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Abstract

Three adaptive multichannel L��lters based on marginal data ordering are proposed� They

rely on well�known algorithms for the iterative minimization of the mean square error �MSE��

namely� the least mean squares �LMS�� the normalized LMS �NLMS�� and the LMS�Newton

�LMSN� algorithms� We treat both the unconstrained minimization of the MSE and the min�

imization of the MSE when structural constraints are imposed on the �lter coe�cients� The

performance of the proposed adaptive multichannel L��lters is compared to that of other multi�

variate nonlinear �lters in color image �ltering� Adaptive multichannel linear �lters and adaptive

single�channel L��lters are considered as well� Performance comparisons are made in both RGB

and U�V �W � color spaces� The proposed adaptive multichannel L��lters outperform the other

candidates in noise suppression for color images corrupted by mixed impulsive and additive

white contaminated Gaussian noise�
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Adaptive signal processing has grown tremendously in recent decades� Adaptive �lters are ap�

plied in a wide variety of problems including system identi�cation� channel equalization� and echo

cancellation in telephone channels ��� ��� These problems all involve one�dimensional 	��D
 sig�

nals� Progress has been much slower� however� in the development of adaptive algorithms for

two�dimensional 	��D
 problems 	e�g�� image �ltering
� Extension of the popular ��D least mean

squares 	LMS
 algorithm to two dimensions was reported in ��� at the ��

� An optimality criterion

governing the choice of the convergence factor for the ��D LMS 	TDLMS
 algorithm is developed

in ���� A local�mean estimation procedure is incorporated into the TDLMS �lter so that the �lter

preserves image edges ���� However� linear �lters are not suitable for applications where the noise

is impulsive� e�g�� in image processing� as demonstrated later in the paper�

In the latter case� a multitude of nonlinear techniques have proven to be successful alternatives

to the linear techniques ���� One of the best known nonlinear �lter classes is based on order statistics

��� and uses the concept of data ordering� A plethora of nonlinear �lters are now based on data

ordering� Among these are L��lters whose output is de�ned as a linear combination of the order

statistics �
�� The L��lters have found extensive applications in digital signal and image processing

because they have a well�de�ned design methodology� They are the estimators that minimize the

mean�square error 	MSE
 between the �lter output and the noise�free signal� An L��lter design that

relies on a noniterative minimization of the MSE yields very tedious expressions for computing the

marginal and joint cumulative functions of the order statistics 	cf� ���
� On the contrary� adaptive

L��lters are appealing because they avoid the computational burden of the noniterative methods

�����

Recently� increasing attention has been given to nonlinear processing of vector�valued signals�

It is well known that there is no unambiguous or universally accepted method to order multi�

variate data� Therefore� several subordering principles have emerged� namely� marginal ordering

	M�ordering
� reduced ordering 	R�ordering
� partial ordering and conditional ordering ����� The

�



��trimmed mean ����� and the multichannel L��lters ���� are a few examples of �lters based on the

M�ordering principle� The R�ordering principle is another competitive subordering principle� The

following multichannel �lters based on R�ordering have been proposed� the vector median ����� the

ranked�order type estimator RE ����� L��lters based on radial medians ����� the multichannel mod�

i�ed trimmed mean 	MTM
 and its double window extension 	DWMTM
 ����� the weighted vector

median� and the ��trimmed vector median ��
�� Other multivariate extensions of the MTM �lter

and M��lters stemming from M �estimators are investigated in ����� where the in�uence function of

the mentioned �lters is derived as well� A multichannel L��lter based on R�ordering was proposed

in ����� New �lters that utilize Bayesian techniques and nonparametric methodologies to adapt to

local data in image processing are proposed in ����� A new approach to vector median �ltering�

where� �rst� absolute sorting of the vectorial space based on Peano space �lling curves is used and�

second� a scalar median �ltering operation is applied� can be found in �����

The main contribution of this paper is the design of adaptive multichannel L��lters based on

marginal data ordering using the MSE as the �delity criterion as well as the assessment of their

performance in color image �ltering� Three novel adaptive multichannel L��lters are proposed

that are based on well�known algorithms for the iterative minimization of the MSE� namely� the

least mean squares 	LMS
� the normalized LMS 	NLMS
 and the LMS�Newton 	LMSN
 algorithms�

Both the unconstrained minimization of the MSE and its minimization under structural constraints

on the �lter coe�cients 	e�g�� location�invariance
 are treated� For a constant multichannel signal�

the convergence of the adaptive multichannel L��lters to the optimal solution reported in ����

is demonstrated� Moreover� the performance of the adaptive multichannel L��lters under study

in color image �ltering is compared to that of other multichannel nonlinear �lters including the

multichannel DWMTM ����� the multichannel MTM ����� the marginal median ���� the vector

median that is based on both the L� norm 	VM L�
 and on the L� norm ����� the ranked�order

estimator RE ���� and the marginal ��trimmed mean ����� The case of a color image corrupted
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The marginal arithmetic mean is also included in the comparative study� because it is usually an ad

hoc choice� Both adaptive multichannel�single�channel linear �lters and adaptive single�channel L�

�lters are considered� The comparative study is conducted �rst in the RGB color space� However�

it is well known that color distances are not Euclidean in this color space ����� Motivated by this

fact� we investigate the performance of the �lters under study in a color space where color distances

are approximated by Euclidean ones� e�g�� in U�V �W � space �����

It is evident that in this paper no distinction is made between additive white noise and impulsive

noise� Another interesting method would be to detect �rst the pixels that have been corrupted by

impulsive noise and subsequently to apply an appropriate technique to deal with the additive white

noise� A self�organizing neural network is used to detect the pixels corrupted by impulsive noise

and a noise�exclusive median �lter is then applied to eliminate the additive white noise in �����

However� such a method is appropriate for an �o��line� �ltering scheme mainly due to the time

needed for the self�organizing neural network to converge� In this paper� our interest is focused on

�on�line� �ltering algorithms�

Adaptive �ltering relies generally on the availability of a reference signal� i�e�� a reference image�

In certain cases 	e�g�� in image sequences
� it is reasonable to assume that a previous noise�free frame

can act as a reference image for a number of subsequent image frames� Moreover� full advantage of

the temporal correlations that exist between the reference image and the actual desired noise�free

image can be taken into account by using motion estimation and compensation in a separate step�

Motivated by the success of motion�compensated �ltering ����� the use of motion compensation in

determining the reference image pixel at each iteration is proposed� When a reference image is

not available� we can employ an adaptive location�invariant multichannel L��lter that is modi�ed

so that it minimizes the total output power subject to the structural constraints� Indeed such an

adaptive �lter does not rely on a reference signal� as we can seen later�

The work presented in this paper extends previously reported work ���� ��� ���� Novel adaptive
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The outline of the paper is as follows� The problem statement and our motivation for the design

of adaptive multichannel L��lters is given in Section �� The unconstrained adaptive multichannel

L��lters are derived in Section �� Section � is devoted to the design of constrained adaptive

multichannel L��lters� Experimental results are included in Section � and conclusions are drawn

in Section ��

� Problem statement

Let x�� � � � �xN be a random sample of N observations of a p�dimensional random variable X� Each

vector�valued observation xj � 	xj�� xj�� � � � � xjp

T belongs to a p�dimensional space denoted by

Rp� The M�ordering scheme orders the vector components independently� thus yielding

xi��� � xi��� � � � � � xi�N� i � �� � � � � p� 	�


It has been stated that the output of a p�channel L��lter of length N operating on a sequence of

p�dimensional vectors fx	k
g for N odd is given by ����

y	k

�
� T�x	k
� �

pX
i��

Ai�xi	k
� 	�


where Ai are 	p � N
 coe�cient matrices� Let aTil � l � �� � � � � p denote the l�th row of matrix Ai

and

�xi	k
 �
�
xi���	k
� � � � � xi�N�	k


�T
i � �� � � � � p 	�


be the 	N � �
 vector of the order statistics along the i�th channel�

Let us suppose that the observed p�dimensional signal fx	k
g can be expressed as a sum of a p�

dimensional noise�free signal fs	k
g and a vector�valued noise sequence fn	k
g having a zero mean

vector� i�e�� x	k
 � s	k
 � n	k
� The noise vector n	k
 � 	n�	k
� � � � � np	k

T is a p�dimensional

vector of random variables characterized by the joint probability density function 	pdf
 of its

components� The noise vector components are assumed to be uncorrelated in the general case�
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identically distributed 	i�i�d�
 and that at each value of index k the signal vector s	k
 and the noise

vector n	k
 are uncorrelated� We want to �nd the multichannel L��lter coe�cient matrices Ai�

i � �� � � � � p that minimize the MSE between the �lter output y	k
 and the noise�free signal s	k
�

Strictly speaking� we de�ne MSE as the trace of the MSE matrix� Following reasoning similar to

that in ����� but without invoking the assumption of a constant signal s� it can be shown that the

MSE is expressed as

�	k
 � E
h
	y	k
� s	k

T 	y	k
� s	k



i
�

pX
i��

faT�i�
�Rpa�i� � �aT�i��q�i�g� E

h
sT 	k
s	k


i
	�


where�

a�i� �
�
aT�i j a

T
�i j � � � j a

T
pi

�T
� �Rp � E

h
�X	k
 �XT	k


i
� �q�i� � E

h
si	k
 �X	k


i
�

�X	k
 �
�

�xT� 	k
 j �xT� 	k
 j � � � j �xTp 	k

�T

� 	�


It can easily be seen that �Rp is a composite matrix that consists of the correlation matrices of the

ordered input samples from the same channel � e�g�� Rii � E��xi	k
�xTi 	k
� � as well as from di�erent

channels � e�g�� Rij � E��xi	k
�xTj 	k
�� i �� j�

�Rp �

�
�������������

R�� R�� � � � R�p

RT
�� R�� � � � R�p

���
� � �

���

RT
�p RT

�p � � � Rpp

�
������������	
� 	�


Minimizing 	�
 over a�i� is a quadratic minimization problem that has a unique solution under the

condition that �Rp is positive de�nite� It is easily deduced that the minimum MSE coe�cient vector

is�

ao�i� � �R��
p �q�i�� 	�


Eq� 	�
 explicitly yields the �lter coe�cients provided that we are able to calculate the moments of

the order statistics from univariate populations that appear in Rii� as well as the product moments

�We take for granted that �X�k� and si�k� are stationary stochastic processes�

�



j

is fairly easy for i�i�d� input variates� i�e�� in the case of a constant signal s	k
 � s as demonstrated

in ����� Even for independent� nonidentically distributed input variates� the framework tends to

become very complicated 	cf� ����
� The di�culties are increased in color image processing� where

the observations �X	k
 and the desired signal s	k
 are strongly nonstationary� To overcome these

obstacles� we resort to the use of iterative algorithms for the minimization of �	k
 in 	�
�

� Unconstrained minimization of the Mean Squared Error

In this section� three adaptive multichannel L��lters are derived that iteratively minimize the MSE

	�
 without imposing any constraints on the �lter coe�cients� These algorithms are 	i
 the LMS�

	ii
 the NLMS� and 	iii
 the LMSN �lters� The rationale underlying the choice of each algorithm

is stated explicitly�

��A LMS adaptive multichannel L��lter

The �lter coe�cient vectors a�i�� i � �� � � � � p that minimize the MSE 	�
 can be computed recur�

sively using the steepest descent algorithm as follows

a�i�	k � �
 � a�i�	k
 �
�

�
���r��i�	k
�� 	



where r��i�	k
 �
���k�

���i��k�
and � denotes the adaptation step�size parameter� Using �X	k
 �XT 	k
 and

si	k
 �X	k
 as instantaneous estimates of �Rp and q�i�� respectively� the LMS adaptive multichannel

L��lter is obtained� i�e��

�a�i�	k � �
 � �a�i�	k
 � �
h
si	k
� �XT 	k
�a�i�	k


i
�X	k
 � �a�i�	k
 � � ei	k
 �X	k
� 	�


The bracketed term in 	�
 is the a priori estimation error ei	k
 between the i�th component of

the desired signal and the �lter output� because yi	k
 �
Pp

j�� �aTji�xj	k
 � �XT 	k
�a�i�� We see that

the LMS algorithm yields a very simple recursive relation for updating the L��lter coe�cients�

This is the rationale underlying its choice for minimizing the MSE� Eq� 	�
 employs the composite

�



	 


LMS 	linear
 �lter uses the vector of input observations� Accordingly� the convergence properties

of the LMS adaptive multichannel L��lter depend on the eigenvalue distribution of the composite

correlation matrix �Rp	k
� However� an important question arises� Which is the appropriate range

of the adaptation step � that guarantees the convergence of the adaptive �lter in both the mean

and the mean�square sense� Up�to�date results are available only for stationary environments and

for simple cases� such as time�variant system identi�cation in nonstationary environments ��� ���

To obtain an optimal sequence of adaptation step parameters� we follow the approach proposed in

���� Let Mi be a diagonal matrix of dimensions 	pN � pN
 associated with the updating equation

for the coe�cient vector a�i�	k
� i�e��

�a�i�	k � �
 � �a�i�	k
 �
�

�
Mi��r��i�	k
�� 	��


The MSE �	k
 can be approximated by its instantaneous value� i�e�� �	k
 �
Pp

i�� e
�
i 	k
� Moreover�

the a priori estimation error at iteration 	k � �
 can be expressed in the form of a Taylor series in

terms of the a priori estimation error at k� i�e��

ei	k � �
 � ei	k
 �
pNX
j��

�ei	k


�a�i�j
�a�i�j �

pNX
j��

pNX
l��

��ei	k


�a�i�j �a�i�l
�a�i�j �a�i�l �O	�
� 	��


where a�i�j denotes the j�th element of a�i�� �a�i�j � a�i�j	k� �
� a�i�j	k
 and O	�
 are the higher

order terms� From 	��
� we obtain �a�i�j � �i� jjei	k
 �Xj	k
� where �i� jj is the jj�diagonal element

of matrix Mi and �Xj	k
 is the j�th element of the composite vector of the ordered observations

�X	k
� We also have �ei�k�
�a�i�j

� � �Xj	k
� Furthermore� due to the de�nition of �lter output 	�
 the

second and higher order derivatives in 	��
 are zero� Accordingly�

ei	k � �
 � ei	k



�
���

pNX
j��

�i� jj	k
 �X�
j 	k



�
� � 	��


By squaring both sides of 	��
 and setting
�e�

i
�k���

��i� jj
to zero� we �nd that the optimal step�size

sequence �i� jj satis�es the equation

e�i 	k
 �X�
j 	k



�
���

pNX
j��

�i� jj �X�
j 	k



�
� � �� 	��







j

pNX
j��

�i� jj	k
 �X�
j 	k
 � �� 	��


It is reasonable to assume that the adaptation step more heavily weighs the �lter coe�cients that

have larger gradients than those having smaller gradients� That is� the adaptation step is given by

�i� jj	k
 � �j
�ei	k


�a�i�j	k

j � �j �Xj	k
j 	��


where � is a proportionality constant� By combining 	��
 and 	��
 and solving for �� we obtain

the following optimal step�size sequence

��i� jj	k
 �
j �Xj	k
jPpN

l�� j
�Xl	k
j�

� 	��


We see that 	��
 does not depend on index i that refers to channels� Therefore� the same step�size

sequence can be applied to all equations that update the �lter coe�cients�

��B NLMS adaptive multichannel L��lter

Our motivation in employing the NLMS algorithm to iteratively minimize the MSE 	�
 stems from

the following reasons� 	i
 It provides a way to automate the choice of the adaptation step�size

parameter in order to speed up the convergence of the algorithm� 	ii
 Its design is based on a

limited knowledge of the input�signal statistics� It is able to track the varying signal statistics� The

updating equations result as follows� Let �i� jj	k
 � �	k
 be a single adaptation step�size parameter

for all the elements of coe�cient vectors a�i�� From 	��
 we obtain�

�	k
 �
�

�XT 	k
 �X	k

� 	��


The substitution of 	��
 into 	�
 yields the updating equations for the coe�cients of the normalized

LMS adaptive multichannel L �lter� i�e��

�a�i�	k � �
 � �a�i�	k
 �
��

�XT 	k
 �X	k

ei	k
 �X	k
� i � �� � � � � p 	�



where �� � 	�� �� is a parameter that is introduced for additional control�

�



The eigenvalue spread of the composite correlation matrix �Rp	k
 is large in principle� In such a case�

the LMSN algorithm is a powerful alternative to LMS ����� The LMSN algorithm is an approximate

implementation of Newton s method for minimizing a cost function of several variables� It employs

computationally e�cient estimates for the autocorrelation matrix of the input signal 	in our case�

of the composite vector of the ordered observations
 and for the gradient of the objective function

	i�e�� the MSE
� The updating formula for the LMSN multichannel L��lter is given by

�a�i�	k � �
 � �a�i�	k
 �
�

�
� �R��

p 	k
 �� �r��i�	k
� � �a�i�	k
 � � �R��
p 	k
ei	k
 �X	k
� i � �� � � � � p� 	��


Eq� 	��
 is similar to the coe�cient vector recursion described in ��� with the di�erence that

it encompasses an estimate for the composite correlation matrix and the composite vector of the

ordered observations instead of the correlation matrix of the input signal and the input multichannel

signal itself� An estimate of the composite matrix �Rp	k
 can be calculated by using the Robbins�

Monro procedure that solves the equation E
h

�X	k
 �XT	k
� �Rp	k

i

� �� An iterative solution of

this equation is given by �Rp	k
 � �Rp	k � �
 � 	
h

�X	k
 �XT 	k
� �Rp	k � �

i
� Using the matrix

inversion lemma� we obtain

�R��
p 	k
 �

�

�� 	


�
� �R��

p 	k � �
�
�R��
p 	k� �
 �X	k
 �XT	k
 �R��

p 	k � �
�
���
�

�
� �XT 	k
 �R��

p 	k� �
 �X	k



�
� � 	��


The LMSN algorithm for updating the coe�cients of the multichannel marginal L��lter is summa�

rized in Table ��

��D Computational complexity of the unconstrained adaptive multichannel L�

�lters

Having derived the updating equations for the three adaptive multichannel L��lters� we proceed to

the study of their computational complexity� A common characteristic of the proposed adaptive

algorithms is that they require data ordering� If the vector of the order statistics along the i�th

channel is known at k � �� �xi	k � �
� the same vector at k can be found by deleting the last

��



� �

of comparisons for such a running scheme is approximately �blog�Nc � � ����� In the case of

multichannel image processing� we delete�insert elements of a vector that contains the image pixel

values that are discarded from�appended to the running window� The number of comparisons

in the case of of W � W square window is of the order of O	W log�W 
 per channel� Table �

depicts the storage requirements� the number of comparisons and arithmetic operations for the

adaptive multichannel L��lters under study� We see that the storage requirements and the number

of arithmetic operations for the LMS adaptive multichannel L��lter with �xed step�size 	�
� or

variable step�size 	��
 and the NLMS 	�

 is of the order of O	p� N
 whereas that for the LMSN

	��
 is of O	p� N�
�

In the following section� we study the design of constrained adaptive multichannel L��lters that

minimize MSE 	�
 subject to structural constraints imposed on the �lter coe�cients�

� Constrained minimization of the MSE

Frequently� structural constraints are imposed on the �lter coe�cients� For example� in the single�

channel case� the sum of the �lter coe�cients must be equal to one� This is true for both linear

adaptive �lters such as the TDLMS ��� �� and for nonlinear adaptive �lters such as the location�

invariant LMS L��lter ����� Moreover� as we see in 	�
� 	�

� and 	��
� all the unconstrained

adaptive �lters derived so far depend on the knowledge of a reference signal s	k
� In certain cases�

a reference signal can easily be found� For example� in an image sequence one can always choose

a previous noise�free frame as a reference image� In cases where this is not possible� the need to

develop an adaptive �lter structure that does not rely on a reference signal emerges� It will be

shown that the adaptive location�invariant multichannel L��lter can be modi�ed so that it does

not depend on a reference signal� Moreover� experiments demonstrated that the performance of the

adaptive location�invariant multichannel L��lters is practically independent of the reference signal

that is used� Therefore� they possess robustness properties in this sense�

��



����� Let us recall the de�nition of the location�invariant multichannel L��lter �rst� A multichannel

marginal L��lter is said to be location�invariant if its output is able to track small perturbations

of its input� i�e�� if x�	k
 � x	k
 � b then y�	k
 � T�x�	k
� � y	k
 � b� where y	k
 � T�x	k
��

The de�nition of a location�invariant multichannel L��lter yields the following set of constraints

imposed on the �lter coe�cients

GTa�i� � bi i � �� � � � � p 	��


where � denotes the 	N � �
 unitary vector� i�e�� � � 	�� �� � � � � �
T � GT is a 	p� pN
 matrix having

the structure

GT �

�
�������������

�T �T � � � �T

�T �T � � � �T

���
� � �

���

�T �T � � � �T

�
������������	

	��


where � is a 	N � �
 vector of zeroes and bi is the i�th basis vector in Rp� i�e�� a vector whose

elements are zero except the i�th element which equals �� In the following� we derive two constrained

adaptive multichannel L��lters based on LMS and LMSN algorithms�

��A LMS location�invariant multichannel L��lter

We are seeking the L��lter whose output minimizes the MSE 	�
 subject to 	��
� A well�established

methodology for minimizing a cost function subject to constraints was proposed by Frost ��
�� This

approach is adopted in our analysis� The problem under study is formulated as the minimization

of the following Lagrangian function

H	a
 �
�

�
�	k
 � �T

�
��������

GTa��� � b�

���

GTa�p� � bp

�
�������	
� 	��


��



where �	k
 is given by 	�
 and �
�

� j j 
p

�
is a 	p � �
 vector� By di�erentiating H	a


with respect to a�i� we obtain

�H	a


�a�i�
� �Rp	k
a�i� � �q�i�	k
 � G
i� 	��


Accordingly the steepest descent solution is given by

a�i�	k � �
 � a�i�	k
� �
�H	a	k



�a�i�	k

� a�i�	k
� �

h
�Rp	k
a�i�	k
� �q�i�	k
 � G
i

i
� 	��


We demand a�i�	k � �
 to satisfy the set of constraints 	��
� By substituting 	��
 into 	��
 and

solving for 
i� we get


i �
�

�
	GTG
��

h
GTa�i�	k
� �GT

�
�Rp	k
a�i�	k
� �q�i�	k


�
� bi

i
� 	��


By combining 	��
 and 	��
� the steepest descent solution is rewritten as follows

a�i�	k � �
 �
h
I�G	GTG
��GT

in
a�i�	k
� �

h
�Rp	k
a�i�	k
� �q�i�	k


io
�G	GTG
��bi

� P
n
a�i�	k
 � �

h
�q�i�	k
� �Rp	k
a�i�	k


io
� fi i � �� � � � � p� 	��


where P is the projection matrix of dimensions 	pN � pN
 de�ned by�

P �
h
I�G	GTG
��GT

i
�

�
I�

�

N
GGT

�
	�



and fi is a 	pN � �
 vector given by

fi � G	GTG
��bi �
�

N
Gbi i � �� � � � � p� 	��


In 	�

 and 	��
 we exploit the fact that 	GTG
�� � �
N
I where I denotes the identity matrix of

appropriate dimensions� The algorithm is initialized by

a�i�	�
 � fi i � �� � � � � p� 	��


By using instantaneous estimates for �Rp	k
 and �q�i�	k
� the LMS location�invariant multichannel

L��lter is obtained

�a�i�	k � �
 � P
�

�a�i�	k
 � �ei	k
 �X	k

�

� fi i � �� � � � � p� 	��


��



be minimized is the total output power subject to constraints 	��
 that prevent the �lter coe�cients

from becoming identically zero� It can easily be shown that the LMS location�invariant L��lter

coe�cients are now updated as follows

�a�i�	k � �
 � P
�
�a�i�	k
� �yi	k
 �X	k


�
� fi i � �� � � � � p� 	��


It is evident that by replacing ei	k
 by �yi	k
 the same �lter structure can be used for the mini�

mization of the total output power subject to the constraints 	��
�

��B LMSN location�invariant multichannel L��lter

The vast majority of constrained adaptive algorithms rely on the LMS algorithm� To the authors 

knowledge no attempt has been made to design constrained adaptive �lters based on other adaptive

algorithms� such as the recursive least squares 	RLS
 or the LMSN algorithm� The case is much

simpler for the LMSN than the RLS algorithm� because LMSN shares the same framework with

LMS in the sense that LMSN employs the gradient of the error function 	i�e�� the Lagrangian 	��



given by 	��
� By premultiplying both sides of 	��
 by �R��
p 	k
� we obtain

�R��
p 	k


�H	a	k



�a�i�	k

� a�i�	k
� �R��

p 	k
�q�i�	k
 � �R��
p 	k
G
i i � �� � � � � p� 	��


By identifying that

a��i�	k
 � �R��
p 	k


h
�q�i�	k
�G
i

i
i � �� � � � � p 	��


is the solution to the minimization of the cost function 	��
 	i�e�� �H�a�k��
�a�i��k�

ja�
�i�
�k�� �
� 	��
 is

rewritten as

a��i�	k
 � a�i�	k
� �R��
p 	k


�H	a	k



�a�i�	k

� 	��


The steepest descent solution is obtained from 	��
 by adding an additional step�size parameter �

a�i�	k � �
 � a�i�	k
 � �
�
a��i�	k
� a�i�	k


�
� a�i�	k
� � �R��

p 	k

�H	a	k



�a�i�	k

� 	��


��



p 	 
 	 


expected values involved in the gradient of H	a	k

 with respect to a�i�	k
� the following recursions

result

�a�i�	k � �
 � �a�i�	k
 � � �R��
p 	k


h
ei	k
 �X	k
�G
i

i
i � �� � � � � p� 	��


By demanding that 	��
 satis�es the set of constraints 	��
� we get
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The substitution of 	�

 into 	��
 yields
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 �

�
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The comparison between 	��
 and 	��
 reveals that the structure of the LMSN location�invariant

multichannel L��lter is the same with that of the LMS location�invariant one but with a di�erent

matrix P and a di�erent vector fi� The new matrix P� and vector f �i are now given by

P� � I� �R��
p 	k
G

h
GT �R��

p 	k
G
i
��
GT 	��


f �i � �R��
p 	k
G

h
GT �R��

p 	k
G
i��

bi i � �� � � � � p� 	��


The updating equation 	��
 is initialized by�

a�i�	�
 � f �i i � �� � � � � p� 	��


��C Computational complexity of the adaptive location�invariant multichannel

L��lters

The computational complexity of the constrained adaptive multichannel L��lters under study was

derived as well� Table � summarizes the additional storage requirements and arithmetic operations

needed in the LMS and LMSN location�invariant multichannel L��lters� respectively� We assume

that the step�size parameter in LMS algorithm is chosen as in 	��
� It is seen for both algorithms

the additional storage requirements are of the order of O	p� N�
 and the additional arithmetic

��



�lter requires the inversion of a 	p� p
 matrix whose computational complexity is of order O	p�
�

The inspection of Table � reveals that the LMSN location�invariant multichannel L��lter is more

computationally demanding than the LMS location�invariant multichannel L��lter�

� Experimental results

In this section� we present two sets of experiments in order to assess the performance of the adaptive

multichannel L��lters that we have discussed so far� In the �rst set of experiments� two�channel

��D input signal sequences generated by corrupting a constant signal by additive white bivariate

contaminated Gaussian noise are used� Both unconstrained and constrained adaptive multichannel

L��lters are considered� The purpose is to demonstrate that the adaptive �lters yield the same

results with the optimal solutions reported in ����� In the second set of experiments� we deal with

color images� i�e�� three�channel ��D signals� Our aim is to test the performance of the proposed

adaptive multichannel L��lters in noisy color image �ltering�

��A Two�channel ��D signals

First� the case of a two�channel ��D signal s	k
 � s corrupted by additive white bivariate con�

taminated Gaussian noise is treated� because for such a signal� the optimal multichannel L��lter

coe�cients were derived in ����� Let N 	��� �� ! ��� �� ! r
 denote a joint bivariate Gaussian dis�

tribution� where the parameters �i and �i� i � �� �� are the expected values and the standard

deviations of the components� respectively� Let r be the correlation coe�cient� A vector val�

ued signal s � 	���� ���
T corrupted by additive white bivariate noise n	k
 with pdf given by

	�� 

N 	�� � ! �� � ! ���
 � 
N 	�� � ! �� � ! ���
� for 
 � ��� was used as a test signal� as in ����� We

demonstrate the convergence of the ensemble averaged squared error for each adaptive algorithm�

Subsequently� the noise reduction index 	NR
 de�ned as the ratio of the output noise power to the

��



NR � �� log

P
k	y	k
� s	k

T	y	k
� s	k

P
k	x	k
� s	k

T	x	k
� s	k



� 	��


is measured and is compared to that achieved by the nonadaptive multichannel L��lter�

To begin with� let us consider the performance of the LMS� NLMS and LMSN adaptive mul�

tichannel L��lters� A sequence fx	k
g of ����� samples was created and the squared norm of the

estimation error ke	k
k� � ks	k
�y	k
k� was computed� This experiment was repeated ��� times�

each time using an independent realization of the process fn	k
g� The averaged squared norm of

the estimation error is then determined by computing the ensemble average of ke	k
k� over the ���

independent trials of the experiment� Thus� an approximation of the ensemble�averaged learning

curve of each adaptive algorithm was obtained and is plotted in Figure �� The �lter length N is �

in all cases� All the �lter coe�cient recursions were initialized by a�i�	�
 � �� The tunable param�

eters 	e�g�� the adaptation step�size etc�
 in each algorithm were chosen so that the adaptive �lters

yield an NR index approximately equal to that of the optimal non�adaptive multichannel L��lter

reported in ����� For example� � has been equal to �����	 in the LMS multichannel L��lter� In the

NLMS algorithm� the best choice for parameter �� that weighs the adaptation step size sequence

was found to be �� � ���� For the LMSN algorithm� �� 	 and � were set to �����
� ������ and

����� respectively� From Figure �d� it is obvious that NLMS adaptive multichannel L��lter attains

the fastest convergence rate� The estimates of the multichannel L��lter coe�cients were obtained

by averaging the steady state values of �a�i�	k
� i � �� � � � � p over the ��� independent trials of the

experiment� Using these �lter coe�cients the NR index for each adaptive multichannel L��lter

was calculated� The results are tabulated in Table �� To facilitate the comparisons� the NR index

achieved by the nonadaptive multichannel L��lter designed in ���� is also given� By comparing the

NR indices tabulated in Table � and the learning curves plotted in Figure �� we conclude that�

	i
 All algorithms converge toward the optimal solution� 	ii
 LMSN adaptive multichannel L��lter

more closely matches the NR achieved by the nonadaptive design� 	iii
 LMS algorithm is the second

best� 	iv
 Although NLMS attains the fastest convergence rate� we see that its NR is approximately

��



Subsequently� we examine the performance of the adaptive location�invariant multichannel L�

�lters under study� The already described experimental setup was used in this case as well� The

learning curves of the LMS and LMSN location�invariant multichannel L��lters are given in Fig�

ure �a and �b� respectively� We see that LMSN exhibits a faster convergence rate� Moreover� its

steady state MSE is lower than the LMS� as can be deduced from Table �� where the NR achieved

by both adaptive algorithms is tabulated� and Figure �� The NR achieved by the nonadaptive

design ���� is included in Table � for comparison purposes� The NR achieved by the marginal me�

dian is included for the same purposes as well� The LMSN location�invariant multichannel L��lter

outperforms the nonadaptive one by � dB� This discrepancy is attributed to the errors occurring

in the estimation of the moments of the marginal order statistics employed in �����

��B Color image �ltering

The second set of experiments deals with color images� i�e�� three�channel ��D signals� To begin

with� let us relate the present task to the problem formulation adopted thus far� An observed color

image is denoted by x	k
 where k � 	i� j
 is the vector of the pixel coordinates� It can refer to any

color space e�g� RGB� XY Z� U�V �W � etc� A neighborhood is de�ned around each pixel k� Our

purpose is to design a �lter de�ned on this neighborhood 	to be called the �lter window hereafter


that aims at estimating the noise�free central pixel value s	k
� For each color component� we rely on

the square window of dimensions W �W � where w is assumed to be an odd number 	W � �w� �
�

Let N � W �� By rearranging the preceding W �W �lter window in a lexicographic order 	i�e��

row by row
 to a N � � vector� we obtain

xl	k
 � 	xl	i� w� j � w
� xl	i� w� j � w � �
� � � � � xl	i� w� j � w
� � � � � xl	i � w� j � w

T � 	��


We assume that the window is sliding over a color image plane in a raster scan fashion� If K and

L denote the image rows and columns� respectively� a scalar running index k � 	i� �
K � j where

� � i � K and � � j � L can replace the pixel coordinates k� Therefore� the ��D notation adopted

�




Our goal is to test the ability of the proposed adaptive multichannel L��lters in suppressing

the noise in color images� Both unconstrained and constrained adaptive multichannel L��lters are

considered� We compare the noise reduction capability of the adaptive multichannel L��lters under

study to the other multichannel nonlinear �lters as well as to their single�channel counterparts� The

following nonlinear �lters were considered� the vector median ����� the marginal median ���� ����

the marginal ��trimmed mean ���� ���� the multichannel MTM ����� the multichannel DWMTM

���� and the ranked�order estimator RE ����� Whenever the �lter window is not speci�ed explicitly�

a window of dimensions � � � is assumed�

The multichannel DWMTM �lter ���� uses two window sizes � � � and � � �� as in the

single�channel case ����� The multichannel MTM �lter is a generalization of the single�channel one

proposed in ����� Its output is evaluated as for the DWMTM �lter with the exception that only one

window of size � � � is used ����� The trimming parameter for ��trimmed mean �lters has been ���

in all experiments� For the RE �lter ����� only the best result is tabulated� We have also included the

arithmetic mean in the comparative study� because it is a straightforward choice for noise �ltering

in many practical applications� The performance of three adaptive single�channel L��lters that are

used to �lter the noise in each primary color component 	i�e�� channel
 was independently taken

into consideration as well� A multichannel extension of the ��D LMS 	TDLMS
 algorithm 	i�e��

adaptive multichannel linear �lter
 and the TDLMS 	i�e�� adaptive single�channel linear �lter
 ���

that is used in each primary color component separately were included in the comparative study�

We employed the NR index de�ned by 	��
 as an objective �gure of merit in the performance

comparisons� Moreover� the visual quality of the �ltered images was used as a subjective �gure of

merit�

In all experiments� the adaptive linear�nonlinear �lter coe�cients were initialized by zero� The

LMS and LMSN location�invariant multichannel L��lters are initialized by 	��
 and 	��
� respec�

tively� Moreover� the �lter coe�cients determined recursively by the adaptive algorithm at each

��



sidered in this paper depend explicitly on the knowledge of a reference image 	e�g�� the original

image s	k

 as we can see in the updating equations for the �lter coe�cients� However� a reference

image is seldom available in practice� In the context of an image sequence 	e�g� video
� we can

assume that a previous noise�free frame can act as a reference image for a number of subsequent

image frames� Furthermore� in such a context� it is also possible to exploit motion compensation

	MC
 in determining the desired response at each pixel assuming that the displacement vectors

between the frame acting as a reference image and the actual noise�free image are known before�

hand� Let sL	k ! t
 and sL	k ! t � �
 be the luminance components 	i�e�� the Y component in

XYZ color space
 of two color image frames that are � time instants apart� Motivated by the

success of motion�compensated �ltering ����� we propose the following choice of a reference image

�s	k ! t
 � s	k� d� ! t� �
 where d� is the displacement vector that minimizes a prediction error of

the form PE	d
 �
P

S jsL	k ! t
� sL	k� d ! t� �
j in a neighborhood S around each pixel k� A

block of 
 � 
 pixels was used in the estimation of the displacement vectors between the ��th frame

and frames ��th " ��th of �Trevor White�� The displacement vector �eld between the ��th and

�
th frames produced by the block�matching algorithm� is shown in Figure �a� The displacement

vector �eld between the ��th and the ��th frames is also shown in Figure �b�

Another point that requires some further clari�cation is the choice of the color space where the

performance comparisons are to be made� It is well known that color distances are not Euclidean in

the RGB primary system ����� Color distances are approximated by Euclidean distances in the so

called uniform color spaces e�g� the modi�ed universal camera site 	USC
� the L�a�b�� the L�u�v��

and the U�V �W � ����� To guarantee that the measured NR indices correspond to perceived color

di�erences� we felt the need to test the performance of the several �lters in a uniform color space�

We chose the U�V �W � space for this purpose�

Let us consider the ��th frame of color image sequence �Trevor White�� This frame is corrupted

by additive white trivariate contaminated Gaussian noise having the probability distribution 	��

��



primary color component are replaced by impulses of value � or ��� 	i�e�� positive and negative

impulses
� Here Ci� i � �� �� denotes the covariance matrix of each trivariate joint Gaussian

distribution� The following covariance matrices were used

C� �

�
��������

��� ��� ���

��� ��� �
�

��� �
� ���

�
�������	

C� �

�
��������

��� ���� ����

���� ��� ��

���� �� ���

�
�������	
� 	��


The description of the experiments in this set is organized as follows� First� we justify why multi�

channel nonlinear �ltering is worth pursuing for color images corrupted by the noise model already

described� Subsequently� �ltering results are presented in RGB and U�V �W � color spaces� Next

we demonstrate that by employing motion compensation� the dependence of the results obtained on

the reference image used to determine the �lter coe�cients can be alleviated� Finally� we focus on

the performance of the LMS�LMSN location�invariant multichannel L��lters in both color spaces

and we compare the visual quality of the �ltered images they produce to that of the other �ltered

images�

To begin with we answer the following questions� 	i
 Is multichannel �ltering preferable to

single�channel �ltering in the problem examined� 	ii
 Shall we rely on nonlinear adaptive �ltering

techniques or on linear ones� Let us assume for the moment that the original noise�free image is

available� Table � summarizes the performance of the NLMS and LMSN algorithms for L��ltering

and linear �ltering in a multichannel as well as in a single�channel approach in both color spaces�

i�e�� in RGB and in U�V �W �� The experiments in U�V �W � space were conducted as follows� 	a


The noisy input color image and the reference color image was transformed to U�V �W � color space�

	b
 Filtering was performed in U�V �W � color space� 	c
 The �lter performance was measured in

this domain� In NLMS adaptive algorithm� the adaptation step�size parameter �� is chosen as �����

In LMSN algorithm� we chose � � �� ���
� � � ����� and 	 � ������ From a careful inspection of

Table � the following conclusions are drawn�

��



color spaces� There is a gain of ����� dB in NR by employing multichannel adaptive �ltering

techniques in RGB� The NR gain in U�V �W � ranges between ������� dB�

�� The adaptive multichannel L��lters outperform the adaptive multichannel linear �lters by

����� dB in RGB space� They o�er a ��
������ dB higher NR than the adaptive multichannel linear

techniques in U�V �W ��

A clear di�erence between the approach and the type of �ltering is seen� In the following� the

�
th color image frame of �Trevor White� is used as the reference image for the adaptive �ltering

techniques�

The NR achieved in RGB color space by the �lters under study is given in Table �� The

adaptation step�size parameter that yields the best result in terms of the visual quality of the

�ltered image has been used in NLMS algorithms� It is included in the corresponding entry of

Table �� For LMSN algorithms� the parameters used in the previous experiment yield �ltered

images with the best visual quality� Note that the best RE estimator corresponds to index J � �

����� By examining Table � we conclude�

�� Nonlinear �lters are ranked as the four best �lters� namely� the multichannel DWMTM �lter�

the MC LMSN adaptive multichannel L��lter� the MC NLMS multichannel L��lter and the MC

LMSN location�invariant multichannel L��lter� The MC LMSN�NLMS adaptive multichannel L�

�lter attains an almost identical performance to that of the multichannel DWMTM �lter� Recall�

however� that the multichannel DWMTM �lter employs a window of dimensions � � ��

�� The adaptive multichannel L��lters outperform the adaptive multichannel linear �lters by

approximately ��� dB in the case of MC NLMS algorithm and by ��� dB in the case of MC LMSN

algorithm�

�� The multichannel techniques are found superior to single�channel ones by ����
 dB in MC

NLMS adaptive L��lters and by ���
� dB in MC LMSN adaptive L��lters�

�� The multichannel techniques yield a much better NR index than single�channel ones in linear

��



�� MC LMSN adaptive algorithms give identical results to MC NLMS ones with respect to

NR index� However� the LMSN adaptive multichannel L��lter without MC yields an almost � dB

higher NR than the NLMS adaptive multichannel L��lter without MC�

Figure �a shows the noise�free ��th frame of color image sequence �Trevor White� in RGB color

space that is used as a test image� The �
th frame of Trevor White that is used as a reference

image is shown in Figure �b� The test image corrupted by mixed impulsive and additive trivariate

contaminated Gaussian noise is depicted in Figure �c� The output of the MC NLMS and the MC

LMSN adaptive multichannel L��lter is shown in Figure �d and �e� respectively� We argue that

MC NLMS gives a slightly superior �ltered image than the MC LMSN in terms of the visual quality�

For comparison purposes� the output of the marginal median �lter is depicted in Figure �f� The

marginal median �lter preserves the edges but fails to remove the noise in the homogeneous regions�

On the contrary� in homogeneous regions� the MC NLMS�MC LMSN multichannel L��lter performs

better than the marginal median �lter� The output of the multichannel DWMTM �lter and the

vector median �lter based on the L� norm are given in Figure �g and �h� respectively� We see that

the output of the vector median �lter is clearly poorer than the output of the proposed adaptive

multichannel L��lters� The image �ltered by the multichannel DWMTM �lter exhibits a visual

quality that is ranked between that of the MC NLMS and the MC LMSN adaptive multichannel

L��lters� The performance of the adaptive location�invariant L��lter is studied separately later�

The performance of the several �lters included in the comparisons has been measured in

U�V �W � color space as well� As before� the adaptation step�size parameter that yields the best

result in terms of the visual quality of the �ltered image has been used in NLMS algorithms� It can

be found in the corresponding entry of Table 
� For LMSN algorithms� one may use the parameters

� � ���� and 	 � ����� and either the �xed step size � � � � ���
 or a variable step�size �	k


given by �	k
 � ��
�XT �k� �R��

p �k� �X�k�
as in algorithm II ����� In the latter case� the parameter �� used

is given in the corresponding entry of Table 
� The inspection of Table 
 reveals that�

��



�� They outperform the multichannel linear techniques by ��� dB in the case of the MC NLMS

algorithm and by ���� dB in the case of the MC LMSN algorithm�

�� The MC NLMS adaptive multichannel L��lter is superior to the MC NLMS single�channel

L��lters by ��� dB� The MC LMSN adaptive multichannel L��lter is slightly better than using three

separate LMSN adaptive single�channel L��lters by ���
� dB�

�� Multichannel techniques yield a much higher NR than the single�channel techniques in linear

�ltering�

�� Three out of the four best �ltering techniques are found to be multichannel and nonlinear�

It is surprising that the MC multichannel normalized TDLMS linear �ltering has proven e�cient

in U�V �W � color space�

The output of several �lters included in our comparative study was transformed from U�V �W � to

RGB for display purposes� The output of the MC NLMS and MC LMSN adaptive multichannel

L��lter is shown in Figure �a and �b� respectively� By comparing Figures �a and �b to Figures �d�

and �e� we conclude that by processing the color image in a uniform color space� color information

is preserved better than by processing the image in RGB color space� This is self�evident in the

uniform greenish background of the image� Moreover� the inability of the marginal median to

smooth the noise in homogeneous regions is clearly depicted in Figure �c� It is remarkable that

although the multichannel DWMTM attains a high NR close enough to the NR achieved by the

proposed adaptive multichannel L��lters� the visual quality of its output 	Figure �d
 is worse than

that of the MC NLMS 	Figure �a
 and the MC LMSN adaptive multichannel L��lters 	Figure �b
�

The poor performance of the vector median �lter is easily identi�ed in Figure �e� Figure �f depicts

the output of the MC multichannel normalized TDLMS �lter� By comparing the visual quality

of Figure �f to that of Figure �a� we �nd the former to be slightly poorer than that of the latter

one� Note that the NR for the MC normalized TDLMS �lter drops faster than that of the NLMS

multichannel L��lter when the ��th frame is chosen as the reference image 	i�e�� ������� dB against

��



Therefore� for a color image corrupted by mixed additive white trivariate contaminated Gaussian

plus impulsive noise� very good performance in terms of NR was obtained by employing MC adaptive

multichannel L��lters� Furthermore� the aforementioned measured improvement in terms of the

NR index corresponds to a perceived subjective improvement as manifested by the experiments

performed in the perceptually uniform color space U�V �W �� We found that the MSE in such a

space better describes the subjective improvement than the MSE in the RGB space�

Table � summarizes the NR achieved by the NLMS and the LMSN adaptive multichannel L�

�lters in RGB space� when motion compensation is exploited� Our objective is to demonstrate

that the results reported previously do not depend strongly on the reference image used� Indeed

by employing MC it is seen that the NR decreases only ���� dB when the ��th frame is chosen as

the reference image instead of the ��th frame for the NLMS in RGB� The corresponding decrease

is approximately ��� dB when the LMSN algorithm is used in RGB color space� An inspection

of Table � shows that MC can improve the NR achieved by the NLMS adaptive multichannel L�

�lter by approximately � dB in the case of the �
th frame� However� the gain is smaller for LMSN

adaptive multichannel L��lter� In the latter case� an improvement of ��
 dB was found� The gain for

both algorithms increases when the reference image becomes more distant from the �ltered image�

However� the range of the gain observed is narrower for the LMSN adaptive multichannel L��lter�

By comparing the NR indices achieved by the MC LMSN adaptive multichannel L��lter and the MC

normalized TDLMS multichannel 	linear
 �lter� we �nd that the best adaptive multichannel L��lter

that employs MC outperforms the best adaptive multichannel linear �lter that also uses MC by ����

dB� Similarly� we see that the best adaptive multichannel L��lter 	i�e�� the MC LMSN multichannel

L��lter
 is superior to the best adaptive single�channel L��lter 	i�e�� the MC LMSN single�channel

L��lter
 by ���
� dB when MC is used� The role of MC in U�V �W � space is marginal in terms of

the NR achieved� However� we �nd it to be crucial in tracking moving edges and preserving edge

detail information� The outputs of the proposed MC NLMS and MC LMSN adaptive multichannel

��



respectively� The �ltered images in Figures �a and �b were obtained by performing �ltering in RGB

color space� By comparing these �gures with Figure �d and �e we cannot identify an observable

deterioration in visual quality� Moreover� the visual quality of Figures �a and �b is still superior

to that of the images �ltered by the marginal median 	Figure �f
 or the vector median 	Figure �h
�

By performing adaptive noise �ltering in U�V �W � space� we obtained the �ltered images shown

in Figure �c and �d with MC when the ��th frame is used as the reference image for the NLMS

and the LMSN algorithm� respectively� A comparison of the visual quality of the Figures �c and

�d to the one of Figures �a�b reveals similar information� Therefore� thanks to MC the proposed

algorithms still o�er a �ltered image of higher quality than a broad set of alternatives including

the vector median� the marginal median� the ��trimmed mean and the multichannel MTM �lters�

Moreover� the dependence of the reference image in the derivation of the �lter coe�cients has been

diminished� yielding realistic �lter designs�

Finally� we examine the performance of the LMS�LMSN adaptive location�invariant multichan�

nel L��lter in more detail� Table �� summarizes the NR achieved by these two �lter structures in

both color spaces with�without MC when either the �
th frame or the ��th one is chosen as the

reference image� From an inspection of Table ��� we see that the MC adaptive location�invariant

multichannel L��lters are proven the most robust adaptive �lter structures because there is almost

no deterioration in NR when the reference image changes� This point is valid in both color spaces�

Moreover� there is no deterioration in the visual quality of the �ltered images produced in either

case as we can see by comparing Figures �a and �c with Figures �b and �d� respectively� The

comparison of Figures �a and �c with the output of the marginal median �lter 	Figure �f
 or the

output of the vector median �lter 	Figure �h
 reveals the superiority of the visual quality of the

�ltered images by the MC adaptive location�invariant multichannel L��lters� Note that such ob�

servations extend the good robustness properties of the location�invariant adaptive �lter structure

described in ���� for the single�channel case�

��



In this paper three adaptive multichannel L��lters were proposed� namely the LMS� the NLMS

and the LMSN adaptive multichannel L��lters� The design of both unconstrained and constrained

�lters was studied� The performance of both the unconstrained and the constrained proposed

adaptive multichannel L��lters has been tested in noise removal in RGB and in U�V �W � color

spaces� It was also compared to that of other well�known multichannel nonlinear �lters� Adaptive

multichannel linear �lters and single�channel either nonlinear or linear �lters were considered as

well� We found by experiments that NLMS and LMSN adaptive multichannel L��lters have the

best performance in noise suppression for color images corrupted by mixed impulsive and addi�

tive white trivariate contaminated Gaussian noise� Moreover� we found that thanks to MC the

dependence of the �lter performance on the reference image can be diminished� yielding practical

�ltering schemes in image sequence processing� We demonstrate that the MC LMS�LMSN adaptive

location�invariant multichannel L��lters are the most robust adaptive �lter structures in the sense

that they achieve practically the same NR index independent of the reference image chosen� These

conclusions were also veri�ed by processing color images in a uniform color space 	e�g�� U�V �W �
�

Therefore� the proposed adaptive multichannel L��lters achieve noise suppression and preserve the

color information faithfully�
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Table �� LMS�Newton adaptive multichannel L��lter
Initialization�

�R��
p 	�
 � ���I� where � is a small real number�

Initial L��lter coe�cients� �a�i�	�
 � �� i � �� � � � � p�
For k � ��

Multichannel L��lter output� yi	k
 � �aT�i�	k
 �X	k
� i � �� � � � � p�

A priori estimation error� ei	k
 � si	k
� yi	k
� i � �� � � � � p�
Coe�cient updating equations�

t	k
 � �R��
p 	k � �
 �X	k


�	k
 �

�
�� 	

	

�
� �XT 	k
t	k


�R��
p 	k
 �

�
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�
�R��
p 	k � �
�

t	k
tT 	k


�	k


�

�a�i�	k � �
 � �a�i�	k
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p 	k
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Table �� Computational complexity of the unconstrained adaptive multichannel L��lters�

Algorithm LMS 	�
 LMS 	��
 NLMS 	�

 LMSN 	��

Parameter

Number of variables p�N � p N� p� N � �pN� p� N � p N� p� N� � p� N�
�p� � �p � � �p � � p N � �p � �

Number of comparisons
per iteration

�pblog�Nc� �p

Number of multiplica� �p�N � p �p�N � �p N �p�N � p N� �p�N� � �p� N�
tions per iteration ��p �p N � �p

Number of additions �p�N �p�N � p N � � �p�N � p N � � �p�N� � �p� N�
per iteration p N � �

��



Table �� Computational requirements of the location�invariant multichannel L��lters in addition
to those tabulated in Table ��

Algorithm 	�� 
 	��

Parameter

Number of additional
variables

p� N� � p� N � p N p� N� � p�N � �p N � p�

Number of multiplica�
tions upon initialization

p� N� � p N

Number of additions
upon initialization

p� N�

Number of ad�
ditional multiplications
per iteration

p� N� �p� N� � �p� N � O	p�


Number of additional
additions per iteration

p� N� �p� N� � p� N� � �p�N � �p� N � p� �O	p�


Table �� Noise reduction 	in dB
 achieved by the adaptive multichannel L��lters for the bivariate
contaminated Gaussian noise model 	Filter length N � �
�

Filter NR

LMS adaptive multichannel L��lter ��
����

NLMS adaptive multichannel L��lter �������

LMSN adaptive multichannel L��lter ��
����

non�adaptive multichannel L��lter ��
����

Table �� Noise reduction 	in dB
 achieved by the location�invariant multichannel L��lters for the
bivariate contaminated Gaussian noise model 	Filter length N � �
�

Filter NR

LMS location�invariant multichannel L��lter ����
��

LMSN location�invariant multichannel L��lter ������


non�adaptive location�invariant multichannel L��lter �������

marginal median ���
���

��



Table �� Performance comparisons between multichannel versus single�channel and L��ltering ver�
sus linear �ltering adaptive algorithms both in RGB and U�V �W � for the mixed additive trivariate
contaminated Gaussian plus impulsive noise model 	Filter window ���
�

NR 	dB
 in color space

Approach Type of �ltering Adaptive algorithm RGB U�V �W �

multichannel L��ltering NLMS ����
�
 �����
�
LMSN ������� ����
��

linear �ltering NLMS ������
 �������
LMSN ������� ������


single�channel L��ltering NLMS ������
 �������
LMSN ������� �������

linear �ltering NLMS �
�
�� �������
LMSN ������ �������

Table �� Noise reduction 	in dB
 achieved in 	NTSC
 RGB color space by several �lters in the
restoration of the ��th color frame of �Trevor White� corrupted by mixed additive white trivariate
contaminated Gaussian plus impulsive noise 	Filter window ���
�

Filter NR Ranking

marginal median ������
 ���

vector median L� ������� ����

vector median L� �
���
 ��
�

RE��lter �
���� ����

��trimmed mean 	� � ���
 ������� ����

arithmetic mean �
���� ����

multichannel MTM �lter ������� ����

multichannel DWMTM �lter ������� ���

NLMS adaptive multichannel L��lter 	�� � ���
 �������
MC NLMS adaptive multichannel L��lter 	�� � ���
 ������
 ���

LMSN adaptive multichannel L��lter �������
MC LMSN adaptive multichannel L��lter ������� ���

LMS location�invariant multichannel L��lter 	�� � ���
 �������
MC LMS location�invariant multichannel L��lter 	�� � ���
 ������� ���

LMSN location�invariant multichannel L��lter �������
MC LMSN location�invariant multichannel L��lter ������� ���

normalized TDLMS multichannel �lter 	�� � ���
 ������
MC normalized TDLMS multichannel �lter 	�� � ���
 ������� �
�

TDLMS�Newton multichannel �lter �������
MC TDLMS�Newton multichannel �lter ������� ����

NLMS adaptive single�channel L��lters 	�� � ����
 ������
MC NLMS adaptive single�channel L��lters 	�� � ����
 ������� ���

LMSN adaptive single�channel L��lters �������
MC LMSN adaptive single�channel L��lters ������� ���

normalized TDLMS �lters 	�� � ����
 ������
MC normalized TDLMS �lters 	�� � ����
 ������ ����

TDLMS�Newton �lters ����
�
MC TDLMS�Newton �lters ���
�� ����

��



Table 
� Noise reduction 	in dB
 achieved in U�V �W � color space by several �lters in the restoration
of the ��th color frame of �Trevor White� corrupted by mixed additive white trivariate contami�
nated Gaussian plus impulsive noise 	Filter window ���
�

Filter NR Ranking

marginal median ������� ����

vector median L� ������ ����

vector median L� 	RE��lter
 �
���� ����

��trimmed mean 	� � ���
 ������� ����

arithmetic mean ������ ����

multichannel MTM �lter ������� ����

multichannel DWMTM �lter ������� ���

NLMS adaptive multichannel L��lter 	�� � ���
 �������
MC NLMS adaptive multichannel L��lter 	�� � ���
 ������� ���

LMSN adaptive multichannel L��lter 	�� � ���
 �������
MC LMSN adaptive multichannel L��lter 	�xed � � �����
 ������� ���

LMS location�invariant multichannel L��lter 	�� � ���
 �������
MC LMS location�invariant multichannel L��lter 	�� � ���
 ������� ���

LMSN location�invariant multichannel L��lter �������
MC LMSN location�invariant multichannel L��lter �����
� �
�

normalized TDLMS multichannel �lter 	�� � ���
 �������
MC normalized TDLMS multichannel �lter 	�� � ���
 ������� ���

TDLMS�Newton multichannel �lter 	�� � ���
 �������
MC TDLMS�Newton multichannel �lter 	�� � ���
 ����

� ���

NLMS adaptive single�channel L��lters 	�� � ���
 �������
MC NLMS adaptive single�channel L��lters 	�� � ���
 ������� ���

LMSN adaptive single�channel L��lters 	�� � ���
 �������
MC LMSN adaptive single�channel L��lters 	�xed � � �����
 ������� ���

normalized TDLMS �lters 	�� � ���
 �������
MC normalized TDLMS �lters 	�� � ���
 ������
 ����

TDLMS�Newton �lters 	�� � ���
 ������

MC TDLMS�Newton �lters 	�xed � � �����
 ������� �
�

Table �� Noise reduction 	in dB
 achieved by the adaptive multichannel L��lters in the restoration of
the ��th color frame of �Trevor White� corrupted by mixed additive white trivariate contaminated
Gaussian plus impulsive noise for several past frames acting as reference images with�without
motion compensation 	MC
�

NR 	dB
 for NLMS NR 	dB
 for LMSN
multichannel L��lter multichannel L��lter

Reference Image with MC without MC with MC without MC

��th frame ������� ������� ������� �������

�
th frame ������
 ������� ������� �������

��th frame ������� ������ ������
 �������

��th frame ������� �
���
 ������
 ����
��

��th frame ����
�� ������ ������� ����
�

��



Table ��� Noise reduction 	in dB
 achieved by the adaptive location�invariant multichannel L��lters
in the restoration of the ��th color frame of �Trevor White� corrupted by mixed additive white
trivariate contaminated Gaussian plus impulsive noise with�without motion compensation 	MC

in color spaces RGB and U�V �W �� Either the �
th frame or the ��th one is used as the reference
image�

NR 	dB
 in RGB NR 	dB
 in U�V �W �

Reference Image �
 �� �
 ��
Filter

LMS location�invariant ������� ������� ������� ������


MC LMS location�invariant ������� ������� ������� �������

LMSN location�invariant ������� �����
� ������� ������


MC LMSN location�invariant ������� ������� �����
� �������

�
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Figure �� Learning curves for 	a
 LMS� 	b
 NLMS� and 	c
 LMSN adaptive multichannel L��lters�
	d
 Zooming in the �rst ���� iterations for the three adaptive multichannel L��lters�
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Figure �� Learning curves of the 	a
 LMS adaptive location�invariant multichannel L��lter! 	b

LMSN adaptive location�invariant multichannel L��lter�
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Figure �� Displacement vector �elds 	a
 between the ��th and the �
th noise�free frames of image
sequence �Trevor White�! 	b
 between the ��th and the ��th noise�free frames of the same image
sequence�
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Figure �� Output of various �lters in smoothing the mixed impulsive and additive white trivariate
contaminated Gaussian noise that corrupts the ���th frame of color image sequence �Trevor White��
Image �ltering has been performed in RGB color space�
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Figure �� Output of various �lters in smoothing the mixed impulsive and additive white trivariate
contaminated Gaussian noise that corrupts the ���th frame of color image sequence �Trevor White��
Image �ltering has been performed in U�V �W � color space�
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Figure �� Output of the MC NLMS�LMSN adaptive multichannel L��lters when the ��th frame of
color image sequence �Trevor White� is chosen as the reference image�
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Figure �� Output of the MC LMS�LMSN adaptive location�invariant multichannel L��lters when
either the �
th or the ��th frame of color image sequence �Trevor White� is used as the reference
image� Filtering is performed in RGB�
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