z ) [ 1  + a(1- Fzl(xl)) 
x (1 - F z , ( 4 ) 1  (53) 

where cy E [-1. +1] has  as  marginal  cdf s F,, (zi)i = 1, 2. 
The  proof of Lemma 2 can be found in [26]  and  [27].  The 

family of joint  distributions (53) is  the  so-called  Morgenstern’s 
family. We are  interested  in  the  following  case: 

which  results  in  the  bivariate  Laplacian  distribution,  which 
belongs to the  Morgenstern  family.  The  following  lemma 
determines  the  joint pdf  of the  bivariate  Laplacian  distribution, 
which  belongs  to  the  Morgenstem  family and  relates  the 
correlation  coefficient r to  the  parameter a. 

Lemma 3: 
a)  The  joint pdf of the  bivariate  Laplacian  distribution  that 

belongs to the Morgenstem  family  is  given by 

fT1.;C2 (“1,Q) 

where 

b)  Let fs1,a2(Z1, 2 2 ;  &,e,) = fz1,z2 ( 2 1  - fh,z2 - O Z ) ,  
where 8 = (&,&)‘ is  the  location  parameter of the  dis- 
tribution.  The  correlation  coefficient T for  the  bivariate 
Laplacian  distribution  under  study  is  given  by T = cy, 
Le., the  correlation  coefficient  cannot  exceed 9/32. 

The proof of Lemma 3 is straightforward.  Therefore, it  is 
omitted.  Next, we shall  give  the  definition of the  generalized 
vector  median of N vector-valued  observations: 

Definition 7 [6]:  The  generalized  vector  median (GVM) of 
x ] ,  . . . ,x,v is  the  vector xgvm E {XI.. . . , X A F }  such  that 
Vj. j = 1.. . . , N x,”=, dist (xgvm,xi)  5 C,::, dis t (x j ,x i ) ,  
where d is t (x j ,x i )  is a  distance  function  between  the  vectors 
x, and xi. 

Using  Definition  7,  the  maximum  likelihood  estimator 
(MLE) of location for the  Laplacian-Morgenstem  distribution 
is determined by the following  lemma: 

Lemma 4: For 01 = up = 4, the MLE of the  loca- 
tion  vector e based  on  a  random  sample of N observations 
{XI . .   . . ?x .v} ,  where xi = (zi1; ~ i 2 ) ~ i  = 1,. . . N ,  is  the 
generalized  vector  median (GVM) that uses the  following 
distance  function  between  the  vectors xj and xi:  

dist(xj ,  xi) 
= llxj - xi111 - ln[l + cy sgn(zjl - zil, zj2 - zi2) 

x (1 - expl-lzjl - z i l J ] ) (1  - exp[-)z,z - zizl])]. 

(57) 

The proof of Lemma 4 is  simple and is omitted. An interest- 
ing  conclusion  can  be  deduced  from  (57). If the components 
of the  vector-valued  signal  are  uncorrelated, Le., cy = 0, 
the  distance  between any two  vectors is reduced to the L1 
norm, and  the  vector median  using  the L1 norm  results. 
This  conclusion has  also  been  derived in [6], starting  from 
a  different  origin. 

We conclude the  discussion on the  bivariate  Laplacian 
distribution  with  the  design of a  noise  generator  for  the  above- 
mentioned  distribution.  The  design  is  based  on  Lemma 5 .  

Lemma 5: Let z = (z1, ~ 2 ) ~  be  bivariate  uniform  with  joint 
density gfllZ2 (zl: z2) given by 

gzl,z2(Zl,zz) = 1 + a ( 2 ~ 1  - 1)(222 - 1). (58) 

Let f l (z l ) ,  f2(z2) be  univariate  Laplacian pdf s, i.e. 

with  corresponding c d f s  (54) Fl(zl) and F2(z2) ,  re- 
spectively.  Then,  the  joint  pdf of x = (zl: zz)T = 
(F;’(zl),  FF1(z2))*  is  bivariate  Laplacian (55 ) .  

Let 21, u: II be independent  uniformly  distributed in the 
interval [O:  11 random  variables. If z2 is produced as follows: 

the random  vector z = (21. ~ 2 ) ~  is  distributed  according  to 
(58). Consequently,  a  random  vector x = ( z I , z ~ ) ~ ,  which 
has  bivariate  Laplacian  distribution fT1,zl ( 2 1 , ~ ;  81.82) be- 
longing to the Morgenstern  family  can be  obtained by 
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V. SIMULATION EXAMPLES 
In this  section,  we  present  two  sets of experiments in 

order  to test the  performance of the  multichannel  marginal 
L filters we have designed in Section 11. In the first set of 
experiments, two-channel 1-D input  signal sequences gener- 
ated by corrupting  either  a  constant  signal or an edge by 
additive  white  bivariate  noise  have  been  used. In the  second 
set  of  experiments, we  deal  with  two-channel 2-D artificially 
generated  vector  fields. These fields  have  been  produced by 
corrupting either a  constant  velocity field or a  velocity field 
exhibiting edges by additive  white  Laplacian-Morgenstem 
bivariate  noise. 

A. Titlo-Channel 1-D Signals 

First,  the case of a  two-channel 1-D constant  signal s ( k )  = s 
corrupted by additive  white  bivariate  noise obeying various 
noise  models is treated. The  following noise models have 
been  considered: joint Gaussian,  uniform (58), contaminated 
Gaussian,  and  Laplacian-Morgenstem. The performance  of  the 
unconstrained,  unbiased, and location-invariant  multichannel 
marginal L filters in multichannel noise filtering  has  been 
compared with  the  performance  of other multichannel  non- 
linear filters as well as  their  single  -channel  counterparts. The 
following  nonlinear  filters  have  been  considered:  the  vector 
median [6], the  marginal  median  [7], [8], the  marginal CY- 
trimmed  mean [ 7 ] ,  [8], the  multichannel  modified  trimmed 
mean (MTM) [8], the  multichannel  double  window modified 
trimmed  mean (DW-MTM) [8] and the  ranked-order estimator 
RE [9]. The multichannel DW-MTM filter uses two  window 
sizes, as in the  single  channel case [30]. The small window 
size N, = 2v, + 1 is chosen to be seven for N = 9. Its  output 
is determined as follows.  First,  the  marginal  median 
is computed  inside  the  small  window.  Then,  the data vectors 
lying in the  large  window of size .V = 2v+ 1 having  distances 

less than the average  distance a ( k )  are averaged  to  give the 
filter output. The multichannel MTM filter is a  generalization 
of the  single-channel one proposed in [30]. Its  output is 
evaluated  as for the DW-MTM filter,  except that only one 
window of size N is used. The trimming parameter  for N- 
trimmed mean filters has been 0.2 in all experiments.  For 
RE filter [9],  only  the best result is tabulated.  It  has  been 
found that the  highest NR has been  obtained  for j = 1 in all 
experiments  with  constant  signals  corrupted by additive  white 
bivariate  noise. Since the  concept of radial  median is better 
suited for  smoothing directional data (e.g.,  angular data) [29], 
multichannel L filters based  on  radial  medians [lo] will not be 
considered in our Comparative study. We have  also  included 
the  arithmetic  mean in the comparative study  because  it is 
a  straightforward  choice for noise filtering in many  practical 
applications. The performance of the  single-channel L filter 
counterparts, i.e., the unbiased  and  location-invariant  single- 
channel L filter [ l ]  used to  filter  the noise in each channel 
independently,  has also been taken  into  consideration. The 
quantitative  criterion we used was the noise reduction  index 
(NR) defined as the  ratio of the  output  noise power to  the 

d(Z) = (x(/) - X,,+l)T(X(l) - XV5+1), 1 = k - v.. . . ~ k + v 

input  noise  power, i.e. 

First,  we  shall assume that s ( k )  = s is known  and. fur- 
thermore,  that  the  distributional  model of the  input  vector- 
valued  observations is  also  known. Next,  we  shall examine 
quantitatively  the  effectiveness  of  the  estimation procedures 
for s ,  Rz, and j i 2  developed in Section 11-D. Finally, the 
treatment  of  a  two-channel 1-D  edge  is discussed. In the  tables 
following, the  ranking of each multichannel  nonlinear filter for 
each experiment  can be found  inside  brackets. 

The performance of the  multichannel DW-MTM.  MTM. the 
RE estimator,  the  marginal median, the a-trimmed  mean, and 
the  location-invariant  single-channel L filters  (i.e.,  arithmetic 
mean  filters) used to filter each channel  independently  has  been 
compared with the one of the  location-invariant  two-channel 
L filter for the joint Gaussian  noise. A vector-valued  constant 
signal s = (1.0, l . O ) T  corrupted by additive  white  bivariate 
noise n(k) whose  components  are  distributed  according to the 
joint Gaussian  distribution N(ml = 0.0.7n2 = 0.0: u1 = 
1.0. uz = 3.0: T = -0.5) has been used as  a test signal. 
The parameters m;. ui! i = 1.2 denote  the expected value 
and  the  standard  deviation of each  noise vector component, 
respectively.  and T is the correlation  coefficient. The NR 
index is  shown in Table I  for filter length N = 5 .  It is 
straightforward  to prove that the MLE of the  constant  signal s 
for  jointly Gaussian observations  is the  arithmetic  mean  filter. 
As expected.  the  design of location-invariant  two-channel 
marginal L filter (31) has led to  a filter that resembles  the 
MLE in the  sense  that the elements of the  coefficient  vectors 
all and a22 are  close  to l/N, and those of a12 and az1 are 
close to 0. Since the  correlation  between  the components of 
the  input  vector-valued  observations is not  exploited at all, 
we  have not  proceeded to the  design of the  unconstrained or 
unbiased  two-channel  marginal L filters. 

The performance of the  multichannel  filters  under study has 
been  evaluated for bivariate  uniform  noise (58). A vector- 
valued constant  signal s = (1.0.2.0)T corrupted by additive 
white  bivariate  noise n(k) whose components are  correlated 
and uniformly  distributed in the  interval [-0.5.0.5] along  each 
channel has been used as a test signal. In other  words.  the joint 
pdf of the noise vector  components n( IC) = (nl ( k )  . n2 ( k ) ) =  
is given by 

fnl.n*(nl. n2) = 1 + 4CYn1n2. (63) 

In our experiment, CY = 1.0. The NR index is shown in the 
first column of Table I1 for filter length IV = 9. The  case of 
a  contaminated  Gaussian noise  has been  considered as well. 
A vector-valued  constant  signal s = (1.0. 2.0)3 corrupted by 
additive  white  bivariate  noise n(k) whose  components are dis- 
tributed  according  to  the  contaminated  Gaussian  distribution 
given by 

(1 - t ) N ( O . O .  0.0; 1.0; 3.0: 0.5) 
+ th"(0.0: 0.0: 3.0,9.0; 0.7) (64) 

for t = 0.1 has been used as a test signal. The NR in- 
dex is listed in the  second column of  Table I1 for filter 
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TABLE I 

DISTRIBUTION  NOISE  MODEL  (FILTER  LENGTH ."i = 5 )  
NOISE REDUCTION (IN DECIBELS) FOR  THE JOINT GAUSSIAN 

I Filter I NR 
multichannel DW-MTM I -3.337 ~ 

multichannel MTM I -4.528 

L-filter (arithmetic mean) -7.161 

TABLE 111 
NOISE  REDUCTION  (IN  DECIBELS)  FOR -ve =49, 81 

WHEN s IS ESTIMATED  BY RLTERING  THE  NOISY  INPUT 
OBSERVATIONS  FOR  THE  LAPLACIAN-MORGEXSTERN 

DISTRIBUTION  NOISE  MODEL (FILER LENGTH AV = 9) 

location-invariant 2-channel 
marginal L-filter -7.164 J 

TABLE I1 
NOISE  REDUCTION  (IN DECIBELS) FOR  THE  BIVARIATE  UNIFORM 

CONTAMINATED  GAUSSIAN  AND  LAPLACIAN-MORGENSTERN 
DISTRIBUTION  NOISE  MODELS  (FILTER LENGTH .Y = 9) 

unconstrained two-channd 
marmnal L-filter 

length N = 9. Next,  the case of  a  vector-valued  constant 
signal s = (1.0, 2.0)T corrupted by additive  white  bivariate 
noise n(k)  whose components are distributed  according  to 
the  Laplacian-Morgenstem  distribution  with  zero-mean  vector 
q = u2 = 4 and a = 1.0 has been  studied. The NR index 
is tabulated in the  third column of  Table I1 for filter length 
N = 9. From  the entries of Table I1 it is clearly  seen that the 
unconstrained  two-channel  marginal L filter outperforms any 
other  filter. The unbiased  two-channel  marginal L filter is the 
second  best. The unbiased  two-channel L filter attains  again 
almost 2 dB higher noise suppression  than its single-channel 
counterpart. This  superior  behavior  is attributed to the  fact that 
the  unbiased  two-channel  marginal L filter utilizes  the  correla- 
tion  between  the components of the  input  vector-valued  signal. 
The performance of the  location-invariant  two-channel L filter 
is relatively poor. Furthermore,  the  proposed  unconstrained 
and unbiased  two-channel L filters  have  better  performance 
than all the other multichannel  estimators  included in the 
comparative study. The price paid for  the  superior  performance 
is the  complicated  design  procedure. 

Subsequently, we  examine the  performance of an  unbiased 
two-channel  marginal L filter of length N = 9 that is designed 
by using  the  estimation  procedures for s developed in Section 
11-D. We assume  that the distributional model of input  vector- 
valued  observations is known,  and we focus on  the estimation 
of the unknown signal s. Several  experiments  have been 
performed on a  two-channel I-D input  sequence  produced 

by corrupting  a constant signal s by additive white  bivariate 
Laplacian-Morgenstem  noise. In these experiments, we  use 
the  noise  reduction  achieved at the filter output  as a  figure 
of merit. Let us first consider that an  initial estimate  for 
s ( k )  = s is obtained by averaging  the past L filter  outputs. 
It has  been  found that a very large N e  is required in order 
to  achieve a NR larger  than that achieved by employing 
the  marginal  median (e.g., N e  = 225 for  a NR = -12.309 
dB). Motivated by the  extremely  large Ne required in the 
procedure described above  in  order  to avoid  instabilities, we 
have examined  the  possibility  of  obtaining  an  initial  estimate 
for s from the  noisy  input  vector-valued  observations. Two 
types of estimation  procedures  have  been employed, namely, 
the  estimation of s in a causal window as well  as  the  estimation 
of s in a  window  centered on the current input data  vector 
x@). In the former case, s is being  estimated from the 
past noisy  input  observations. In the  later  case, future noisy 
input data vectors  are  also  taken into  account. A convenient 
estimator, e.&.,  the  marginal  median or the arithmetic mean 
of length N e ,  has been used successfully  to  provide  an 
estimate i ( k )  of s. The  noise reduction achieved  at the  filter 
output for an  unbiased  two-channel  marginal L filter  having 
length N = 9 is tabulated for window sizes N e  = 49 and 
Ne = 81 in Table 111. The corresponding noise reduction  when 
two unbiased  single-channel L filters employing the  same 
estimation  procedures for s operate  on the two input  channels 
independently is also  included in Table 111 for comparison 
purposes.  It is seen  that  a much smaller  window  size is 
now required. By  examining Table 111, it is  found that  causal 
windows yield  better  results  than  noncausal ones  and that  the 
marginal  median is  more efficient in  estimating s than the 
arithmetic  mean, as  expected. Furthermore,  it is clearly  seen 
that  the  utilization of the  correlation  between  input  components 
leads  to 1.5 dB higher noise suppression. By comparing  the 
entries of Table 111 with  the  results  tabulated in the third 
column of Table 2, it is seen  that  the  unbiased  two-channel 
marginal L filter  that employs the above-described estimation 
procedure outperforms all  the  other  multichannel  nonlinear 
filters included in  our comparative study. 

Next, we consider  the case  where  the distributional model of 
input vector-valued  observations is unknown. In such case, 
the  moments of the order statistics that form the  matrix Rz and 
the mean vector b2 are  calculated by using  estimates of the 
marginal  and joint probability  density  function  of  input  vector 
data.  The design of an  unbiased  two-channel  marginal L filter 
of  length N = 5 is treated for the  Laplacian-Morgenstem 
noise model. The deterioration in the filter output due  to the 
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TABLE IV 
NOISE  REDUCTION (IN DECIBELS)  FOR  AN  UNBIASED  TWO-CHANNEL L 
FILTER OF LENGTH L = 5 ,  WHEN i2 AND 1, AND/OR s ARE ESTIMATED 

R2 and & are estimated. 
8 I S  known 

optimal unbiased filter -12.617 -10 494 

estimation of marginal and  joint input pdf is measured first. As 
can be seen in Table IV, the  deterioration in noise  suppression 
is almost  negligible (0.056 dB).  When s is estimated from the 
marginal  median of the Ne past  input data vectors and R2 
and &, are  calculated  based  on  estimates of the  marginal and 
joint pdfs of input  data  vectors,  the total deterioration  varies 
between  1.12 dB  for Are = 49 to 2 dB for A r e  = 25 .  The  same 
procedure  has also been  applied  with  similar success  to the 
design of two  unbiased  single-channel L filters that have been 
used to filter the two input channels independently.  Again, 
it is verified experimentally  that  the  unbiased  two-channel 
marginal L filter is superior  to  its  single-channel  counterparts, 
yielding  an  almost  2  dB  higher NR index. We conclude that 
by combining  estimates for s with R, and bz calculated  based 
on  estimates of the  marginal and  joint pdf s of x(k), the loss 
in noise-reduction  capability  of  the  designed  unbiased two- 
channel  marginal L filters is small  enough. Moreover, the 
superiority in noise suppression of the  designed  unbiased two- 
channel  marginal L filters to  the  other  multichannel  estimators 
as well as to  their  single  channel  counterparts still holds. 

Finally, the treatment of a  two-channel 1-D edge corrupted 
by additive  white  Laplacian-Morgenstem  bivariate  noise is 
discussed. The case of a  bivariate noise with zero-mean  vector 
u1 = u2 = 4 and (Y = 1.0 is considered. In the first channel, 
a  transition from level 1 to level 10 occurs at time  instance 
kl. In the  second  channel,  a  transition from level  2  to  level 15 
occurs at time  instant # k l .  The following  edge-detection 
algorithm  has  been  used [ 191. Let Wr, ~ WR be two  neighboring 
windows, as shown in Fig.  l(a). Let 211,?1~ be the  medians 
of the samples in the  corresponding windows in channel 1. 
Similarly,  let f 2 ~ .  ?:2~ denote  the  medians of the  samples in 
the  corresponding windows in channel 2. If 

I i l L  - 21RI > 71 Or IgZL - 22R1 > 7 2 ,  (65) 

where it  is declared  that x(k) belongs to a  transition  region. 
In (65) ,  i Z ~ ,  F ~ R ,  i = 1 , 2  have  been  evaluated by employing 
medians of window  size 11, and the  thresholds T; are set  equal 
to 3 (i.e., q N 2ui). For  each  homogeneous region, we design 
the unbiased  two-channel  marginal L filter of length N = 5 
that is matched  to  its  statistics by using  estimates  for  both R 2 ,  
p, and s as has been  previously  described. In the  transition 
regions, we use the  marginal median of the same length  to 
filter the data vectors that lie into them. The results for noise 
reduction  are  summarized in Table V. The unbiased  single- 
channel L filters that have been includedin Table V have also 
been  designed  based  on  estimates for Rz. &, and s. Once 
more, it is seen  that  the  unbiased  two-channel L filter is the 
best,.  yielding  an  almost 2-dB higher  noise  suppression. 

(C) 

Fig. 1. (a) Windows used in edge  detection for I-D multichannel  signals; 
(b) windows used to detect  vertical edges for 2-D  multichannel  signals;  (c) 
Windows used to detect  horizontal edges for 2-D multichannel signals. 

TABLE V 
NOISE  REDUCTION  (IN  DECIBELS)  FOR  A  TWO-CHANNEL 

LAPLACIAN-MORGENSTERN BIV'4RIATE NOISE  (FILTER  LENGTH >'+' = 5 )  
I-D EDGE  CORRUFTED BY ADDITIVE WHITE 

I 

mul t i channe l  DW-MTM (.VS = 3)  I -4.8945 
. .. 

R E ( j  = 1) I -5.7939 
~ ~~ 

I vec tor   median  Lq I -5.7978 I 
I vector med ian  L ,  I -6.2295 I 

B. Application to Artijicially  Generated Velocity Fields 

The second  set of experiments  has been performed  on  two- 
channel 2-D artificially  generated  velocity  fields.  First,  the 
case of artificially generated  vector  data  that are produced 
by corrupting  a  constant  velocity  vector by additive  white 
Laplacian-Morgenstem  bivariate noise is considered.  Fig. 2(a) 
shows a 20 x 20 block of an artificially generated  vector field 
extracted from the  lower-right comer of the  original noisy 
velocity field of dimensions 64 x 64. The velocity data have 
been  produced by corrupting  the  constant  velocity  vector s = 
(1.0; 2.0)T by additive  white  Laplacian-Morgenstern  bivariate 
noise n(k. I )  with  zero-mean  vector,  equal  standard  deviations 
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TABLE VI 
NOISE  REDUCTIOK  (IN  DECIBELS) FOR VARIOUS ESTIMATORS OF 

SIZE 3x3 IN THE CASE OF I) A CONSTANT  VELOCITY  FIELD 
AND 11) A  VELOCITY RELD COMPOSED OF TWO REGIONS  OF 

LAPLACIAN-MORGENSERN BIVARIPITE NOISE (FILTER LENGTH .v = .3) 
CONSTANT  VELOCITY CORRUFTED BY ADDITIVE  WHITE 

Filter I YR I 
1 Constant Fleld ' Field w i t h  Edges 

- R F ( 1 = 3 )  -2.412 [lo] 
1 

, segmentation mformatlon) , -8.001 
arithrnetlc mean (11: without 

[4] -3.491 [9] 
vector median L Z  

1 -i I 2 5  [6! 1 -6.292 161 vector median L ,  
- 5  991 [7] multichannel !dThl 
-5.426 15) - i . l 2 4  [ i ]  

generalized vector medlan -7.154 [jj I - 1 arithmetic mean ([I: with 

(small wlndow size 3 x 3  ) 
-7.056 [3] -8.760 131 marginal median 
-6 926 3 1  

-7.655 [2] -8.309 !.10,211) 12) unbiased  single  channel  L-filter 5 

Fig. 2.  Artificially generated  velocity field produced by corrupting a constant 
velocity  vector  corrupted  by  additive  white  Laplacian-Morgenstem  bivariate 
noise. 

gi = a, i = 1: 2 in both  channels, and parameter a = 1.0. 
The original  vector field has been  normalized  appropriately 
in order to show the effect of noise. All the filtered outputs 
are shown normalized by the maximum value of each output 
channel. The recursive estimation of the  constant  velocity 
vector from the  past filter outputs has been found quite  suc- 
cessful. More specifically, the constant  velocity  vector s ( k ,  1 )  
has  initially  been  estimated from the  past filter outputs  lying 
within  a  causal filter quadrant  window  of  size 11 x 11,  which 
has as right-most lower  comer at the  point where the  constant 
velocity  vector s ( k ,  1 )  is to  be estimated. The filtering is initial- 
ized by using  the  marginal median of the  input  vector-valued 
observations  as  an  initial estimate of s. The  moments of the 
order  statistics that are involved in the design  procedure have 
been  calculated  based on estimates of the  marginal  and joint 
probability  density  functions of input  data  vectors. The  same 
procedure has also  been applied to  the  design of single-channel 
L filters. Fig.  2(b)  shows the output of the  marginal  median 
filter of size 3 x 3. The filtered velocity field by two  unbiased 
single-channel L filters of the same size  that  operate  on  each 
channel independently is  shown in Fig.  2(c). Finally,  Fig. 2(d) 
shows the  result when the  original data  is filtered with the 3 x 
3 unbiased  two-channel  marginal L filter. It is clearly seen that 
the 3 x 3 unbiased  two-channel  marginal L filter has  superior 
performance. The first column in Table VI  summarizes the 
noise reduction  achieved at the  output  of  several  multichannel 
filters. For the  unbiased  single- and two-channel  filters,  the NR 
that would be achieved if the constant velocity s ( k .  1)  and the 
distributional  model  were known  is also  listed in parentheses. 

Subsequently,  we consider a  velocity field composed of two 
regions  such that the  velocity  vectors  are constant within each 

region but differ from the  velocity  vectors  within  the  other 
region. In this case, the  velocity field exhibits  both  horizontal 
and vertical  transitions (Le., edges).  A  pictorial  description 
of the original  uncorrupted  vector field is  given in Fig. 3. 
Such an  artificially  generated  vector field is then  corrupted by 
additive white Laplacian-Morgenstem bivariate  noise n(k, 1 )  
with  zero-mean  vector,  equal  standard  deviations g; = a, 
i = 1 , 2  in both channels, and parameter cy = 1.0. The 
portion of the  vector field that is displayed in all figures 
is  shown overlaid in Fig. 3. Fig. 4(a) displays  the 20 x 
20 block of the  original  noisy  vector  field. The noisy data 
vectors  are  shown  normalized  within each region by properly 
selecting  convenient  scaling  factors in both channels in order 
to demonstrate  the  effect of noise, It  can  be  seen that the 
noise is more prominent in Region  1, where  the constant 
velocity s l ( k ,  I )  = (1.0: 2.0)T has been  severely  corrupted. In 
Region 2, the components of the  constant  velocity ~ ( k .  I )  = 
(5.0. -10.0)' are  large  enough  compared  with  the noise 
standard  deviation in each  channel. Therefore,  the  velocity 
vector has been  effected  less by noise in Region 2.  In the 
following,  the  components of all filter outputs  are shown 
normalized by the  maximum  value of each channel within 
each region. Fig.  4(b)  shows the  result of vector  median  based 
on  the L1 norm (VML,).  The filter  window is of size 3 x 3. 
Fig.  4(c)  shows the  result of the 3 x 3 arithmetic  mean within 
each  homogeneous region  determined by the edge detection 
algorithm (65), that  is,  Fig. 4(b) shows the  results of the 3 
x 3 marginal  median. In the sequel, (65) has  been used to 
find the  points  that  belong  to  a  region  where  a  horizontal edge 
occurs  by  employing  windows KT*- and KTs (Fig.  l(b))  and  to 
find the  points that belong  to  a segment where  a vertical edge 
occurs by employing  windows WL and l4'~ (Fig. l(c)). All 
these  points form the  transition  region. On the  other  side of the 
transition  region, two  homogeneous  regions result. Within each 
homogeneous  region, two 3 x 3 single-channel L filters are 
used to filter the  velocity  components  independently. Within 
the  transition region, the 3 x 3 marginal  median is applied. 
The output field is  shown in Fig.  4(c).  Finally,  Fig.  4(d) shows 
the  result  when  the  original data are filtered by the 3 x 3 
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Region #2 

1 ' 

64 
+ 

Fig.  3. Pictorial description of the uncorrupted vector  field composed of 
two  regions of constant  velocity. 

unbiased  two-channel L filter within  the homogeneous regions 
and  the 3 x 3 marginal  median in the  transition  region.  Both 
the  unbiased  single-channel L filter as well as the  unbiased 
two-channel L filter within each homogeneous  region  have 
been  designed by using  the  estimation  procedures  developed 
above  for calculating RZ and &. A single estimate  for s ( k .  I )  
has  been found for each homogeneous  region by employing 
the  marginal  median of the  vector-valued  observations  within 
each  homogeneous region. The second column in Table VI 
summarizes  the  noise  reduction  achieved at the filter output 
for several  estimators. In conclusion,  two-channel L filters  can 
be used efficiently in the  filtering  of  velocity fields produced 
by motion-estimation  algorithms. 

VI. CONCLUSION 
The extension of single-channel L filters  to the multi- 

channel case  has been  discussed in this  paper. The subor- 
dering  principle of marginal data ordering  has  been  used. 
The design of multichannel L filters based  on  marginal data 
ordering  using  the MSE as fidelity criterion has been  presented. 
Both the unconstrained  minimization of the MSE and the 
constrained  minimization  subject  to  the  constraints of the 
unbiased and location-invariant  estimation  have  been  treated. 
A unified framework based  on  vector  quantization  for  a 
discrete  calculation of the  required moments of the  bivariate 
order  statistics has been  described. The derivation of a  suitable 
long-tailed  distribution, namely, the  Laplacian  distribution 
which  belongs to the  Morgenstern  family  and  the  design of 
a noise  generator that obeys the  above-mentioned  distribution, 
has been presented.  It  has  been  shown by simulations  that 
the  unconstrained and unbiased  two-channel  marginal L filters 
attain  a  higher noise reduction  index  than  other  multichannel 
nonlinear filters (such  as  the  vector  median,  the  marginal 

\ 

\ 

\ 

Fig. 4.  Velocity  field composed of two  regions of constant  velocity corrupted 
by additive white  Laplacian-Morgenstern  bivariate  noise. 

a-trimmed mean,  the  marginal  median,  the  multichannel mod- 
ified trimmed  mean,  the  multichannel  double-window  trimmed' 
mean,  and the  multivariate  ranked-order  estimator RE) or their 
single-channel  counterparts.  Effective  estimation  procedures 
of the  uncorrupted (true) multichannel  signal s either for a 
multichannel  constant or  for a  nonconstant  signal  corrupted 
by additive  white  multivariate  noise  have  been  developed. 
Furthermore,  the  design of multichannel  marginal L filters 
based on estimates of the  marginal and  joint probability 
density  functions of input  vector-valued  observations has been 
discussed.  Applications  to  the filtering of artificially generated 
velocity fields have  also been described. 
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