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examined. First, signal-adaptive maximum  likelihood (SAML) 
Abs&act--Two approaches for ultrasonic Image  processing are 

filters are proposed for ultrasonic speckle removal. It is shown 
that in the case of displayed ultrasound (US) image data the 
maximum likelihood (ML) estimator of the original (noiseless) 
signal  closely resembles the LZ mean  which has been proven 
earlier to be the ML estimator of the original signal In US B- 
mode data. Thus, the design of SignaLadaptive L.2 mean fllters 
is treated for US B-mode data and displayed US Image data as 

organizing neural networks (NN) is investigated. A modification 
well.  Secondly, the segmentatlon of ultrasonic images wing self- 

of the learning vector quantizer (Lz LVQ) is proposed in such 
a way that the weight  vectors of the output neurons correspond 
to the L2 mean instead of the sample arithmetic mean of the 
input observations. The convergence in the mean and in the 
mean square of the proposed L2 LVQ NN are studied. LZ 
LVQ is combined  with signal-adaptive filtering in order to allow 
preservation of image  edges and details as well as maximum 
speckle reduction in homogeneous  regions. 

S 
I. INTRODUCTION 

PECKLE noise is a special kind of noise encountered in 
ultrasound (US) B-mode data as well as in  images formed 

by laser beams or in synthetic aperture radar images [l], [2]. 
Suppression of speckle is desirable in order to enhance the 
quality of US images and therefore to increase the diagnostic 
potential of US examinations. 

The statistical properties of speckle have been studied in 
[ 11-[4]. The detection of focal lesions from the point of view of 
communication systems has been considered in [5 ] .  Statistical 
nonlinear filters for speckle noise reduction on radar images 
have been examined in [6]. Bispectral restoration of speckle- 
degraded images performed on logarithmically transformed 
images has been proposed in [7] based on the assumption of 
a multiplicative noise model for speckle. Two approaches for 
speckle suppression in US B-mode data have been investigated 
in [8], [9]. The use of Lz mean filter has been proposed based 
on the assumption that speckle is modeled as multiplicative 
noise distributed according to Rayleigh distribution. Optimal 
nonlinear filters based on linear combinations of the order 
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statistics have  also been designed for the estimation of a 
constant original (noiseless) signal corrupted by multiplicative 
Rayleigh noise. Homomorphic filtering could also be applied 
for speckle suppression [lo]. 

A successful speckle suppression algorithm must reduce 
the noise efficiently by increasing the signal-to-noise ratio 
(SNR) without affecting true tissue information. It is evident 
that linear [ l l ]  and nonlinear [lo] spatial filtering techniques 
cannot suppress the noise effectively due to their spatial- 
invariant nature and their weakness in discriminating between 
the foreground and the background areas in the image.  The 
nonstationary nature of images in addition to the limitations of 
spatial filtering have motivated many researchers towards the 
investigation of filters which adjust their smoothing properties 
at each point of the image according to the local image content 

On the other hand, neural networks (NN)  [20],  [21] is a 
rapidly expanding research field which attracted the attention 
of scientists and engineers in the last decade. A large vari- 
ety of artificial neural networks has been developed based 
on a multitude of learning techniques and having different 
topologies [21], [22]. They have applied successfully in many 
research fields. Neural networks have also found application 
for ultrasonic image analysis and diagnosis [23], [24]. 

Motivated by the fact that signal-adaptive filters fulfill 
the requirements for successful speckle suppression outlined 
above  and  the attention they have attracted in the literature, 
signal-adaptive maximum likelihood (SAML) filters for ultra- 
sonic speckle suppression are proposed. The relative simplicity 
of the learning vector quantizer (LVQ), its ability to work 
in unsupervised mode in addition to its success in image 
segmentation problems, have led us to use a variant of the 
LVQ that is more suitable for ultrasonic image segmentation. 
Therefore, the main contribution of this paper is threefold: (1) 
The design of signal-adaptive maximum likelihood filters for 
ultrasonic speckle suppression both  in the case of US B-mode 
data  as well as in the case of displayed ultrasonic image data. 
(2) The derivation and study of convergence of a variant of 
LVQ neural network for ultrasonic image segmentation. (3) 
The design of a combined scheme where self-organizing NN 
are used in conjunction with signal-adaptive filters in order to 
allow image  detail and edge preservation as well as maximum 
speckle reduction in homogeneous regions. 

More specifically, the starting point is ultrasonic speckle 
modeling as multiplicative Rayleigb distributed noise (in the 

[12]-[19]. 
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case of US B-mode data), or as signal-dependent Gaussian 
noise (in the case of displayed US image data). The first model 
refers to envelope-detected US signal [2], [3], [25]. The second 
model describes more accurately ultrasonic images where the 
displayed image data have undergone excessive manipulation 
(e.g. logarithmic compression, low and high-pass filtering, 
postprocessing, etc.) [25]. It is proven that the maximum 
likelihood (ML) estimator of the original (noiseless) signal 
for the signal-dependent Gaussian speckle closely resembles 
the L2 mean [26] which has already been proven to be the 
ML estimator of the original signal in US B-mode data [8], 
191. This fact has led us to design signal-adaptive maximum 
likelihood filters both for multiplicative Rayleigh speckle 
and signal-dependent speckle. Besides speckle filtering, the 
important problem of ultrasonic image segmentation by using 
self-organizing neural networks is also investigated. A modi- 
fication of the learning vector quantizer (Lz LVQ) is proposed 
so that the weight vectors of the output neurons correspond 
to the L2 mean instead of the sample arithmetic mean of 
the input observations. The convergence in the mean and in 
the mean square of the proposed Lz LVQ NN are studied. 
Further insight into the performance of the proposed Lz LVQ 
is gained by  an illustration of the convergence analysis for 
mutually independent 2-D Rayleigh distributed observations. 
The ability of the Lz LVQ to segment ultrasonic images in 
\.arious US image regions is combined with signal-adaptive 
filtering in order to allow, image detail and  edge preservation as 
well as maximum speckle reduction in homogeneous regions. 
Experimental results show that segmentation combined with 
filtering leads to higher speckle reduction without loss of 
image detail. 

The outline of this paper follows. The design of signal- 
adaptive maximum likelihood filters is described in Section 
11. The derivation of L2 LVQ algorithm, the study of its 
convergence and  an illustration of the convergence analysis for 
mutually independent 2-D Rayleigh distributed observations 
are treated in Section 111. Experimental results are included in 
Section IV  and conclusions are drawn in Section V. 

11. SIGNAL-ADAPTIVE  MAXIMUM LIKELIHOOD FILTER DESIGN 
The design of signal-adaptive maximum likelihood filters 

for speckle suppression is examined in this section. First, 
an overview of the signal-adaptive filter model is provided. 
Secondly, two different models for speckle noise are consid- 
ered, namely, the multiplicative noise model and the signal- 
dependent one. The ML estimator of the original (noise- 
less) signal for the signal-dependent noise model is derived. 
Subsequently, the derivation of the weighting factor that 
approximates the local SNR in the filter window is treated 
for both the above-mentioned models. 

A. Signal-Adapfive  Filter  Model 
An image x can be considered to consist of two parts: a 

low-frequency part SL and a high-frequency part xH, i.e., 
s = X L  + x ~  [ 101. The low-frequency component is dominant 
in homogeneous image regions, wlhereas the high-frequency 
component is dominant near edges. The low-pass component 

can be estimated by a local estimator, e.g., the arithmetic mean 
or the median of the observations (i.e., pixel values) in a 
window W surrounding the current pixel (k, I )  [lo], [14]. The 
ML estimator IWL(IC, 1 )  of the original signal s ( k .  1) based on 
the observations z ( k  - i! 1 - j) E W is proposed as the low- 
frequency component in this paper. Thus,  the output of the 
signal-adaptive filter, i t . ,  the estimate of the original signal 
at (k, 1). is given by 

B(k,l) = B M L ( k ,  1 )  + P ( k .  l ) [ Z ( k  1 )  - ~ M L ( k . Z ) ]  (1) 

where 
z ( k ,  1) is the noisy observation at pixel (IC, 1) 
i ~ ~ ( k ,  1) is the maximum likelihood estimate of s ( k ,  I )  

P ( k ,  1) is  a weighting factor, approximating the local 

ci(k,Z) is the signal-adaptive filter output at pixel (k!1), 
When P(k, Z) approaches 1, the actual observation is 

preserved by the suppression of the low-pass component 
; ~ ~ ( k , l ) .  When it is close to 0, maximum noise reduction is 
performed, since the high-frequency component is suppressed. 
In the remainder of this section, the ML estimator of s ( k ,  I )  
as well as the weighting factor B ( k .  I )  will be derived for 
the following two distinct noise models: I )  multiplicative 
Rayleigh speckle, and 2) signal-dependent Gaussian noise. 

B. Derivation of the ML Estimator ofthe Original Signal 

based on the observations x ( k  - i: 1 - j)  E W 

SNR  over the window W 

I )  Multiplicative Noise Model: It  has  been shown [1]-[3] 
that the observed envelope-detected signal x can be considered 
as a Rayleigh random variable (r.v.) having probability density 
function 

f&) = G e x p  -7 , x > 0. 
0 [ 25 (2) 

Speckle can be modeled as 

x = sn (3) 

where 2 is the observed envelope-detected signal, s is the 
original signal and n is a noise term statistically independent 
of a. It has been proven [8], [9] that the ML estimator of 
a constant original signal s = S based on N observations 
X I ,   X Z ,  . . , X N  for model (3), assuming that n is a Rayleigh 
r.v. with unity expected value is given by 

which is equivalent to the L1 mean [26] scaled by a factor 

2) Signal-Dependent  Noise  Model: For displayed US im- 

x = s + s'i2n. ( 5 )  

In the following, we assume that n is a zero-mean Gaussian 
random variable, i.e., its pdf  is given by 

of g. 
ages, a realistic image formation model is [25] 
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The conditional density of  an observation z assuming that 
s = S. S > 0 is given by [ 2 7 ]  

L e t  us suppose that we have a set of N observations xi, i = 
1, ' ' , N comprising the vector x = (21,. . . , Z N ) ~ ,  obtained 
from measurements in a window W around the pixel whose 
value s is  to  be estimated. The  joint conditional pdf of the 
observations assuming s = S is 

The ML estimate of s = S, i . v ~ ,  maximizes the log-likelihood 
function Infxls(XIS) [28]. It can be easily proven that BML 
is given by 

It is seen that (9) closely resembles the Lz mean. 

C. Derivation of the Signal-Dependent  Weighting  Factor 
Let e = Ew[(s - a)'] be the local mean squared error 

(MSE) between the noiseless signal s(k,l) and its estimate 
g(k.  1 )  obtained by ( l ) ,  at pixel (k. I ) .  where Ew[.] denotes a 
local expectation operator. Explicit reference to (k, I )  can be 
suppressed for notation simplicity. We shall evaluate p at  each 
pixel (k. I )  of the image by minimizing e over  a window W 
surrounding pixel ( k ,  1) 

Differentiating with respect to B and setting the result equal 
to zero we get 

In the sequel, Ew[(s  - i , v ~ ) ( z  - i , w ~ ) ]  will be evaluated for 
the two speckle models under study. 

I j  Mulriplicative  Noise  Model: The numerator in (11) can 
be rewritten as 

where we assume that E[n] = 1 and s , n  are independent, 
thus, E>%'[z] = E>v[s]. The statistical independence of s and 
7~ implies that 

where is the variance of a Rayleigh r.v. having unity 
expected value. Therefore, (1 1) takes the form 

2 )  Signal-Dependent  Noise  Model: If n is zero-mean r.v. 
independent of 8 ,  it is obvious that Ew[z] = Ew[s].  Therefore 

Ew[+ - e M L ) ]  = Ew[s(s t s ' h  - i,vL)] 
= Ew[x'] - E ~ [ . T ] u '  - ~ M L E W ! ~ ]  (15) 

because 

Ew[z2]  = Ew[(s t sl /*n)*]  = Ew[s2] + Ew[s]u2 (16) 

where o2 denotes the variance of noise. Substituting (15) into 
( l l ) ,  the following signal-dependent weighting factor results 

In general, p can be considered as a local signal-to-noise 
ratio measure [ 141. The role of the signal-dependent weighting 
factor /3 (14) or (17) is  to adjust the magnitude of the filtering 
to be performed by (1) as well as to adjust the size of window 
W .  We can start filtering by using initially a window of size 
5 x 5 or 7 x 7. If the factor p ( k . I )  becomes greater than an 
appropriate threshold 3,. the window size is decreased until the 
coefficient becomes less than the threshold or until the window 
reaches the size 3 x 3.  Otherwise. the window is increased to 
its maximum size. 

Subsequently, a modification of the signal-adaptive maxi- 
mum likelihood filter that utilizes segmentation information 
obtained prior to the filtering process is discussed. An im- 
age can be segmented to regions representing various image 
characteristics by a variety of techniques that can be found 
in digital image processing literature [ 111 as well as by using 
neural networks [21], [22]. Let us denote by L ( k ,  I )  the class 
label assigned to pixel (k, 1 )  of the original image by using 
an image segmentation algorithm. We shall assume that the 
original image is segmented into p classes. If the label assigned 
to the first class is 0, L(k:l) will vary between 0 and p - 1. 
In the case of a two-class US image segmentation, the label 
0 can be assigned to pixels belonging to the background and 
the label 1 can be assigned to pixels that belong to areas that 
have high signal activity. In the general case of a p-class US 
image segmentation, label 0 is assigned to background pixels 
and the remaining classes are labeled according to their signal 
activity (e.g. frequency content). The classes that have the 
higher signal activity correspond to image details (e.g. blood 
vessel boundaries). The more details an image region has the 
higher label is assigned to it .  L e t  us also define by 

a quantity that represents the average class label that appears 
in the filter window W scaled in the range [O. 11. In (18), 
N(W) denotes the number of pixels included in the filter 
window (is., the window size). It can be seen that Pseg varies 
between 0 and 1. It tends to 0, when the pixels that belong to 
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the lowest signal activity class dominate in the filter window 
1.2; surrounding pixel ( k ,  I ) .  On the contrary, it tends to 1 
when the pixels in the filter window W surrounding pixel 
(IC, 1 )  that belong to the highest signal activity class are in 
the majority. Since Pseg E [O: 11, it can be used as weighting 
factor in the signal-adaptive filter (1). It is seen that by using 
( I  8) as weighting factor, the classes that correspond to image 
details are preserved. Furthermore, if the signal-adaptive filter 
has to share the benefits of the signal-dependent weighting 
factor (14) or (17) as local SNR measure as well as of the 
factor (18) as local texture indicator, the following modified 
weighting factor P ( k ,  1 )  is proposed 

&, 1 )  = (1 - v ) P ( k ,  1 )  + v W e p ( k 1 )  (19) 

where 0 5 9 5 1. By selecting 77 = 0, then p(rC,l) = P ( k , l )  
and the segmentation information provided by $e image 
segmentation algorithm is discarded. If 7) = 1, /3(k,l) = 
P,, , (k ,  I )  and the local SNR information is ignored. Otherwise, 
both information sources are taken into account. In order to 
debign a signal-adaptive filter that uses the signal-dependent 
weighting factor (191,  we have to segment the ultrasonic image 
first. In the next section, the segmentation of US images by 
usmg a variant of learning vector quantizer that is based on 
the Lz mean is examined. 

111. A VARIA\T OF LVQ BASED ON THE L2 MEAN 
FOR SEGMENT.4TIOK OF ULTRASONIC IMAGES 

LVQ is  an autoassociative nearest-neighbor classifier which 
classifies arbitrary patterns into p-many  classes using an 
error correction encoding procedure related to competitive 
learning [20], [21]. Let us assume a sequence of vector-valued 
observations x( t )  E R” and a set of variable reference vectors 
(i.e., output neurons) {wi( t ) ;wl  E RN, i  = 1 , 2 , . . . , p }  . 
Let w,(O) be randomly initialized. Competitive learning tnes 
to find the best-matching reference vector we(t) to x(t). 
This vector is updated. After a large number of iterations, 
the different reference vectors tend to become specifically 
“tuned” to different domains of the input variable x. LVQ 
belongs to the class of self-organizing neural networks where 
the reference vectors are ordered spatially. A neighborhood 
set N, is defined around each winner w,. At  each learning 
step, all the reference vectors within A’, are updated, whereas 
reference vectors outside Arc are left intact. When the learning 
procedure is l ed  to equilibrium, it results in a partition of the 
domain of input vector-valued observations into regions called 
Voronoi neighborhoods. The reference vector of each Voronoi 
neighborhood is the centroid, e.g., the sample arithmetic mean 
of all input vectors belonging to that neighborhood. 

Self-organizing neural networks, like LVQ and its variants 
(as the one discussed in this paper), constitute an attractive 
alternative to neural network architectures that involve hidden 
layers and are trained by using the backpropagation algorithm. 
One appealing characteristic of  LVQ is its simplicity. It is a 
K N  consisted of a single layer modifiable connections. For 
example, the learning procedure of  LVQ is much simpler than 
backpropagation algorithm. In addition, its learning procedure 
is much faster than that of three layer networks that have the 

same total number of neurons (hidden neurons plus output 
ones) with the number of output neurons of LVQ, because 
the time-consuming training of hidden neurons is omitted. 
Furthermore, the important problem of selecting the number 
of hidden neurons that poses an additional difficulty is not 
faced  in  the  case of  LVQ network. Another attractive feature 
of  LVQ is that it can be used both for unsupervised as well as 
for supervised learning. This is not the case for networks with 
hidden layers. The  later implement only supervised learning, 
Le., they require the availability of a reference signal that is 
used as  a teacher. 

In Section Il it has been proven that the maximum likelihood 
estimator of the original noiseless image is the Lz mean both 
in the case of pure multiplicative noise (3) as well as in the 
case of signal-dependent Gaussian noise ( 5 ) .  This observation 
motivated us to modify the standard LVQ algorithm so that 
the reference vectors correspond to the LZ mean instead of the 
sample arithmetic mean. In the sequel, the proposed Lz LVQ 
will be described, its convergence properties will  be studied 
and an illustration of the convergence analysis for Rayleigh 
distributed input vectors will be treated. 

A. Derivation of the L2 LVQ Algorithm 

Let us denote by wi the ( N  x 1) vector having as elements 
the weights comprising the reference vector w, squared, i.e., 
w: = (wfr, wb,. . . , w ~ . \ , ) ~ .  Let also x’ denote the following 
vector x’ = (x?,xi,. . . .xi,)’. Our goal is to place w: into 
the input space RN in such a way that they minimize the mean 
squared value of a reconstruction error of the form 

where K RN is the domain of the vector-valued observa- 
tions x, dx is the  volume differential in the R“ space and 
w: is the winner vector. The winner vector is determined by 
minimizing 

JIx‘ - w:ll = min{/lx’ -will} (21) 

where 11 1 1  stands for the Euclidean distance metric. If the 
stochastic-gradient-descent algorithm [30] is applied to the 
minimization of E in the wb space and the vectors of square 
weights are updated as blocks concentrated around the winner, 
the following recursive relations for updating the vectors of 
square weights yield 

z 

wl(t + 1) = wi(t) + CY(t)[X’(t) - wi(t)] vi E ,VC(t) 
wi(t + 1) = wi( t )  vi f! N,(t)  (22) 

where u(t)  is a variable adaptation step defined as [21, 291 

a(t)  = 0.2 1 - - [ m:ooj 
The updating (22) implements the unsupervised learning of the 
Lz LVQ neural network. It can be seen that (22) resembles the 
following simple recursive formula for the computation of the 
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L2 mean of ( N  + 1) observations based on the Lz mean of 
the past N observations and the current one 

The recall  procedure of the Lz LVQ is used to determine the 
class C, represented by 5 to which the vector of squared 
input observations is most closely associated with, i.e. 

x ( t )  E C, if lIx' - = r&{llx' - qll} (25) 
a 

where denotes the vector of squared weights of the 
i-th reference vector after the convergence of the learning 
procedure. 

Having described the L2 LVQ neural network, we proceed 
to the study of its convergence. Our aim is  to  derive the 
expected stationary state of the network, to find bounds on 
the rate of convergence and conditions on  the adaptation step 
as well. 

B. Convergence  Analysis of L2 LVQ Neural  Network 
The learning procedure of the LVQ has been represented 

by a Markov process whose states are the weight vectors 
wi [31]. The Fokker-Planck differential equation describing 
the learning process in the vicinity of the equilibrium in 
terms of the distribution of weight-error vector has been 
derived. The average weight-error vector and  the weight-error 
correlation matrix have been determined as well. A necessary 
and sufficient condition which guarantees convergence of the 
learning procedure to an asymptotic equilibrium map has also 
been proposed. The analysis presented in this paper extends 
the work reported in [31]. 

First, let us define the two types of convergence to  be 
examined in the sequel. Lz LVQ network converges in the 
mean, if the average vector of squared weights converges to 
the expected stationary state of the network as t approaches 
infinity. Lz LVQ network converges in the mean square, if 
the trace of the correlation matrix of the squared weight-error 
vectors tends to zero or remains bounded as t approaches 
infinity. Both convergence in the mean and  in  the mean square 
will  be studied for L2 LVQ. The case of a constant adaptation 
step a( t )  = (Y will be considered for mathematical simplicity. 
Generalization for the optimal adaptation step sequence a( t )  = 
l / t  [31] will also be considered. We shall confine ourselves 
to the analysis of a single-winner Lz LVQ network, i.e.. 
N c ( t )  = { c } .  Our objective is to derive bounds on the overall 
time constant for any squared weight and  on the trace of the 
correlation matrix of the squared weight-error vectors. 

Let Vi(W') denote the Voronoi neighborhood of the i-th 
output neuron with respect to the distance metric (21), i.e. 

Vi(W') = {x E x c 7 E " I  llx' - w:lI 

5 I ~ X '  -will E = l,...,p,l# i} (26) 

where W' = W ' T I W ' : ~  ' '  iw'p')'. The  expected stationary 
state of the network is given by [31] 

( 

It  is seen that (27) gives an implicit definition of the stationary 
state of Lz LVQ. In the sequel, it will be assumed that wi is 
known and our attention will be focused on the study of the 
rate of convergence to thestationary state. 

Let uc(t) = wi - w: denote the (Ar x 1) vector of 
squared weight errors at time instant t .  The average squared 
weight-error vector are given by E[U( t ) ]  = Y(t)E[U(O)] 
with U(t) = (uT(t) I . . .  I u;(t))=, where the expectation 
is with respect to the distribution of the deviations of the 
squared weights from the stationary state [31], [32]. Y ( t )  is 
the following ( N p  x N p )  matrix 

Y ( t )  = exP(-B La(C)dC)  (28) 

where B is  a ( N p  x N p )  coefficient matrix which can be 
partitioned as follows 

Each Bkl k ,  E = 1,. t . p  is a ( N  x N )  square submatrix with 
mn-element given by 

[Bkl(W)lmn = [u::,,-Fk(W') a+,, a "  + p h ( W ' ) 6 ( k  - E;m - n) 

where 

and S(k-Z,  rn-n) is the 2-D Kronecker-delta function. Let us 
assume that (the  real) matrix B is symmetric. It must be noted 
that there is no such a guarantee in the general case of a process 
described by a multivariate linear Fokker-Planck equation [32]. 
Hopefully, the assumption that matrix B is symmetric is valid 
in our case (Le., the coefficient matrix B defined in (29)-(31) 
and evaluated for the contaminated Rayleigh distribution) [39]. 
If B is symmetric, it is diagonalizable and possesses real 
eigenvalues [34]. Let Xi, i = 1: ' '  , q :  q 5 N p  be the distinct 
eigenvalues of matrix B and pi be the degree of multiplicity 
of the eigenvalue Xi where 

Y ( t )  defined in (28) is a ( N p  x N p )  matrix which can be 
evaluated as follows 

N P  

Y ( t )  = xyl(t)B"- '  (33) 
,=l 

where Bo = I is the ( N p  x N p )  identity matrix and y i ( t ) ,  i = 
1,. . . , Np are scalar functions to be- determined. By applying 
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Caley-Hamilton's theorem we obtain [35] 

y,(t)X;-l = exp(-X, It .(C)dC) j = 1,. . , r Q. 
."p 

i = 1  
(34) 

In  the special case that matrix B possesses N p  distinct 
eigenvalues, the application of Sylvester's theorem yields the 
following equation for Y ( t )  [35] 

I 

(35) 
In  the following, we shall assume that the eigenvalues of 
matrix B are distinct. Therefore, we shall confine ourselves 
to (35). For a constant adaptation step a(t)  = a, (35) is 
rewritten as follows 

whereas in the general case of a variable adaptation step 
c t i t )  = l / t  

(37) 

provided that X, > 0 ,  i = 1. . . . , N p .  
By combining the definition of E[U(t)] and (36)-(37), 

it is seen that a necessary and sufficient condition for the 
convergence in the mean is matrix B to be positive definite, 
i.e.. X, > 0. The convergence is negative exponential in 
the case of a constant adaptation step. The convergence is 
hyperbolic when a( t )  = l / t .  In the former case, a cannot be 
bounded by the analysis made thus far. 

For a constant adaptation step cy, any squared weight 
converges in the mean to the stationary state (27) as  a weighted 
sum of negative exponentials of the form exp(-Xiat) ,  because 
Y i t )  is a square matrix of negative exponentials. The time ~i 
required for each term to reach to l / e  of its initial value is 
given by ri = l / (cyXi) .  By using the same reasoning as in the 
adaptive filter literature [36, 371, the overall time constant T= 

for any average squared weight can  be bounded as follows 
1 

-5Ta5- (38) 
QXmax CYXrnin 

where Ami, and X,,, denote the smallest and largest eigen- 
value of matrix B. 

The study of  the convergence in the mean square will be 
focused on the case of a constant adaptation step for math- 
ematical tractability. L e t  C( t )  denote the correlation maaix 
of  the squared weight-error vectors. C(t )  is of dimensions 
(-\-p x N p )  and  has also the structure of (29) where the 
(4-x:V) square submatrices C,,( t ) ,  k ,  1 = 1,. . . ,pare defined 

1 

by 

c ~ ( t )  = E [ ~ ( t ) u T ( t ) ] .  (39) 

C ( t )  can be evaluated as follows [32] 

C ( t )  = Y(t)[C(O) t crz~tY( i ) - 'DiY( i ) - l ) 'd i ]Y( i j '  
(40) 

where C(0) is the initial correlation matrix and D is a 
( N p  x N p )  matrix having the structure (29) with only the 
diagonal submatrices being non-zero, i.e., Dkl = O , v x ~ :  k # 
1. The  mn-element of Dkk is given by 

+J,,,., zkz : f ( x )dx  (41) 

It  can be seen that coefficient matrix D is symmetric as a 
result of its definition (41). Furthermore, it can be proven that 
matrix D is positive semidefinite in any case [33]. It is known 
[32] that the following equation holds for the time-derivative 
C ( t )  of the correlation matrix C ( t )  

C ( t )  = -a[BC( t )  + C ( t ) B T ]  + a2D.  (42) 

Let J ( t )  denote the trace of the correlation matrix C ( t )  

r o  1 

It can be shown that J ( t )  is bounded as follows 

where J ( 0 )  = tr[C(O)]. The derivation of inequalities (44) is 
given in the appendix. It is seen that if the adaptation step 
is constant, we can only require J ( t )  to remain bounded. Let 
Jb denote the maximum allowed deviation of J ( t )  from zero 
when the exponential factor in the upper bound of (44) has 
practically converged to zero, Le., at t = 4rkax. A sufficient 
condition for J ( t )  to remain bounded is given by 

In the following, an illustration of the convergence analysis 
will be treated. 

C. Illustration of the Convergence Analysis fo r  Mutually 
Independent 2 - 0  Rayleigh Distributed Observations 

We shall confine ourselves to a network having tWo neurons 
in both layers for mathematical tractability. Such an approach 
leads to analytical results expressed in closed formulae and 
allows an easy interpretation. Let w: = ( w : ~ ,  w : ~ ) ~  and 
wh = ( W ; , , W ; ~ ) ~  be the vectors of squared weights for 
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the tm’o output neurons. 2-D input observations will be mu- 
tually independent and will obey the contaminated Rayleigh 
distribution 

The independence assumption is  used only to facilitate the sta- 
tistical description of 2-D input observations having Rayleigh 
marginal distributions. The contaminated Rayleigh distribution 
has  been chosen because it is the simplest way to produce two 
clusters in the 2-D Euclidean space R2. The definition of the 
Voronoi neighborhoods of the output neurons (26) leads to the 
following equations 

Depending on the sign of the quantities w : ~  - w&, wT2 -, 
x:& and a(W’) all possible configurations for the Voronol 
neighborhoods b’1 (W’) and V2( W‘) are listed in Table I. The 
upper inequality symbol refers to VljW’) whereas the lower 
one to L$(W’). In the following. we shall assume that 

w : ~  > wi l  and wf, < (49) 

Inequalities (49) guarantee good separation between the two 
clusters. Let €1 = 1 - and e2 = 6. For the contaminated 
Rayleigh distribution (46) we have 

and 
2 

By evaluating (50), (51) at W’ = w’ and substituting into 
(27), it can be proven that the stationary state is given by 
- 
~ 2 ,  $3 = 202. ‘3 = E[z: I X E V i ( w ’ ) ]  i , j  = 1: 2 (52) 

provided that the following inequalities are satisfied 

u;1 >> u;1% u:2 << u;2 

U:z‘& *: Of1 > U:1Ui1 < U i 2 ,  U:1 <( hi,. (53) 

The first two inequalities in (53) are implied by (49). Having 
derived the stationary state of the L2 LVQ neural network for 
the contaminated Rayleigh distribution (46), we proceed to the 
computation of matrix B. For I .  n = 1 . 2  by using (50) and 
(51) we obtain 

and 

Therefore, only the derivatives on the right hand side of (54) 
and (55)  must be evaluated. The computation of  the above- 
mentioned derivatives can be found in [39]. By evaluating 
the derivatives at W‘ = W’ and substituting into (30) 
for k , l  = 1 , 2  and m,  n = 1! 2, a symmetric matrix B 
results. Therefore, B is diagonalizable and it possesses real 
eigenvalues. Let us consider the specific example: = 121, 
uf2 = 4, cr& = 9, ~ 2 2 ~  = 144 and E = 0.2. It can be easily 
verified that (53) are fulfilled. Consequently, the stationary 
state of the LZ LVQ neural network is described by (52).  The 
eigenvalues of matrix B can be computed by a multitude of 
numerical algorithms [38]. A two-step procedure has been used 
here. First, Householder’s method is applied to reduce B to a 
symmetric tridiagonal matrix. Then QL algorithm with implicit 
shifts has been used to determine the eigenvalues of the real 
symmetric tridiagonal matrix. The eigenvalues of matrix B for 
the above-mentioned choice of parameters are listed in Table 
11. The time constant ri associated with each eigenvalue X i  
can  also be found in Table I1 for a = 0.01. 

Although in many practical cases an assumption of a Dirac- 
delta distribution for the initial vector of squared weight-errors 
would suffice (i.e., E[u,(O)] = u,(O)), we shall compute 
E[ui(t)],i = 1,2  by ensemble averaging U(t)  = Y(t)U(O) 
over an adequate number of independent random selections 
of the initial squared weights wTj(0). i. j = 1 .2 .  We have 

- 
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2-D VORONOI NEIGHBORHOODS 
TABLE I 

EIGWVALLXS OF M A T R I X  B AND ’ h E  CONSTANTS CORReSFUNDlNC TO THEM 
TABLE I1 

2.000 

- I2.000 
]OW 15GO IdC3 2dCP 3cbC 

1 t r . t b  

Fig. 1. Plot of ensemble-averaged squared weight errors E[u, , ( t ) ]  
i,j = 1 , 2  Venus t .  

used 200 independent random selections of the initial squared 
weights in our study. The initial squared weights w&(O) and 
w & ( O )  are chosen to be uniformly distributed in  an interval 
12a& around the stationary state (52) .  Similarly, &(O) 
and ur&(O) are uniformly distributed in  an interval f2aT2 
around the stationary state (52). Consequently, we have (56), 
which is shown at the bottom of the page. The ensemble- 
averaged squared weight errors E[u,)(t)] at time t over all 
these 200 independent trials are plotted in Fig. 1. The overall 
time constants T~ for the squared weights measured using 
the procedure outlined above are given in Table III. By the 
inspection of Tables 11-III, the validity of the  lower and upper 
bounds derived in (38) can easily be deduced. It is seen the 
tint neuron wi = ulT2)T converges in the mean to 
the stationary state at a rate being close  to  the lower bound 
of (38). The convergence in the mean of the second neuron 
w; = (I&, w;2)T is slower than that of the first neuron. 

Subsequently, we shall examine the convergence of the 
Lz LVQ in the mean square for the contaminated Rayleigh 
distribution (46). To do so, the computation of matrix D having 
elements defined in (41) will be treated. The evaluation of the 
integrals appearing in the first three terms of (41) has already 
been done in (50) and (51). Thus, only the integral of  the last 
term remains to be evaluated for k = 1,2 and m,n = 1,2. 
The evaluation of the remaining integral can be found  in [39]. 
If the inequalities (53) are satisfied, it can  be shown [39] 

tr[D] x 4{(1 - E ) [ U ? ~  + + e[& + c,“,]} 
= (1 - ~ ) E [ X ’ ~ X ’  I X E V l ( W l ) ]  

+ ~E[x’=x’ 1 X E V z ( W ) ) ] .  
(57) 

200- 

I :  
i loo: 

150- 

u :  
i i  50 - 

0 7 . , 1 1 , , , , , , , . . , , ,  , , / , , , , , , , , ,  , , , , ,  , , , , , , , , , ,  
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Fig. 2. Plot of the trace of the  correlation mamx J i t )  versus t 

This trace is equal to the total power of squared input obser- 
vations. In order to demonstrate the convergence of the trace 
of the correlation matrix, an initial correlation matrix C(0) 
has been constructed by computing the ensemble average of 
u~(O)uT(O) over 200 independent random selections of the 
initial squared weights ~ ! ~ ( O ) , i ; j  = 1,2. The correlation 
matrix at  each time instant t has been computed numerically. A 
plot of the trace of the correlation matrix J ( t )  is shown in Fig. 
2. As can be seen from (a), the overall time constant for J ( t )  
is expected to  lie between lower and upper bounds two times 
smaller than those in (38). By inspecting Table 11, we conclude 
that the lower  time  constant will be about 60 iterations and the 
upper one will be 1446 iterations for the parameter values that 
have been used. The measured time constant in Fig. 2 is found 
to be 154 iterations. Thus, inequality (44) is verified. 
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Fig. 3.  Simulated US B-mode image filtering results. (a) Simulation of a homogeneous piece of tissue  with a circular lesion in  the 
middle. @) Grey level histograms of the pixels belonging to the lesion and to the  background mas. (c) Output of 5 x 5 maximum 
likelihood filter. (d) Output of signal-adaptive maximum llkellhwd filter. 

IV. EXPFMMENTAL RESULTS of the proposed algorithms on real ultrasonic images of liver. 
The proposed algorithms have been applied both to simu- 

lated US B-mode data and displayed US image data for  speckle 
suppression and image segmentation. In  the  case of simulated 
B-mode data, our experiments have been performed on  a set of 
images showing an homogeneous tissue of size 4 cm X 4 cm 
with a lesion in the middle of diameter 2 cm. Such  a simulated 
US image is shown in Fig. 3(a).  The lesion differs from the 
background only in reflection strength. The number density 
of scatterers in the lesion and the background is 5000/ cm3. 
In addition, there is no change in second order statistics. The 
amplitude of reflections in the lesion is  either 3 dB or 5 dB 
stronger than the reflection strength in the background. In the 
case of displayed image data, we have tested the performance 

Such an ultrasonic image is shown in Fig. 4(a). 
Fig. 3(a) shows an original simulated image. The grey level 

histogram of the image is plotted in Fig. 3(b). It can be seen 
that it is very close to the Rayleigh pdf. The performance of the 
signal-adaptive ML filter in speckle suppression is compared 
to  the result obtained by filtering the original image using the 
arithmetic mean filter, the median and the non-adaptive MI., 
estimator of a constant original signal described in Section 
I.B. Due to lack of space only the filtered output of the 
nonadaptive ML estimator is shown in Fig. 3(c). Since signal- 
adaptive filters adjust their window size between 3 x3 near 
edges  and 1 1  x11 in homogeneous regions. in order to make 
a  fair comparison we have chosen a window size 5 x5 for  the 



nonadaptive spatial filters.  It  has  been found that the arithmetic 
mean  filter blurs the image to a point where important image 
details such as edges are suppressed along with speckle. 
I t  has  also  been  verified  that median filter fails to comply 
with  the requirements (e.g. noise reduction and image detail 
preservation) stated in the Introduction. Thus, median filter 
is also inappropriate for speckle suppression. ML estimator 
gives relatively better results from the arithmetic mean filter 
of the same window size. This is explained by its optimality for 
multiplicative Rayleigh speckle noise as analyzed in Section 
1I.B. However, the  filtered image also suffers from blurring. 
Image blumng may  be attributed to  the fact that the filter 
treats  similarly  both the lesion signal and the background. Fig. 
?(d) illustrates  the  use  of  the proposed signal-adaptive ML 
filter for speckle suppression. Since median is not the optimal 
estimator for Rayleigh pdf, the signal-adaptive filter which is 
based  on  the  median  filter (Le., the signal-adaptive median 14) 
is  not expected to give better results than the proposed signal- 
adaptive ML filters.  It  is seen that  the signal-adaptive ML 
filter performs less filtering  in  the middle of the image where 
an  increase  in  the  local  signal activity (Le., local SNR) occurs 
due to the presence of lesion. At the same time, it performs 
a considerable amount of smoothing in  the background areas 
of the image as is desirable. 

Another  set of images is obtained by  filtering real ultrasonic 
images of liver. The original  ultrasonic image of liver shown 
in Fig. 4(a) has been  filtered by a non-adaptive L z  mean 
filter (Fig. 4(b)) as  well  as its signal-adaptive counterpart (Fig. 
~ ( c J ) .  Again, i t  is seen  that  the signal-adaptive Lz mean gives 
the  best results. Not  only edges but additional diagnostically 
significant image details are also preserved. 

A LVQ based  on  the L2 mean has been created using 49 
neurons at the first  layer corresponding to input patterns taken 
from a block of 7x7 pixels. The second layer consists of 2 to 
8 neurons corresponding to the output classes. A 7x7 window 
scans the image in a random manner to feed the network 
with input training patterns. During the recall phase, the 7x7 
window scans the entire image in order to classify each pixel 
into one of p-many (JI = 2. ' ' .8) classes. A parametric image 
is created containing the class membership of each pixel. The 
ability of the Lz LVQ to  perform segmentation is shown in 
Figs. 5 and 6 .  Fig. 5 illustrates  the classification performed by 
the LZ LVQ on the simulated image. Two output classes have 
been  used representing background and lesion respectively. 
Fig. 6 illustrates  the segmentation of a real ultrasonic image 
of liver in six classes by using  the LZ LVQ. Each class is 
shown in Fig. 6 as a distinct image region having a grey value 
ranging  from  black  to  white. The more white a region is, the 
more important is considered to  be.  In general, important are 
the  regions having strong signal activity  (e.g., blood vessel 
boundaries, strong reflectors). Such important regions should 
be  preserved  for diagnostic purposes. Regions having rich 
texture are shown as light grey. In these regions, a trade off 
between speckle suppression and  texture preservation should 
occur by  limiting  the maximal filter window size. Image 
regions where speckle dominates are shown dark. In these 
regions, speckle should  be  efficiently suppressed by allowing 
the  filter window to reach  its maximum size. 
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Fig. 4. Real ultrasonic image filtering  results. (ai Real ultrasonic image of 
liver recorded using 3 MHz probe (b) Output of 5 x 3 maximum  likelihood 
filter. (c)  Output of signal-adaptwe maximum Iikehhood filter. 

The NN approach to US image segmentation presented in 
this work  has been compared to the following simple seg- 
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Fig. 5 .  Segmentation of a simulated US E-mode image by using 
Lz LVQ NN 

mentation techniques that are usually encountered in practice: 
( 1) Image thresholding without any preprocessing. (2 )  Image 
tiltering by a 7 x 7  median tilter and thresholding the filtered 
Image. (3) Image filtering by a 7 x 7  arithmetic mean filter 
and thresholding the filtered image. (4) Image filtering using 
a 7 x 7  ML estimator and thresholding the filtered image. 
We have compared the performance of the above-described 
Ftrategies using the probability of detection (Po) and the 
probability of false alarm ( P F )  as figures of merit. The 
probability of detection corresponds to the percentage of pixels 
of the image in the lesion area that have been correctly 
classified. The probability of false alarm corresponds to the 
percentage of pixels belonging to the background of the image 
that were erroneously classified as belonging to the lesion. 
The comparison is based on the probability of detection PD 
which has been calculated by linearly interpolating between 
the experimental values of probabilities of detection that 
correspond to the two closest probabilities of false alarm  to 
the one of Lz LVQ. The results obtained for  the various 
classification methods are summarized in Table IV. Two 
simulated images have been used. These images differ in the 
amplitude of reflections in the lesion which is either 3 dB 
or 5 dB stronger than that in the background. It is seen that 
an almost 16.7% higher probability of detection is obtained 
by using the L Z  LVQ NN instead the ML estimator (4) of 
dimensions 7 x 7 in the one case. In the other, Lz LVQ attains 
a 2.7% higher probability of detection than the ML estimator 
(4) of dimensions 7 x 7 .  In most cases, the total number of 
training patterns needed for sufficient training is about 10% 
of the image size. These pixels may not come  from the same 
image. A set of images may be used in the learning phase 
resulting in a network that possesses better generalization 
properties. The number of iterations required in the learning 
phase is about 1000. This results in a computationally intensive 
training phase. However, training can be done off-line only 
once for a whole set of images, thus reducing the processing 
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Fig. 6. Segmentation of real ultrasonic image of liver by uslng 
L? LVQ N N .  

time required for segmentation of the whole set. Also. as a 
general rule, it must be noted that the number of iterations 
which are necessary in the leaming phase is inversely related 
to the number of training patterns used. 

Subsequently, the performance of the modified signal- 
adaptive ML filter that utilizes segmentation information 
provided by the Lz LVQ prior to filtering process is tested. 
Our purpose is  to combine signal-adaptive filtering with the 
ability of the Lz LVQ  to segment ultrasonic images in classes 
representing various tissue and lesion characteristics. The 
result of the overall filtering process using the modified 
signal-adaptive ML filter is presented in Fig. 7 .  Parameter 
q has been equal to 0.5 in (19). In Fig. 7(a), it is seen that 
the image details are better preserved together with good 
speckle attenuation. For example in the upper left portion of 
Fig. 7(a), white blobs that are several speckle cells large are 
preserved in the background. Furthermore, it is seen in Fig. 
7(b) that the proposed modification aids the filter in preserving 
better the edge information as well as acknowledging areas 
of the image containing valuable information that should not 
be filtered. 

V. CONCLUSION 

Two novel techniques for ultrasonic speckle suppression and 
ultrasonic image segmentation have been proposed. Ultrasonic 
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Fig. 7. Results obtained by using segmentation in conjunction with filtering. 
(a)  Simulted US B-mode filtered image. (b) Filtered ultrasonic image of liver. 

speckle suppression has been performed by using signal- 
adaptive filters based on the maximum likelihood estimator of 
the original (noiseless) signal for multiplicative noise model 
as well as for signal-dependent one.  The ML estimator for 
the signal-dependent speckle model has been derived. It  has 
been shown that it closely resembles the Lz mean which has 
been proven to be the ML estimator of the original signal for 
the multiplicative noise model previously. Motivated by this 
observation, a modification of the Learning Vector Quantizer 
neural network called Lz LVQ has been proposed. The con- 
vergence in the mean of the weights to the expected stationary 
state has been studied. The convergence of the trace of the 
correlation matrix of the weight-error vectors has also been 
considered. Lower and upper bounds for the time constants of 
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the weights as well as for the trace of the correlation matrix 
have been derived. The ability of the L2 LVQ to segment 
ultrasonic images in regions has been combined with signal- 
adaptive filtering in order to allow image detail preservation as 
well as maximum speckle reduction in homogeneous regions. 
Experimental results show that segmentation combined with 
filtering leads  to higher speckle reduction without loss of 
image detail, Le., better edge preservation and more accurate 
lesion detection than non-adaptive spatial filtering. 

APPENDIX 

Differentiating (43) with respect to t and assuming that 
B = BT, we obtain 

i ( t )  = -Patr[BC(t)]  t a 2 t r [ D ] .  ( 5 8 )  

Let A be a diagonal matrix consisting of the eigenvalues of B 
and Q be the unitary matrix consisting of the eigenvectors 
associated with these eigenvalues. B can be expressed as 
B = QAQT [34]. Furthermore, let K(t)  = QTC(t)Q. In 
general, K(1) is not a diagonal matrix. It can be proven that 

tr[BC(t)] = t r [QAK(t)Qr]  = tr[Q'QAK(t)] = t r [AK(t)]  
(59) 

where the following identities have been  used 

tr[AB] = t r [BA]   QTQ = I. (60) 

After some trivial algebraic manipulations, t r  [AK( t ) ]  can be 
rewritten as 

l=1 m = l  i = l  

Consequently, t r [AK(t)]  can be bounded as follows: 

I = 1  m=l  i = l  

By using (a), (43) we obtain 

Therefore 

-2aArnaxJ(t)  + aZtr [D]  5 j ( t )  I -2aX,i,J(1) + a2t r [D]  
(64) 

where Amin, Amax denote the smallest and largest eigenvalue 
of matrix B respectively. By integrating (a), the inequalities 
(44) result. 
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