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Robust and adaptive training algorithms aiming at enhancing the capabilities of self-organizing 
and Radial Basis Function (RBF) neural networks are reviewed in this paper. The following 
robust variants of Learning Vector Quantizer (LVQ) are described: the order statistics LVQ, the 
Lz LVQ and the split-merge LVQ. Successful application of the marginal median LVQ that 
belongs to the class of order statistics LVQs in the self-organized selection of the centers in RBF 
neural networks is reported. Moreover, the use of the median absolute deviation in the 
estimation of the covariance matrix of the observations assigned to each hidden unit in RBF 
neural networks is proposed. Applications that prove the superiority of the proposed variants of 
LVQ and RBF neural networks in noisy color image segmentation, color-based image 
recognition, segmentation of ultrasonic images, motion-field smoothing and moving object 
segmentation are outlined. 

Keywords: Self-organizing neural networks; Kohonen's self-organizing feature map; Learning 
Vector Quantizer; Order Statistics Learning Vector Quantizers; L2 Learning Vector Quantizer; 
Split-Merge Learning Vector Quantizers; Median Radial Basis Function Neural Network 

1. INTRODUCTION 

Neural networks (NN) is a rapidly expanding research field which attracted 
the attention of scientists and engineers in the last decade. A large variety of 
artificial neural networks has been developed based on a multitude of 
learning techniques and having different topologies [I]. One prominent class 
of neural networks is the Learning Vector Quantizer (LVQ) or Kohonen's 
Self-organizing Feature Map [2]. Another class that is closely related to 
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184 C. KOTROPOULOS et al. 

self-organizing neural networks are the Radial Basis Function (RBF) 
networks, because the selection of the centers of RBFs can be done in a self- 
organized fashion. 

In this paper, we shall describe robust and adaptive training algorithms 
that have been developed the past three years and aim at enhancing the 
capabilities of the self-organizing and the RBF neural networks [3- 121. 

To begin with, let us briefly describe our motivation and our research 
objectives. The observation that the standard LVQ does not update the 
winner neuron towards the optimal estimator of location (i.e., the maximum 
likelihood estimator of location) for the multivariate distribution of input 
observations motivated us to propose two variants of LVQ, namely: 

1. The so called order statistics LVQ which relies on multivariate data 
ordering principles [3 - 51. 

2. The L2 LVQ which is based on the L2 mean that has been proved to be 
the maximum likelihood estimator of the noiseless observations both in 
the case of pure multiplicative noise as well as in the case of signal- 
dependent Gaussian noise in ultrasonic images [6, 161. 

The class of order statistics LVQ encompasses the following two LVQ 
variants: the marginal median LVQ and the vector median LVQ. The 
properties of these variants as well as potential applications are described in 
Section 2. 

The L2 LVQ is another example of self-organizing neural network design 
whose weight vectors correspond to the maximum likelihood estimator of 
the input observations instead of the arithmetic mean of these observations. 
The application of L2 LVQ neural network in the segmentation of ultrasonic 
images and an overview of its properties is presented in Section 3. 

The need for an outlier rejection mechanism in self-organizing feature 
maps in addition to a fusion algorithm when more than one LVQ's are 
trained on subsets of the training set has led us to incorporate two tests in the 
learning procedure of the standard LVQ [8, 91, namely a statistical test that 
determines if cluster splitting is statistically significant, and, additional 
statistical tests that decide if cluster merging is acceptable. The proposed 
class of split-merge LVQ's is outlined in Section 4. It is shown that it 
possesses the following capabilities: (a) It yields the optimal number of 
output neurons. (b) It rejects the outliers in the formation of minimum 
distortion partition. (c) It enables the implementation of training parallelism. 

In the area of RBF neural networks, a novel on-line learning algorithm 
based on robust estimators has been proposed. The so-called Median Radial 
Basis Function neural network (MRBF) uses the marginal median LVQ in 
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SELF-ORGANIZING NEURAL NETWORKS 185 

the estimation of the RBF centers [I 1, 121. The Median Absolute Deviation 
(MAD) has been used in the estimation of the covariance matrix of the 
observations modeled by each hidden unit. A fast implementation based on 
data histograms is derived for the MRBF. The properties of the MRBF 
neural networks and an application of the MRBF neural network in the 
motion field segmentation is presented in Section 5. 

Finally, conclusions are drawn and future research objectives are high- 
lighted in Section 6. 

2. ORDER STATISTICS LEARNING VECTOR QUANTIZERS 

Unsupervised Learning Vector Quantizer (or Kohonen's self-organizing 
feature map) is an autoasssociative nearest-neighbor classifier which 
classifies arbitrary patterns into classes using an error correction encoding 
procedure related to competitive learning [2]. In order to make a distinction 
between this algorithm and the proposed LVQ variants that are based on 
multivariate order statistics, the LVQ algorithm will be called linear LVQ 
algorithm hereafter. The updating equations for the weight vectors of LVQ 
are given by: 

where a(n) is the adaptation step and N,(n) denotes a neighborhood 
around the winner w,, i. e., the vector for which the following property 
holds: 

It can easily be seen that the reference vector for each class i =  1,. . .,K at 
time n + 1 is a linear combination of the input vectors xu) j= 0,. . ., n that 
have been assigned to class i. Moreover, it can be shown that in the special 
case of only one class and for the adaptation step sequence a(n) = I/(n + I), 
the winner vector is the arithmetic mean of the observations that have been 
assigned to the class (i.e., the maximum likelihood estimator of location). 
Neither in the case of multiple classes that are normally distributed nor in 
the case of non-Gaussian multivariate data distributions the linear LVQ is 
the optimal estimator of the cluster means. In general, linear LVQ and its 
variations suffer from the following drawbacks: 
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186 C. KOTROPOULOS et al. 

(i) They do not use optimal estimators for obtaining the reference vectors 
wi, i= 1,. . ., K that match the probability density function ( pdf) of each 
class. 

(ii) They do not have robustness against erroneous choices for the winner 
vector, since it is well known that linear estimators have poor 
robustness properties [13]. 

(iii) They do not have robustness against outliers that may exist in the 
vector observations. 

In order to overcome these problems, we propose Learning Vector 
Quantizer variants that are based on multivariate order statistics [14]. It is 
well known that there is no unambiguous, universally agreeable total 

T ordering of N p-variate samples XI,. . . , x ~  where xi=(xli, XZ~,. . .,xpi) , 
i = 1 ,. . ., N. The following so-called sub-ordering principles are discussed in 
[14]: marginal ordering, reduced (aggregate) ordering, partial ordering, and 
conditional (sequential) ordering. In our experiments we have used the 
marginal and the reduced subordering principles. In marginal ordering, the 
multivariate samples are ordered along each one of the p-dimensions 
independently, i.e., 

The marginal median has the following definition: 

It can be used in the following way in order to define the marginal median 
LVQ. Let us denote by x(n) the current observation and by Xi(n) the set of 
the vector observations that have been assigned to each class i, i =  1, . . . , K 
until time n-1. We find at time n the winner vector w,(n) that minimizes 
Ilx(n) - wi(n)ll, i = 1,. . . , K. The marginal median LVQ (MMLVQ) up- 
dates the winner reference vector as follows: 

w, (n + 1) = median {x(n) U X,(n)). (5) 

The median operation is given by (4). Thus, all past class assignment sets 
Xi(n), i = 1, . . . , K are needed for MMLVQ. MMLVQ needs the calculation 
of the median of data sets of ever increasing size, as can be seen from (5). 
Thls may pose severe computational problems for relatively large n. 
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SELF-ORGANIZING NEURAL NETWORKS 187 

However, for integer-valued data, a modification of the running median 
algorithm proposed by Huang et al. [15] can be devised to facilitate median 
calculations by exploiting the fact that the marginal median of the already 
assigned samples Xi(n) is known. 

Another definition of the multidimensional median (based on R-ordering 
principles) is the so-called vector median. The vector median is the 
observation that has the minimum sum of distances from all the remaining 
observations, i.e., 

The vector median LVQ (VMLVQ) uses the following formula to update the 
winner vector wc(n) at step n: 

w,(n + 1) = vector median {x(n) U Xc(n)) (7) 

where Xi(n) is again the set of vector-valued observations that have been 
assigned to class i. The vector median operator in the previous expression is 
the one defined in (6).  Vector median LVQ keeps tract of all its history and 
therefore all data samples have equal contribution to the reference vector 
update procedure. In the case of non-stationary data, we can evaluate the 
vector median using a moving window to discard the older samples as new 
observations become available. 

The expected stationary state of the MMLVQ and the VMLVQ has been 
derived and compared to the expected stationary state of the linear LVQ 
[4,5]. Both MMLVQ and VMLVQ have been proved robust against 
outliers. Moreover, they perform well in cases where overlapping clusters 
exist. Potential applications of the order-statistics LVQ's in noisy color 
image quantization have been reported in [3]. 

A situation frequently encountered in industrial computer vision 
applications is color-based recognition of objects having a simple shape. 
The following experiment provides strong evidence of the superiority of 
MMLVQ in such applications. Let us suppose that each of the five 
rectangles in the synthetic image (of dimensions 256x256) presented in 
Figure l a  corresponds to an object having a distinct and a priori known 
color. The RGB triplets of the five objects can be seen in Table I. It is worth 
noting that the five colors are very close to each other in the RGB color. 
space. Let us also suppose that the five objects present in the image are parts 
of a larger set of n objects (9 in our case). This image has been corrupted, 
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188 C. KOTROPOULOS et a[. 

FIGURE 1 Application of linear LVQ and marginal median LVQ in color-based object 
recognition in the presence of mixed additive Gaussian and impulsive noise. (a) Orignal image. 
(b) Noisy image used in the learning phase. (c) MMLVQ recall image. (d) Linear LVQ recall 
image. 

TABLE I RGB coordinates of the five objects along with the corresponding output reference 
vectors for the MMLVQ and LVQ networks 

Original M M L  VQ L v Q  

R G B R G B R G B 

independently on each channel, by adding mixed zero-mean white Gaussian 
noise having a = 9 and impulsive noise having probability of impulses (both 
positive and negative ones) 4%. The noisy image can be seen in Figure lb. 
The MMLVQ and the LVQ have been applied on the noisy image. Ten 
output classes have been used (9 for the objects and one for the background) 
and the reference vectors for the 10 classes have been initialized using the 
a priori known colors of the objects and the background. The training set 
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SELF-ORGANIZING NEURAL NETWORKS 189 

consists of 16384 randomly selected pixels. Various adaptation steps for the 
LVQ algorithm have been tried out in order to find the one that gives the 
best results. The recall images for the two algorithms are presented in 
Figures lc, Id. It can be seen that the MMLVQ algorithm succeeds to 
distinguish between the five objects, assigning one output class to each 
object. The output reference vectors for the classes that correspond to the 
five objects are very close to the real colors of the object, as can be seen in 
Table I. On the other hand, it is clearly seen that LVQ is susceptible to noise, 
because it assigns four out of five objects to the same output class while the 
rest of the classes are dominated by noise. 

3. L2 LEARNING VECTOR QUANTIZER 

The derivation of the LVQ variant to be described in this section has been 
driven by the need for segmenting ultrasonic images accurately into several 
tissue classes. Ultrasonic images suffer from a special kind of noise called 
speckle. Speckle is an interference effect caused by ultrasound (US) beam 
scattering from microscopic tissue inhomogeneities. Ultrasonic speckle can 
be modeled as multiplicative Rayleigh distributed noise or as signal- 
dependent Gaussian noise. The first model refers to envelope-detected US 
B-mode data. The second model describes more accurately ultrasonic 
images where the displayed image data have undergone excessive 
manipulation (e.g., logarithmic compression, low and high-pass filtering, 
postprocessing, etc.). In the case of pure multiplicative Rayleigh speckle, it 
has been proved that the maximum likelihood (ML) estimator of the 
original (noiseless) signal is the L2 mean [16]. Furthermore, for signal- 
dependent Gaussian speckle, it has been shown that the ML estimator 
closely resembles the L2 mean [6]. These observations motivated us to 
modify the standard LVQ algorithm so that the reference vectors 
correspond to the L2 mean instead of the sample arithmetic mean. Such a 
modification will provide more accurate reference vectors for each Voronoi 
neighborhood and will result in a better segmentation of both ultrasonic 
B-mode data as  well as dislplay US image data. Accordingly, in this 
application we are interested in the vectors of squared weights and squared 
observations. The winner vector is determined by comparing the Euclidean 
distances between the vector of squared observations and the vectors of 
squared weights similarly to (2). Let us denote by w: the ( p x  1) vector 
having as elements the weights comprising the reference vector wi squared, 

2 T i.e., w: = ( w ! ~ ,  w ; ,  . . . , w ; ) ~  and by x' the vector x '  = (x:,x:, . . . , x p )  . 
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190 C. KOTROPOULOS et al. 

The updating equations of the L2 LVQ are given by: 

A deep insight into the performance of this LVQ variant is obtained by the 
study of its convergence properties. Two types of convergence, namely, the 
convergence in the mean and in the mean square are examined for 
continuous time t. L2 LVQ network converges in the mean, if the average 
vector of squared weights converges to the expected stationary state of the 
network as t approaches infinity. L2 LVQ network converges in the mean 
square, if the trace of the correlation matrix of the squared weight error- 
vectors tends to zero or remains bounded as t approaches infinity. The case 
of a constant adaptation step cu(t)=a is considered for mathematical 
simplicity. Generalization for the optimal adaptation step sequence a(t) = 

llt  is treated in [6].  We shall confine ourselves to the analysis of a single- 
winner L2 LVQ network, i.e., N,(t) = {c). Bounds on the overall time 
constant for any squared weight and on the trace of the correlation matrix 
of the squared weight error-vectors are derived. For example, the overall 
time constant r, for any average squared weight can be bounded as 
follows [6]: 

where X ~ ,  and A,, denote the smallest and largest eigenvalue of (Kpx Kp) 
matrix B given by: 

Each Bkl, k, I =  1,. . ., K is a (NxN) square submatrix with mn-element given 
by: 
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SELF-ORGANIZING NEURAL NETWORKS 191 

where pk( W')  = Jvk ( W ' )  f (x)dx,  6(k - I ,  m - n) is the 2-D Kronecker-delta 
function, V' denotes the stationary state of the network and V,t( W') is the 
Voronoi neighborhood of the state of the network [6]. The convergence in 
the mean square can be studied in a similar way. Due to lack of space the 
interested reader is referred to [6]. The ability of the L2LVQ to segment 
ultrasonic images in classes representing various tissue and lesion 
characteristics is combined with signal-adaptive filtering in order to allow 
preservation of image edges and details as well as maximum speckle 
reduction in homogeneous regions [6]. The design of filtering processes 
combining segmentation and optimum L- filtering, and their use for speckle 
noise suppression in ultrasonic images is pursued in [7]. The proposed neural 
network has been applied both to simulated US B-mode data as well as to 
displayed US image data for image segmentation. In this tutorial we shall 
confine ourselves only to only the simulations that have been performed on 
a simulated image showing an homogeneous tissue of size 4 cm x4 crn with a 
lesion in the middle of diameter 2 cm. We have compared the performance 
of the several strategies tabulated in Table I1 using the probability of 
detection (PD) and the probability of false alarm (PF) as figures of merit. 
The comparison is based on the probability of detection pD which has been 
calculated by linearly interpolating between the experimental values of 
probabilities of detection that correspond to the two probabilities of false 
alarm that are closest to the one of LZ LVQ. It is seen that an almost 16.7% 
higher probability of detection is obtained by using the L2 LVQ NN instead 
the LZ mean filter of dimensions 7x7. 

TABLE I1 Figures of Merit for Lesion Detection on a Simulated US B-Mode Image 

Method PF(%) PD (%) Threshold PD(%) 

Image thresholding 13.4 29.34 24 31.99 
15.19 32.18 23 

median 7 x 7 14.85 37.85 20 38.13 
18.88 43.33 19 

arithmetic mean 13.78 38.95 20 41.28 
7 x 7 17.59 45.90 19 
L2 IlKZm 13.79 40.05 19 42.39 
7 x 7  17.85 47.55 18 
L2 LvQ NN 15.06 59.07 - 59.07 
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192 C. KOTROPOULOS et al. 

4. A CLASS OF SPLIT-MERGE LEARNING VECTOR QUANTIZERS 

In this section, a split-merge Learning Vector Quantizer is described. As its 
name suggests, the proposed algorithm employs split-merge tests. In general, 
when the whole training set is presented in the input of LVQ for the first 
time, many wrong decisions are expected, because the winner vectors fail to 
approximate adequately the true cluster means. Therefore, a need for testing 
further the correctness of the classification of the input training patterns to 
the cluster represented by the winner is recognized. Similarly, when a 
training pattern moves from one cluster to another, an additional test is 
needed to approve the correctness of such a decision. In the later case, the 
cluster where the input training pattern was formerly classified to, may be 
considered as an unstable one, because it has been affected by outliers. 
Consequently, during the session when a pattern removal has occurred, we 
have decided to check further if the classification of input training patterns to 
this unstable cluster on the basis of the Euclidean distance metric (2) is still 
correct. The outline of the split-merge LVQ learning algorithm is as follows. 

For each pattern presentation x(n): 

a. Find the winner w,(n). 
b. Test if x(n) is outlier to the patterns that are represented by w,(n) for: 

(i) pattern presentations during the first session, 
(ii) patterns that are moved from one cluster to another, and, 

(iii) patterns of a cluster where a removal of a pattern has occurred 
during the session this modification took place. 

c. If x(n) is not an outlier, proceed as in standard LVQ. 
d. If x(n) is an outlier, examine if the cluster represented by the winner 

can be split in two subclusters, and test possible inclusion of x(n) in 
one of the resulting subclusters. Otherwise, create a new cluster 
having seed x(n). 

When the training set is exhausted, test the integrity of the cluster 
associated with each output neuron. 
Repeat steps 1-2, until convergence is attained. 

The criteria used in steps 1.b and 1.d have been described in detail in [8, 91. 
Furthermore, a novel two-layer LVQ architecture which incorporates 

second-order statistics in its training phase and allows training parallelism 
by splitting patterns into groups has been introduced. It is comprised of L 
LVQ networks that are trained independently in the first layer and a single 
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LVQ network in the second layer. The training patterns of the first layer 
LVQ's are input patterns. The training patterns of the second layer LVQ are 
the weight vectors of the first layer LVQ's after their convergence. The 
second layer classifies the weight vectors provided by the L networks of the 
first layer. Let us suppose that the L LVQ's of the first layer classify p- 
dimensional data into N-many classes, then the second layer LVQ 'has p 
input nodes and Lx N output nodes at most. Some of the weight vectors of 
the first layer LVQ's have been trained by patterns extracted from the same 
population, therefore they must be merged. Some others are reference 
vectors associated with different populations, therefore they must be 
preserved. The incorporation of homogeneity and proximity statistical tests 
based on second-order statistics in the second layer LVQ learning algorithm 
is proposed so that the second layer LVQ can group the partial results 
provided by the first-layer LVQ's in order to provide the final weight 
vectors. The final weight vectors are the reference vectors that represent the 
whole training set. Furthermore, the proposed two-layer LVQ architecture 
is easily parallelized. 

The LVQ network of the second layer is used to find the weight vectors 
provided by the first layer LVQ's which are candidates for merging. As has 
already been discussed, the criterion of minimum Euclidean distance metric 
used in the LVQ is not suEcient for the above-described task, because 
it does not take into account the presence of outliers. Consequently, 
additional tests must be implemented in order to test the similarity between 
the weight vector provided by the first layer LVQ's and the winner vector 
determined by the second layer LVQ. The homogeneity of the winner 
vectors evaluated by the LVQ in the second layer and the input weight 
vectors provided by the LVQ's of the first layer can be tested by employing 
statistical tests on the mean vectors and on the covariance matrices as well. 
The interested reader is referred to [lo]. 

The proposed algorithms have been applied to color image quantization. 
The performance of the proposed split-merge LVQ's and the standard LVQ 
algorithm in color image quantization is summarized in Table 111. The 
number of output neurons for the standard LVQ NN is set to 256. The 
performance of the standard LVQ algorithm depends strongly on the 
initialization procedure that is employed. Two different initialization 
procedures have been used: (a) random initialization and (b) the 
initialization of LBG algorithm. By inspecting Table 111, it is seen that the 
proposed single-layer split-merge LVQ achieves a slightly better perfor- 
mance than a standard LVQ algorithm that uses the same initialization with 
LBG, but with one' fundamental difference: The split-merge LVQ algorithm 
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TABLE I11 Figures of merit for color image quantization (FL:First layer, SL:Second Layer) 

Neural Number of Learning Recall P S N R  Iterations 
Network neurons MSE MSE (dB) 

Standard LVQ 
random initialization 256 146.369 91.35 28.523 560 
Standard LVQ 
initialization of LBG 256 51.866 44.863 31.611 572 
Single-layer 
Split-Merge LVQ 256 48.795 44.137 31.682 562 
Two-layer 529 (1st FL LVQ) 
Split-Merge LVQ 241 73.987 52.183 30.955 546 (2nd FL LVQ) 

18 (SL LVQ) 

has found the number of clusters present in the input training set, while the 
standard LVQ has been initialized in an optimal way for 256 output 
neurons. The two-layer split-merge LVQ architecture is expected to give the 
best result when there is strong correlation (e.g., overlap) between the 
training subsets. It seems that this is not the case in our experiment. If the 
two single-layer split-merge LVQ's in the first layer were trained in parallel, 
then the two-layer split-merge LVQ architecture would provide almost 
identical results with a (single-layer) split-merge LVQ, but in half 
computation time. 

5. MEDIAN RADIAL BASIS FUNCTION NEURAL NETWORK 

The RBF network has a feed-forward topology which models a mapping 
between a set of vector entries and a set of outputs, by using an intermediate 
level of representation implemented by the radial basis functions [I]. Each 
network input is assigned to a vector entry (feature in a pattern recognition 
application) and the outputs correspond either to a set of functions to be 
modeled by the network or to various associated classes. 

In supervised learning, the network is provided with a training set of 
patterns consisting of vectors denoted by x and their corresponding classes. 
Each pattern is associated to a class Ck, according to an unkrllown mapping. 
After an efficient learning stage, the network implements the mapping rule 
and generalizes it for patterns that do not belong to the training set. 
According to the Bayes theorem we can express the relation among the 
a posteriori probabilities P(C&) of different classes by using their a priori 
probabilities P(Ck): 
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where K is the number of classes. Due to their approximation capabilities, 
RBF networks can be used to describe the underlying probability as a sum 
of components with respect to a base (denoted by the function family 4): 

where L is the number of kernel functions and Xk, j  are the hidden unit to 
output weights. 

Each hidden unit implements a kernel function. We have chosen 
Gaussian function as the kernel function 

the 

for j= 1, . . ., L, where wj is the mean vector and Zj is the covariance matrix. 
Geometrically, wj represents the center and Zj the shape of the j-th basis 
function. A hidden unit function can be represented as a hyper-ellipsoid in 
the input space. As can be seen in (15), an activation region is defined 
around the mean vector. If a pattern falls inside the activation region of a 
hidden unit, that unit will fire. 

The properties of RBF's make them suitable for modeling probability 
density functions (pdf's) in nonparametric classification tasks. The 
Gaussian centers correspond to the local estimates for the lirst order 
statistics and the covariance matrices for the second order statistics. 

A combined unsupervised-supervised learning technique is employed in 
order to estimate the RBF network weights. The classical approach consists 
of an on-line technique which employs the LVQ algorithm (1) in order to 
find the hidden unit centers, in the unsupervised part. In order to choose the 
hidden-unit center to be updated -we use either the Euclidean distance 
(2) or the Mahalanobis distance which takes into account the respective 
covariance matrix. In the latter case, (2) is replaced by: 
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For the covariance matrix, the classical sample deviation estimate has been 
used: 

We propose a robust statistics based training algorithm. The resulting 
network is called Median Radial Basis Function (MRBF) neural network 
[ll]. In the first stage we employ the MMLVQ algorithm (5) for evaluating 
the RBF's centers and the Median of the Absolute Deviations (MAD) from 
the marginal median [13] for estimating the covariance matrix associated 
with each Gaussian function. The MAD-based estimation of the dispersion 
parameter is provided by: 

where 0.6745 is a scaling parameter in order to make the estimator Fisher 
consistent for the normal distribution [13]. The off-diagonal components of 
the covariance matrix can be calculated using robust statistics. We consider 
two arrays containing the difference and sum of each two different 
components for a data sample from the moving window 

for i = n - M ,  . . . , n - 1 where M  is the window size. 
First, the median of these new data populations is calculated according to 

(5). The squares of the correspondent MAD estimates (18) for the arrays 2; 
and Z i  represent their variances and they are denoted as VTY and VAl.  The 
off-diagonal components of the covariance matrix are derived as: 

The second layer is used in order to group the clusters found in the 
unsupervised stage in classes. The output weights are updated as follows: 

for k = 1, . . ., K and j= 1, . . ., L, where the learning rate is q~ E (0,1] and Yk (x) 
is the network output. Fk(x) is the desired output for the pattern vector x. 
The formula (21) corresponds to the backpropagation for the output weights 
of an RBF network with respect to the mean squared error cost function. 
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A fast implementation algorithm based on histogram modeling as well as 
a theoretical comparative study of the MRBF and RBF networks is 
undertaken in [ll]. The bias obtained after robust statistics-based learning 
algorithms like MMLVQ and MAD in estimating the parameters of a 
mixture of Gaussian functions is smaller compared to the classical statistics- 
based estimation. 

In [I 11 the MRBF network was applied for optical flow smoothing in the 
"Hamburg Taxi" image sequence. The MRBF network had only two inputs 
and provided better motion vectors estimates when compared with the RBF 
network. This scheme was extended in [12] in order to approximate the 
optical flow and moving object probabilities. The image is partitioned in 
blocks situated on a rectangular lattice. Each block site is associated with a 
five-dimensional feature vector describing the position, the grey level and 
the local motion information. The classification is done according to a 
decision criterion derived from the Bayesian theory and representing a 
metric in the parameter space [12]. The moving scene is split accordingly in 
moving regions. We consider an MRBF network for modeling the optical 
flow and the moving object segmentation in the image sequence. This 
structure is embedded in a two-layer feed-forward neural network, where 
each output is assigned to a moving object. The number of moving objects 
does not need to be specified a priori. h is found according to a compactness 
measure. 

Numerical comparisons between the MRBF network and the Iterated 
Conditional Modes (ICM) [ lq ,  a widely used optical flow smoothing 
algorithm, applied in "Hamburg Taxi" sequence are provided in Table IV. 
The comparison criteria for the training frame are the optical flow mean 
absolute error (MAE), mean square error (MSE), the misclassification error, 
the number of parameters required by each algorithm in order to estimate 
the optical flow and segment the motion, and the necessary number of 
iterations in order to achieve the convergence. The MRBF network trained 

TABLE TV Comparison between MRBF network and ICM when applied in the "Hamburg 
Taxi" image sequence 

Algorithm Training Frame Image Sequence 

Claw MAE MSE No. of No. of Class. Process. 
error (%) Param. Iter. error (%) tirne/frame(s) 

MRBF 3.02 0.17 0.85 210 13 3.55 8.35 
. .- . 

ICM 4.07 0.33 1.15 '9216 23 8.70 6.61 
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using data samples drawn from the first frame was applied to the next 8 
frames of the "Hamburg Taxi" sequence. The average classification error 
and necessary processing time per frame (including the training time for 
the MRBF) evaluated on a Silicon Graphics Indy Workstation are also 
provided in Table IV. 

In Figure 2a a frame from the "Hamburg Taxi" sequence is shown. The 
MRBF learning algorithm is applied for the given data. The se,gnented 
moving objects by means of the MRBF network trained on a 4x4  pixel 
block partition are shown in Figure 2b. Results obtained by applying the 
above network on a 1 x 1 pixel partition of the same image sequence (after 
scaling the location features), in a hierarchical approach can be seen in 
Figure 2c. It is obvious that the "taxi7' and "van" moving objects are better 
segmented in this case. The segmentation results obtained when the MRBF 
network trainned on the first and third frames is applied on the eighth frame 
of the same image sequence can be seen in Figure 2d. This result shows the 
network capability to embed in its weights the parameters associated with 
the moving objects. The above results as well as other results provided in 
[ l l ,  121 illustrate the capababilities of the MRBF network. 

FIGURE 2 (a) Frame from the "Hamburg taxi" sequence, (b) The segmentation of the 
moving objects based on the MRBF network, (c) The MRBF network based segmentation 
when applied at pixel level partition in the "Hamburg taxi" sequence, (d) Moving object 
segmentation in the 8th frame obtained when applying the network trained with data samples 
drawn from the first and the third frames. 
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SELF-ORGANIZING NEURAL NETWORKS 

6. CONCLUSIONS- FUTURE RESEARCH 

A number of new training techniques that can robustify and enhance RBF 
and self-organizing neural networks have been presented in this paper. 
These techniques include the order Statistics LVQ, L2 LVQ, Split-Merge 
LVQ and Median Radial Basis Function Neural Networks. Simulations 
that prove the superiority of the proposed variants in various applications 
(noisy color image quantization, color-based object recognition, segmenta- 
tion of ultrasonic images, motion field smoothing and moving object 
segmentation) have been also presented. However, the list of potential 
applications is not limited to the above topics. Future research topics 
include MMLVQ-based artifact rejection on multichannel biomedical 
signals and RBF-based modeling 3-D objects. 
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