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Abstract

Several adaptive LMS L��lters� both constrained and unconstrained ones� are de�

veloped for noise suppression in images and being compared in this paper� First� the

location�invariant LMS L��lter for a nonconstant signal corrupted by zero�mean addi�

tive white noise is derived� It is demonstrated that the location�invariant LMS L��lter

can be described in terms of the generalized linearly constrained adaptive processing

structure proposed by Gri�ths and Jim� Subsequently� the normalized and the signed

error LMS L��lters are studied� A modi�ed LMS L��lter with nonhomogeneous step�

sizes is also proposed in order to accelerate the rate of convergence of the adaptive

L��lter� Finally� a signal�dependent adaptive �lter structure is developed to allow a

separate treatment of the pixels that are close to the edges from the pixels that belong

to homogeneous image regions�
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Adaptive signal processing has exhibited a signi�cant development in the past two decades�

Adaptive �lters have been applied in a wide variety of problems including system identi�ca�

tion� channel equalization� echo cancellation in telephone channels� suppression of narrow�

band interference in wideband signals and adaptive arrays �����	�� The most widely known

adaptive �lters are linear ones having the form of either FIR or lattice �lters� However� such

�lters may not be suitable for applications where the transmission channel is nonlinear or

where the noise is impulsive or where the signal is strongly nonstationary 
e�g� in image

processing��

On the contrary� a multitude of nonlinear techniques has been proven a successful al�

ternative to the linear techniques in all the above�mentioned cases� For a review of the

nonlinear �lter classes the reader may consult ���� One of the best known families is based

on the order statistics �
�� It uses the concept of sample ordering� The power of the ordering

concept is well illustrated by median �lters which preserve edges and are optimal estimators

for impulsive noise� There is now a multitude of nonlinear �lters based on data ordering�

Among them are the L��lters whose output is de�ned as a linear combination of the order

statistics of the input sequence ���� The L��lters have found extensive application in digital

signal and image processing� because they have a well�de�ned design methodology as the

estimators which minimize the Mean�Squared Error 
MSE� between the �lter output and

the noise�free signal ��������� It is well�known that digital image �ltering techniques must

take into account the local image content 
i�e�� the local statistics�� because image statis�

tics vary throughout an image� They should exploit the correlation between image pixels

as is the case in homogeneous regions� Furthermore� they should meet di�erent objectives�

For example� in homogeneous regions the objective is noise smoothing� whereas close to the
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the edges than in homogeneous regions� Such requirements are ful�lled by adaptive �ltering

techniques� because it has been proved both theoretically as well as in practice that adaptive

techniques can cope with nonstationary and�or time varying signals� Moreover� adaptive

techniques do not make any a priori assumptions regarding the statistics of the data and

the degradations 
i�e�� the noise� as opposed to nonadaptive ones� In our case� a design of

L��lters which relies on a non�iterative minimization of the MSE between the �lter output

and the desired response yields very tedious expressions for computing the marginal and

joint cumulative functions of the order statistics 
cf� ����� Consequently� the design of adap�

tive L��lters is proved appealing in avoiding the computational burden of the non�iterative

methods� Therefore� nonlinear adaptive techniques should be pursued� Signal�adaptive �l�

ters� i�e�� �lters that change their smoothing properties at each image point according to

the local image content� have been used in image processing applications where impulsive

or signal�dependent noise is present �������
�� Most of these �lters change their coe�cients

close to the image edges or close to impulses� so that their performance becomes similar to

the median �lter� However� the main disadvantage of such �lters is that the update of their

coe�cients is rather heuristic and usually does not come from the minimization of an error

norm�

Recently� the adaptation of the coe�cients employed in order statistic �lters by using

linear adaptive signal processing techniques has received much attention in the literature

���������� In this paper� we shall con�ne ourselves to the design of adaptive L��lters� Many

authors have tried to design adaptive L��lters either by using the Least Mean Squares


LMS� or the Recursive Least Squares 
RLS� algorithm ��������� or by using constrained

LMS adaptive algorithms ���������� The majority of the above�mentioned algorithms have

been derived assuming a constant signal corrupted by zero�mean additive white noise� All of
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���� that have been tested on images� But the later algorithms� are mainly steepest�descent

algorithms that use the correlation matrix of the order statistics and the crosscorrelation

vector between the order statistics and the desired response themselves and not estimates of

them�

Digital images can be degraded either by motion blur� defocus blur and�or by introducing

noise during acquisition or transmission� In this paper� we shall examine the case when

images are corrupted by additive white noise� The main contribution of the paper is in the

design and comparison of several adaptive L��lters for noise suppression in images� The

properties of the developed adaptive L��lters are studied as well� Another primary goal is

to establish links between the adaptive L��lters under study and other algorithms developed

elsewhere� Two novel classes of adaptive LMS L��lters are discussed and a generalization

to a signal�dependent adaptive �lter structure is proposed� All the adaptive L��lters stem

from the same algorithm� the Least Mean Squares algorithm that is used to minimize a cost

function 
e�g� Mean Squared Error� Mean Absolute Error� overall output power��

First� the location�invariant LMS L��lter for a nonconstant signal corrupted by zero�

mean additive white noise is derived� Our interest in deriving the location�invariant LMS

L��lter relies on the observation that this �lter structure can be modi�ed so as it performs

even when a reference signal is not available� It is shown that the updating formula for the

location�invariant LMS L��lter coe�cients is the same with the one derived in the case of a

constant signal corrupted by additive noise� Furthermore� we demonstrate that the derived

constrained LMS L��lter can be described in terms of the general structure proposed by

Gri�ths and Jim ����� Next� the normalized LMS L��lter is studied� Our motivation in

studying the normalized LMS L��lter is justi�ed for three reasons� namely� 
i� This LMS

variant provides a way to automate the choice for the step�size parameter in order to speed
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of the input�signal statistics� as is in practice ����� 
iii� It is able to track the varying

signal statistics ���� The derivation of the majority of adaptive �lter algorithms relies on the

minimization of MSE criterion� Another optimization criterion that is encountered in image

processing is the Mean Absolute Error 
MAE� criterion� The so called signed error LMS L�

�lter that minimizes the MAE between the �lter output and the desired response is derived�

The signed�error LMS L��lter shares the bene�ts of the signed error LMS algorithm� i�e�� the

reduced numerical requirements due to the elimination of any multiplication in the coe�cient

updating equation� It is shown that for a certain choice of the step�size parameter the signed

error LMS L��lter and the normalized LMS L��lter turn to be identical� Subsequently� a

modi�ed LMS L��lter with nonhomogeneous step�sizes is introduced in order to accelerate

the rate of convergence of the adaptive L��lter by allowing the convergence of each L��lter

coe�cient to be controlled by a separate step�size parameter� Finally� a signal�dependent

adaptive �lter structure is developed aiming at a di�erent treatment of the image pixels

close to the edges from the pixels that belong to homogeneous regions� It is shown by

experiments that the normalized LMS L��lter attains the best results with respect to both

criteria� Furthermore� it is found that even better results are obtained by using the signal�

dependent adaptive �lter structure that employs two normalized LMS L��lters with di�erent

window sizes�

Throughout the paper two crucial aspects in the performance of an adaptive L��lter are

highlighted and addressed properly�

�� the selection of a step�size sequence in a nonstationary environment 
as is in

image �ltering� from a deterministic point of view 
i�e�� seeking to minimize

always the a posteriori estimation error� without relying on the minimization of
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���� ����

�� what can be done when a reference image is not available� Two solutions are

proposed� 
i� We show in theory that the location�invariant LMS L��lter 
Section

�� can be modi�ed so that it minimizes the overall output power� The variants

of the unconstrained LMS L��lter cannot handle this case� 
ii� We demonstrate

by experiments that the location�invariant LMS L��lter coe�cients are robust

in the sense that they actually do not depend on the reference image which has

been used in the training session� In the experimental results 
Section �� we

show that the location�invariant L� �lter coe�cients that are determined at the

end of a training session on a noisy version of �Trevor White� can be applied

to a noisy version of �Lenna� without any signi�cant performance deterioration�


iii� The requirement for the reference image is to be strongly correlated with the

noise�free image that yields the noisy one which is �ltered� In certain cases 
e�g�

in image sequences�� it is reasonable to assume that one noise�free frame can act

as a reference image for a number of image frames� In such a case� although

the normalized LMS L��lter and the signal�dependent adaptive �lter structure

depend on the reference image� it is demonstrated 
Section �� that they can �lter

several noisy image frames using a single reference image without a great loss in

the noise reduction capability of the �lter 
��� dB at most��

The outline of the paper is as follows� Section � is devoted to the design of the location�

invariant L��lter� The normalized LMS L��lter� the signed error LMS L��lter and the

modi�ed LMS L��lter with nonhomogeneous step�sizes are studied in Section �� The signal�

dependent adaptive �lter structure is described in Section 	� Experimental results are in�






� Location�invariant LMS L��lter

In this section� we shall derive the updating formula for the location�invariant LMS L��lter

in the case of a nonconstant signal corrupted by zero�mean additive white noise�

Let us consider that the observed image x
k� can be expressed as a sum of an arbitrary

image s
k� plus zero�mean ��d additive white noise� i�e��

x
k� � s
k� � n
k� 
��

where k � 
i� j� denotes the pixel coordinates� In image processing� a neighborhood is

de�ned around each pixel k� Our purpose is to design a �lter de�ned on this neighborhood


to be called the �lter window hereafter� that aims at estimating the noise�free central image

pixel value s
k� by minimizing a certain criterion� Among the several �lter masks 
e�g� cross�

x�shape� square� circle� that are used in digital image processing ���� we shall rely on the

square window of dimensions ��� where � is generally assumed to be an odd number� i�e��

� � �� � ��

X
k� �

�
���������

x
i� �� j � �� x
i� �� j � � � �� � � � x
i� �� j � ��

���
���

x
i� �� j � �� x
i � �� j � � � �� � � � x
i � �� j � ��

�
���������
� 
��

Let N � ��� Since we intend to apply a �lter based on sample ordering let us rearrange the

above �� � �lter window in a lexicographic order 
i�e�� row by row� to a N � � vector

x
k� � 
x
i� �� j � ��� x
i� �� j � � � ��� � � � � x
i� �� j � ��� � � � � x
i � �� j � ���T � 
��

We shall assume that the �lter window is sliding over the image in a raster scan fashion� If
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k � 
i� �� K � j � � i � K � � j � L 
	�

can be used instead of the pixel coordinates k� Henceforth� a ��D notation will be adopted

for simplicity� Let xr
k� be the ordered input vector at time pixel k given by

xr
k� �
�
x���
k�� x���
k�� � � � � x�N�
k�

�T

��

where x�i�
k� denotes the i�th largest observation in the N � � input vector 
��� We are

seeking the L��lter ��� whose output at k

y
k� � aT 
k� xr
k� 

�

minimizes the MSE

J
k� � E
h

y
k�� s
k���

i
� E

h
s�
k�

i
� �aT 
k� p
k� � aT 
k�R
k� a
k�� 
��

R
k� � E
h
xr
k� xTr 
k�

i
is the correlation matrix of the observed ordered image pixel values

and p
k� � E �s
k� xr
k�� denotes the crosscorrelation vector between the ordered input

vector xr
k� and the desired image pixel value s
k� subject to the constraint

�TN a
k� � �� 
��

In 
��� �N is the N � � unitary vector� i�e�� �N � 
�� �� � � � � ��T � The dependence of the

correlation matrix and the crosscorrelation vector on k signi�es that none assumption about

stationarity has been made� The constraint 
�� ensures that the �lter preserves the zero�

frequency or dc signals ��� ��� Let � � 
N � ����� By employing 
��� we can partition the

L��lter coe�cient vector as follows

a
k� �
�
aT� 
k�ja�
k�jaT� 
k�

�T

��

�




 � 
 � 
 �

a�
k� � 
a�
k�� � � � � a���
k��T a�
k� � 
a���
k�� � � � � aN 
k��T � 
���

The coe�cient for the median input sample is evaluated then by�

a�
k� � �� �T���a�
k�� �T���a�
k�� 
���

In the sequel� we shall drop the subscript from the unitary vector of dimensions 
N�������

for notation simplicity� Similarly� the ordered input vector can be rewritten as

xr
k� �
�
xTr�
k�jx���
k�jxTr�
k�

�T
� 
���

Let a�
k� be the reduced L��lter coe�cient vector

a�
k� �
�
aT� 
k�jaT� 
k�

�T

���

and �xr
k� be the 
N � ��� � vector

�xr
k� �

�
����
xr�
k�� x���
k��

xr�
k�� x���
k��

�
���� � 
�	�

Following the analysis in ���� it can be proven that the LMS recursive relation for updating

the reduced L��lter coe�cient vector is given by

�a�
k � �� � �a�
k� � � �
k� �xr
k� 
���

where �
k� is the estimation error at pixel k� i�e�� �
k� � s
k�� y
k�� The recursive formula


��� is identical to the one reported in ����� but without invoking the assumption of a

constant signal� Eq� 
��� along with 
��� constitute the location�invariant LMS L��lter�

The convergence properties of the location�invariant LMS L��lter depend on the eigenvalue

distribution of the correlation matrix of the vector �xr
k��

Recently� several researchers have proposed adaptive algorithms for the design of L��lters

that ful�ll structural constraints such as the location�invariance that is discussed in this paper
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has been a hot research topic in adaptive array beamforming for two decades �������	��

Two are the main classes of constrained LMS algorithms� namely the gradient projection

algorithm and Frost�s algorithm� A generalized structure that includes Frost�s algorithm as

well as other linearly constrained adaptive algorithms has been proposed by Gri�ths and

Jim ����� Therefore� the need emerges to connect the constrained adaptive L��lter structures

with these main classes of linear constrained LMS algorithms� The algorithms reported in

��	� �
� ��� ��� utilize Frost�s algorithm� The possibility of using the gradient projection

algorithm has also been proposed in ����� Between those two� Frost�s algorithm is preferable�

because it does not accumulate errors as opposed to gradient projection algorithm ���� ����

We shall demonstrate that the proposed algorithm 
��� falls into Gri�ths� and Jim�s general

structure shown in Figure �� This general structure consists of two paths� In the upper path�

the input observations are �ltered by a �xed �lter whose coe�cients have a sum of unity�

i�e��

�TNac � �� 
�
�

In the lower path� the input observations are multiplied by matrix preprocessor B of di�

mensions 
N � �� � N at most� and the resulted data are fed to an adaptive �lter whose

coe�cients are updated according to the unconstrained LMS algorithm� In addition� the

rows of matrix B� bm� should sum up to zero� i�e��

�TNbm � � �m� 
���

In our case� both the �xed �lter as well as the adaptive one are L��lters that are driven by

the observed image ordered pixel values� If we choose ac to be a median �lter� i�e��

ac
i� � 	i� i � �� � � � � N 
���

��



B �

�
����������������������������

� � � � � � �� � � � � �

� � � � � � �� � � � � �

���
���

� � � � � � �� � � � � �

� � � � � � �� � � � � �

���
���

� � � � � � �� � � � � �

�
����������������������������


���

the location�invariant LMS L��lter results�

If a desired image is not available� 
��� is modi�ed as follows�

�a�
k � �� � �a�
k�� � y
k� �xr
k� 
���

and the resulting �lter minimizes the overall output power

J
k� � aT 
k�R
k�a
k� 
���

subject to 
���

� Variants of the unconstrained LMS L��lter

In this section� we deal with the unconstrained LMS adaptive L��lter ��������� whose coe��

cients are updated by using the following recursive formula�

�a
k � �� � �a
k� � � �
k� xr
k�� 
���

Three modi�cations of the unconstrained LMS adaptive L��lter are discussed� namely� the

normalized LMS L��lter� the signed error LMS L��lter and the modi�ed LMS L��lter with

nonhomogeneous step�sizes�
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A di�cult problem frequently met in the design of adaptive �lters that are based on the

LMS algorithm� such as the algorithm 
���� is the selection of the step�size parameter ��

Although in theory su�cient conditions on � exist that guarantee the convergence of the LMS

algorithm� these conditions depend on the knowledge of the eigenvalues of the correlation

matrix R ��� ��� �
�� In the case of the LMS adaptive L��lter 
���� R is the correlation

matrix of the ordered input vector� For example� the necessary and su�cient condition for

the average L��lter coe�cient vector E ��a
k�� to be convergent is

� 
 � 

�

�max

���

where �max denotes the maximal eigenvalue of matrix R ���� Furthermore� � should satisfy

the following more strict condition

� 
 � 

�

� tr�R�
�

�

�� total input power

�	�

in order to achieve convergence of the average Mean�Squared Error E �J
k�� to a steady

state value ��
�� In 
�	�� tr��� stands for the trace of the matrix inside brackets� In addition�

when the adaptive �lter is going to operate in a nonstationary environment 
as is in image

processing�� inequalities 
��� and 
�	� turn to be useless� since the correlation matrix R is

time�space varying� In such cases� it is reasonable to employ a time�space varying step�size

parameter �
k�� Let us evaluate the a posteriori estimation error at pixel k� de�ned as

follows

��
k� � s
k�� �aT 
k � ��xr
k�� 
���

It can easily be shown that

��
k� � �
k�
�
�� �
k� xTr 
k�xr
k�

�
� 
�
�

��




 �

�
k� �
�

xTr 
k�xr
k�
�

�

jjxr
k�jj�

���

then� ��
k� becomes zero� A step�size sequence of the form 
��� motivated us to modify 
���

as follows�

�a
k � �� � �a
k� �
��

jjxr
k�jj�
�
k� xr
k�� 
���

The recursive equation 
��� describes the adaptation of the coe�cients of the normalized

LMS L��lter� It is equivalent to the linear normalized LMS algorithm ���� The only di�erence

is that 
��� employs the vector of the ordered observations xr
k� to update the adaptive L�

�lter coe�cients� whereas the linear normalized LMS algorithm employs the input vector

x
k� given by 
��� Eq� 
��� may be interpreted as an ordinary LMS updating formula

that operates on the normalized ordered noisy�input observations xr
k��jjxr
k�jj� Therefore

according to 
�	� �� should be chosen to satisfy the inequality

� 
 �� �
�

�
� 
���

since we deal now with the correlation matrix of the normalized ordered input observations

given by

�R � E

	
xr
k�xTr 
k�

jjxr
k�jj�



�

�

tr�R�
R 
���

whose trace is equal to �� In practice� it has been found that 
��� is still conservative� because

the best results have been obtained for �� � ���� as can be seen in Section �� However� if ��

is chosen to be equal to ���� we are still close to the optimum�

��B Signed error LMS L��lter

Another criterion that is frequently encountered in nonlinear image processing is the Mean

Absolute Error 
MAE� criterion 
also called Least Mean Absolute Value criterion ����� The

��



timal MAE estimator of location for the double�exponential distribution 
i�e�� the Laplacian

distribution� ���� In the sequel� we shall derive the LMS adaptive L��lter that is optimum

under the MAE criterion�

The MAE criterion to be minimized is de�ned as

J �
k� � E �js
k�� y
k�j� � 
���

In this case� the coe�cient vector a
k� must be updated at k so that 
��� is minimized�

The method of steepest�descent yields the following recursive relation for updating the �lter

coe�cients�

a
k � �� � a
k� � � ��rJ �
k�� 
���

where

rJ �
k� �
�J �
k�

�a
k�
�

�

�a
k�
E
h
js
k�� aT 
k�xr
k�j

i
� 
���

An unbiased estimate for the gradient rJ �
k� can be obtained� if we drop out the expectation

operator� i�e��

�rJ �
k� �
�

�a
k�
js
k�� aT 
k�xr
k�j � �sgn

h
s
k�� aT 
k�xr
k�

i
xr
k� 
�	�

where sgn ��� denotes the sign of the bracketed expression�

sgn �x� �

���������

���������

� if x 
 �

�� ifx 
 ��


���

Therefore� the updating formula for the coe�cients of the signed error LMS L��lter is

a
k � �� � a
k� � � sgn ��
k�� xr
k�� 
�
�

�	




 �

algorithm ���� The only di�erence is that 
�
� employs the vector of the ordered observed

image pixel values instead of the input vector itself�

The step�size parameter can be chosen as follows� The a posteriori estimation error at k

is simply given by�

��
k� � s
k�� �aT 
k � ��xr
k� � �
k�� � sgn ��
k�� xTr 
k�xr
k�� 
���

By employing the following identity

sgn ��
k�� �
�
k�

j�
k�j

���

the a posteriori estimation error is rewritten as

��
k� � �
k�

�
� �

�
k�

j�
k�j
xTr 
k�xr
k�

�
� 
���

It can easily be seen that in order j��
k�j to be less than j�
k�j� the step�size sequence should

be chosen so that

� 
 �
k� 

� j�
k�j

xTr 
k�xTr 
k�

	��

If the step�size sequence �
k� is chosen as

�
k� �
��j�
k�j

xTr 
k�xr
k�
� 
 �� 
 � 
	��

then j��
k�j will be 
� � ���j�
k�j� i�e�� the a posteriori absolute estimation error is smaller

that the 
a priori� absolute estimation error� It is worth noting that by substituting 
	�� into


�
�� the updating formula for the normalized LMS L��lter coe�cients is obtained� It is true

that one cannot argue that the normalized LMS L��lter minimizes the MAE criterion� Recall

that normalized LMS L��lter design is based on the minimization of the MSE� The above�

described discussion can serve only as an indication to explain the very good performance

of this �lter with respect to MAE criterion in the experiments reported in Section ��

��



g

It is well known that the rate of convergence of the LMS algorithm is one order of mag�

nitude slower that that of other adaptive algorithms 
e�g� the Recursive Least�Squares or

the Recursive Least�Squares Lattice algorithm� ���� This slow rate of convergence may be

attributed to the fact that only one parameter� the step�size �� controls the convergence of all

the �lter coe�cients� On the contrary� in the case of the Recursive Least�Squares algorithm�

the convergence of each �lter coe�cient is controlled by a separate element of the Kalman

gain vector� In addition� at each time instant the Kalman gain vector is updated utilizing all

the information contained in the input data� extending back to the instant of time when the

algorithm is initiated� This observation motivated us to employ di�erent step�size param�

eters for the various LMS L��lter coe�cients in the recursive relation that describes their

adaptation� We have found by experiments that the following step�size sequence

�i
k� � ��

Pk
j�� x�i�
k � j�Pk
j�� x���
k � j�


	��

gives results comparable to those obtained by using the normalized LMS L��lter algorithm�

By using 
	��� the modi�ed LMS L��lter updating formula is written as follows�

a
k � �� � a
k� � �
k�M
k�xr
k� 
	��

where M
k� denotes the following diagonal matrix�

M
k� � diag ���
k�� ��
k�� � � � � �N 
k�� � 
		�

It can be shown that the selection of the step�size parameters according to 
	�� guarantees

a smaller a posteriori estimation error for every k� Indeed� since for non�negative input

observations

x�i�
l� � x���
l� �l 
	��

�
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k� � �
k�

�
� �

NX
i��

�i
k�x��i�
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�

 �
k�

�
� � ��

NX
i��

x��i�
k�

�
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�

Therefore� if �� is chosen so that

� 
 �� 

�

maxkf
PN

i�� x
�
�i�
k�g

�
�

peak input power

	��

��
k� 
 �
k�� Another property that the modi�ed LMS L��lter 
	�� possesses is drawn from


	
�� The right�hand side of the inequality in 
	
� is identi�ed to be the a posteriori error

at k of an LMS L��lter that uses a constant step�size parameter � � ��� Thus� the modi�ed

LMS L��lter 
	�� produces always a smaller a posteriori estimation error than the ordinary

LMS L��lter that employs a constant step�size � � ���

� Signal�dependent adaptive L��lters

In the sequel� we shall describe a signal�dependent adaptive L��lter structure that adjusts its

smoothing properties at each point according to the local image content in order to achieve

edge preservation as well as maximum noise suppression in homogeneous regions� The signal�

dependent adaptive L��lter structure consists of two LMS adaptive L��lters whose outputs

yL
k� and yH
k� are combined to give the �nal response as follows�

y
k� � yL
k� � �
k�fyH
k�� yL
k�g � �
k�yH
k� � �� � �
k��yL
k� 
	��

where �
k� is a signal�dependent weighting factor� �
k� can be chosen so as it minimizes the

Mean�Squared Error between the �lter output y
k� given by 
	�� and the desired response

s
k� ��	�� Let aH
k� and aL
k� denote the L��lter coe�cient vectors driven by the high fre�

quency and the low�frequency data respectively� It can easily be shown that E �
s
k�� y
k����

is minimized for

�
k� �

R
k�aL
k�� p
k��T 
aH
k�� aL
k��


aH
k�� aL
k��T R
k� 
aH
k�� aL
k��
� 
	��

��




 � 
 � 
 �

as follows� In homogeneous regions� we should have

R
k�aL
k� � p
k� 
���

i�e�� aL
k� is the optimal L��lter that minimizes the MSE between the �lter output and the

desired response� Therefore� �
k� equals �� Similarly� close to the edges we should have

R
k�aH
k� � p
k�� 
���

By replacing 
��� into 
	�� it is seen that �
k� equals �� In order to avoid the estimation of the

correlation matrix R
k� and the crosscorrelation vector p
k�� we replace the optimal signal�

dependent weighting factor 
	�� by another one that shares the same favorable properties�

namely� by the local Signal�to�Noise Ration measure

�
k� � ��
��n

���x
k�

���

where ��n is the noise variance and ���x
k� is the variance of the noisy input observations�

The adaptive L��lters aL
k� and aH
k� may use di�erent window sizes� In such a case� the

coe�cient �
k� given by 
��� can be used as a signal�dependent switch between the two LMS

adaptive L��lters� i�e��

y
k� �

���������

���������

yH
k� if �
k� 
 �t

yL
k� otherwise


���

where � 
 �t 
 � is a threshold that determines a trade�o� between noise suppression and

edge preservation� In the reported experiments �t is chosen to be either ��
 or ����� As far

as the threshold �t is concerned� a same parameter is also found in Signal�Adaptive Median

�lters ��	� and a selection of a proper value does not add any di�culty�

��
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We shall present �ve sets of experiments in order to assess the performance of the adaptive

L��lters we have discussed so far� All the sets of experiments have been conducted on

images� Four of these sets of experiments presuppose that a reference image 
e�g� the

original image� is available� In practice� reference images are usually transmitted through

TV telecommunication channels to measure the performance of the channel� In such cases�

the proposed adaptive L��lters can be proven very useful� if the design of an optimal �lter

for the speci�c channel characteristics is required� However� in certain cases 
e�g� in image

sequences� it is reasonable to assume that one noise�free frame can act as a reference image

for a number of image frames� The �rst set of experiments deals with the second frame of

the image sequence called �Trevor White�� Its purpose is to demonstrate the superiority of

adaptive L��lters over the adaptive linear �lters in noise removal applications� The second

set of experiments has been conducted on �Lenna�� Our goal is to compare the performance

of the adaptive L��lters under study� In the third set of experiments� we treat the case where

a reference image is not available� Next� we investigate the ability of the proposed adaptive

L��lters to cope with the nonstationarity in image data� Finally� we study the performance

of the proposed �lters in environments with time�varying statistics 
e�g� image sequence

�ltering��

To begin with� let us describe the experimental set�up and the quantitative criteria we

shall use in the experiments� Both the linear and the L��lter coe�cients have been randomly

initialized in the interval 
���� and they have been normalized by their sum so as their sum

equals unity� The entire noisy image has been used in the training of the adaptive �lter�

A single run on the training noisy image has been performed� In the �rst three sets of

experiments� the coe�cients derived during the operation of the algorithm on the last image

��



dependent �lter structure� the coe�cients aL
k� and aH
k� that have been derived during

the operation of the algorithm throughout the entire image have been averaged and have

been applied subsequently to �lter the pixel blocks that fall into the homogeneous regions or

close to the image edges� In the remaining two sets of experiments� the L��lter coe�cients

determined recursively by the adaptive algorithm at each image pixel have been used to �lter

the noisy input image� Two criteria have been employed� namely� the noise reduction index


NR� de�ned as the ratio of the mean output noise power to the mean input noise power�

i�e��

NR � �� log
�

K L

PK
i��

PL
j��
y
i� j�� s
i� j���

�
K L

PK
i��

PL
j��
x
i� j�� s
i� j���


in dB� 
�	�

and the Mean Absolute Error Reduction 
MAER� de�ned as the ratio of the mean absolute

error in the output to the mean absolute error in the input� i�e��

MAER � �� log
�

K L

PK
i��

PL
j�� jy
i� j�� s
i� j�j

�
K L

PK
i��

PL
j�� jx
i� j�� s
i� j�j


in dB�� 
���

In 
�	� and 
���� s
i� j� is the original image pixel� x
i� j� denotes the same image pixel

corrupted by noise and y
i� j� is the �lter output at the same image pixel� K�L are the

number of image rows and columns respectively�

Figure �a shows the second frame of �Trevor White�� We shall compare the performance

of the normalized LMS L��lter to the one of the normalized LMS linear �lter when the

original image is corrupted by


a� zero�mean additive white Gaussian noise having standard deviation �n����


b� impulsive noise with probability p � ��� 
both positive and negative impulses

with equal probability�� and�


c� mixed impulsive 
p � ���� and additive Gaussian white noise 
�n � ����

��



small variance 
e�g� �n � �� in case 
b� in order to avoid instabilities� Table � summarizes

the noise reduction index achieved in all the above�mentioned cases� It is seen that the

normalized LMS L��lter outperforms its linear counterpart for all noise models� Even for

Gaussian noise� it performs slightly better than the adaptive linear �lter� The same superior

performance has been obtained in a variety of experiments employing di�erent original images


such as �Lenna�� �Baboon�� �Car� etc��� That is� the NR index achieved is not image�

dependent� Due to lack of space� only one experiment is reported� Therefore� its use for

noise suppression in image processing is fully justi�ed� The original image corrupted by

mixed impulsive and Gaussian noise is shown in Figure �b� The output of the normalized

LMS L��lter of dimensions � � � may be found in Figure �c� For comparison purposes� the

output of the normalized LMS linear �lter of the same dimensions is shown in Figure �d�

The superiority of the adaptive nonlinear �lter is self�evident� Similar conclusions can also

be drawn if a modi�ed LMS L��lter with nonhomogeneous step�sizes is employed� What

remains is to test the performance of the described LMS L��lters� both constrained and

unconstrained ones� against that of the median �lter that is a straightforward choice in the

context of nonlinear image processing� To that end� we proceed to the description of the

second set of experiments�

Figure 	a shows another original image frequently encountered in image processing liter�

ature� the so�called �Lenna�� We shall consider the following two cases�


a� severely corrupting the original image by adding zero�mean additive white Gaus�

sian noise of standard deviation �n � �� plus impulsive noise with probability

p � ����


b� corrupting the original image by adding only Gaussian noise with standard de�

��



The NR as well as the MAER achieved by the location�invariant LMS L��lter� the normalized

LMS L��lter and the modi�ed LMS L��lter with nonhomogeneous step�sizes� all of dimen�

sions � � � in the case of mixed impulsive and additive Gaussian noise are listed in Table ��

In the same table� we have also included the corresponding �gures of merit for the � � �

median �lter� As can be seen� the condition for location�invariant estimation is strict enough

and the resulting adaptive L��lter is only � dB better than the median �lter with respect to

both quantitative measures� The modi�ed LMS L��lter with nonhomogeneous step�sizes is

the second best adaptive L��lter yielding an almost ��� dB better NR and MAER compared

to the median �lter� The normalized LMS L��lter achieves the best performance both in

the MSE sense as well as in MAE sense� Especially for the MAE criterion� this performance

was expected� since we have already demonstrated the connection between the signed error

LMS L��lter and the normalized one� The optimal value of parameter �� has been found

experimentally� Figure � shows the NR and the MAER achieved for several values of the

parameter ��� It can be seen that the optimal value of �� is di�erent for the two �gures of

merit� In our experiments we have used the value of �� for which NR attains a minimum�

i�e�� �� � ����

In addition� we have tested the performance of two signal�dependent adaptive L��lter

structures� The �rst one uses two � � � adaptive L��lters that are trained by di�erent regions

of the corrupted input image� More speci�cally� the pixels that belong to the homogeneous

image regions are used to adapt the coe�cients of the one adaptive L��lter� while those

that are close to the image edges are used to adapt the coe�cients of the second adaptive

L��lter� Any of the adaptive L��lters that have been described in this paper 
e�g� the

location�invariant LMS L��lter� the normalized LMS L��lter or the modi�ed LMS L��lter

��



�

experiments described� we have used the normalized LMS L��lter� By inspecting Table �� it

is seen that the signal�dependent adaptive L��lter structure provides the best results� when

the window of the normalized LMS L��lter that is used in homogeneous image regions is

of larger dimensions 
e�g� � � �� than that of the adaptive LMS L��lter that is trained

by pixels close to the image edges� The observed superior performance is due to the larger

window size that is used to �lter the noise in homogeneous regions� In such a case� the local

SNR measure 
��� is computed twice by calculating the local variance of the noisy input

observations for both window sizes� An image pixel is declared as an edge pixel if either

����
k� or �	�	
k� exceeds the threshold� For the sake of completeness� it should also be

noted that when the image corruption is not too severe� the impulse detection and removal

mechanism described in ��	� has also to be included in the �lter structure in order not to

misinterpret pixels that pass the test 
��� as edges although they are actually impulses�

The performance of the proposed adaptive L��lter has also been tested when the original

image is corrupted by zero�mean additive white Gaussian noise with �n � ��� The noise

reduction index and the reduction in MAE achieved in the output of the �lters under study

is summarized in Table �� The performance of the arithmetic mean �lter is also included in

Table � for comparison purposes� By inspecting Table �� it is seen that the location�invariant

LMS L��lter has an almost identical performance with the arithmetic mean �lter and it is

much better than the median �lter� This was expected� because the location�invariant LMS

L��lter is able to adapt to the noise distribution� The performance of the modi�ed LMS

L��lter with nonhomogeneous step�sizes approximates that of the normalized LMS L��lter�

The later is proven to be an almost � dB superior to the performance of the arithmetic mean

�lter and ��� dB superior to the performance of the median �lter� The signal�dependent

�lter structure with a di�erent window size in homogeneous regions and close to the edges

��



adaptive L��lters may be attributed to their slightly better performance close to the image

edges than that of the arithmetic mean �lter�

The original image corrupted by mixed impulsive and additive Gaussian noise is shown

in Figure 	b� The output of the location�invariant LMS L��lter of dimensions � � � may be

found in Figure 	c� The �ltered image by using the modi�ed LMS L��lter with nonhomoge�

neous step�sizes and the output of the normalized LMS L��lter are shown in Figures 	d and

	e respectively� The best result obtained� i�e�� the output of the signal�dependent normalized

LMS L��lter structure with a di�erent window size in homogeneous regions and close to the

edges� is shown in Figure 	f�

When a reference image is not available� the straightforward choice is to apply the

location�invariant LMS L��lter� because only that design can be modi�ed to work with�

out a reference signal� as has already been discussed in Section �� In Table 	� the noise

reduction index achieved at the output of the modi�ed location�invariant adaptive L��lter


��� is tabulated� when the original image �Lenna� is corrupted by mixed impulsive and ad�

ditive Gaussian noise as well as by additive Gaussian noise� In parentheses� we have included

the same �gures of merit for the median �lter and the arithmetic mean �lter respectively�

The step�size parameter has been chosen according to

�
k� �
��

jjxr
k�jj�
 �� � � � ������ 
�
�

It is seen that the modi�ed location�invariant LMS L��lter 
��� is able to adapt to the

noise distribution and to attain an almost identical performance to that of the maximum

likelihood estimator of location for each noise model� Furthermore� we have tested the

robustness of the L��lter coe�cients that are determined at the end of a training session

and are applied to �lter a noisy image which has been produced by corrupting a di�erent

�	



location�invariant LMS L��ltering algorithm 
��� on �Trevor White� corrupted by impulsive


p � ���� and additive Gaussian noise 
�n � ��� using as a reference image the original

�Trevor White�� Subsequently� we have averaged the L��lter coe�cients that were derived

during the operation of the algorithm on the last image row� The resulting L��lter coe�cients

have been applied to �lter the original image �Lenna� corrupted by the same mixed impulsive

and additive Gaussian noise� as before� It has been found that only the location�invariant

L��lter 
��� coe�cients are robust� in the sense that they do not depend on the reference

image which has been used in the training session� In Table 	� we have tabulated the noise

reduction achieved by �ltering the original image �Lenna� by using the L��lter coe�cients

determined at the end of a training session on �Trevor White� and vice versa� It is seen

that the attained noise reduction is close to the one achieved when the reference image is

available�

Next� we study the ability of the proposed adaptive L��lters to cope with the nonsta�

tionarity in the image data� The experiment will be focused on the performance of the

normalized LMS L��lter and the signal�dependent normalized LMS L��lter structure� Both

these structures have been applied to �Lenna� that has been severely corrupted by adding

zero�mean additive white Gaussian noise of standard deviation �n � �� plus impulsive noise

with probability p � ���� We suppose that the noise�free image is available and is used as

reference image� The L��lter coe�cients determined recursively by the adaptive algorithm

at each image pixel have been used to �lter the noisy image� Figure �a shows image row

!��� of the noisy input image� To facilitate the exposition we have plotted s
���� j� in all

related �gures� For comparison purposes� row !��� of the median �ltered image is shown in

Figure �b� It is seen that the noise is smoothed enough� However� the edge jitter introduced

by a median �lter of dimensions � � � is clear� A further noise reduction is achieved by

��



that both the normalized LMS L��lter and the signal�dependent adaptive L��lter structure

introduce less jitter than the median �lter� By comparing Figures �b � �d� it is seen that

the best results are obtained by the signal�dependent adaptive �lter structure�

The �nal set of experiments aims at demonstrating the performance of the proposed

algorithms when the statistics of the input image are time�varying� Towards this end� we have

tried to �lter a noisy version of the �nd frame in image sequence �Trevor White� by using as

reference image the �nd 
noise�free� frame itself or the �th frame or the �th frame� Obviously�

both the �th and the �th frames di�er from the �nd frame that is being �ltered� Table �

summarizes the performance of the di�erent �lters� As expected� when the image which

is being �ltered results by corrupting an original image that is di�erent from the reference

image which is used in the adaptive algorithm� the performance of the normalized LMS

L��lter and the signal�dependent normalized LMS L��lter structure is degraded� However�

the loss in performance is small 
i�e�� ��� dB at most� and their NR and MAER indices

are still the highest� It is also seen that the performance of the location�invariant LMS

L��lter is almost the same independently of the reference image which has been used in the

adaptive algorithm� This result is in par with the discussion made in the third experiment�

Moreover� the ability of the signal�dependent adaptive L��lter in tracking a time�varying

edge is shown in Figure 
� In Figure 
� we focus on a part of row !��� in the �nd and �th

frames of �Trevor White�� Due to motion� a di�erent edge appears at the two time instants�

Although the signal�dependent normalized LMS L��lter has been trained using as reference

an edge di�erent from the one that appears in the noisy input image� it tends to track the

later one demonstrating its ability to track slow time�variations in the characteristics of the

input signal�

�




In this paper� we have described several adaptive LMS L��lters both constrained and uncon�

strained ones� and we have compared their e�ciency in noise suppression in images� We have

shown that the updating formula for the location invariant LMS L��lter that had previously

been derived in the case of a constant signal corrupted by zero�mean additive white noise is

still valid for nonconstant signals� We have demonstrated that the derived location�invariant

LMS L��lter can be described in terms of the generalized linearly constrained adaptive pro�

cessing structure proposed by Gri�ths and Jim� We have shown that under a certain choice

for the step�size parameter� the sign and the normalized LMS L��lters turn to be identical�

The later property explains the excellent performance of the normalized LMS L��lter with

respect to the Mean Absolute Error criterion� A modi�ed LMS L��lter with nonhomoge�

neous step�sizes has also been proposed� It has been found that it gives comparable results

to the normalized LMS L��lter� Finally� a signal�dependent adaptive L��lter structure has

been developed to allow a separate treatment of the edges and the homogeneous image re�

gions� By experiments� it has been shown that the signal�dependent �lter structure which

employs two normalized LMS L��lters with di�erent window sizes yields the best results�
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a� Original image �Trevor White��


b� Original image corrupted by mixed impulsive and additive Gaussian

noise�


c� Output of the � � � normalized LMS L��lter�


d� Output of the � � � normalized LMS linear �lter�

Figure � Plot of the Noise Reduction and Mean Absolute Error Reduction indices

achieved by the normalized LMS L��lter versus the step�size parameter ���

Figure 	 Comparison between the adaptive LMS L��lters under study in suppressing

mixed impulsive and additive Gaussian noise�


a� Original image �Lenna��


b� Original image corrupted by mixed impulsive and additive Gaussian

noise�


c� Output of the � � � location�invariant LMS L��lter�


d� Output of the � � � modi�ed LMS L��lter that employs nonhomoge�

neous step�sizes�


e� Output of the � � � normalized LMS L��lter�


f� Output of the signal�dependent adaptive L��lter structure that em�

ploys two normalized LMS L��lters of dimensions � �� and � � � to
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respectively�

Figure � Output of various �lters in smoothing image row !��� of �Lenna� corrupted

by mixed impulsive and additive Gaussian noise� The same row of the noise�free

�Lenna� is shown overlaid in all �gures�


a� Image row !��� in �Lenna� corrupted by mixed impulsive and addi�

tive Gaussian noise�


b� Image row !��� in the �ltered image by using the � �� median �lter�


c� Image row !��� in the �ltered image by using the � �� normalized

LMS 
NLMS� L��lter�


d� Image row !��� in the �ltered image by using the signal�dependent

normalized LMS L��lter structure�

Figure 
 Performance of the signal�dependent LMS L��lter structure in tracking a

time�varying edge�
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Table �� Noise reduction 
in dB� achieved by the normalized LMS L��lter and its linear
counterpart in the restoration of �Trevor White��

Noise Type Filter NR
Gaussian L��lter �����


linear �lter ������
Impulsive L��lter ��
���

linear �lter ����	
Mixed L��lter �������

linear �lter ����


Table �� Noise reduction and Mean Absolute Error reduction 
in dB� achieved by the various
L��lters in the restoration of �Lenna� corrupted by mixed impulsive and additive Gaussian
noise�

Method NR MAER
median � � � �����
 ����	�

location�invariant LMS L��lter
� � � 
� � �� ���
� ����	� ������

modi�ed LMS L��lter � � �
with nonhomogeneous step�sizes


�� � �� ���
� ������
 �����
�
normalized LMS L��lter � � �


�� � ���� ������� �������

signal�dependent normalized LMS
L��lter structure 
equal dimensions

� � � �t � ����� �����	 ������
signal�dependent normalized LMS

L��lter structure 
L� � � ��
H� � �� �t � ����� ������	 �������

�




Table �� Noise reduction and Mean Absolute Error reduction 
in dB� achieved by the various
L��lters in the restoration of �Lenna� corrupted by additive Gaussian noise�

Method NR MAER
median � � � ����
� ����	

arithmetic mean �lter � � � ����	� �����
location�invariant LMS L��lter

� � � 
� � �� ���
� ������ ����	
modi�ed LMS L��lter � � �

with nonhomogeneous step�sizes

�� � �� ���
� ���
� �����

normalized LMS L��lter � � �

�� � ���� ����� ������

signal�dependent normalized LMS
L��lter structure 
equal dimensions

� � � �t � ��
� ���

 ������
signal�dependent normalized LMS

L��lter structure 
L� � � ��
H� � �� �t � ����� ������ �����


Table 	� Noise reduction 
in dB� achieved by the location�invariant adaptive L��lter when
a reference image is not available�

Filtered Image NR
�Lenna� corrupted by mixed

impulsive and additive Gaussian
noise ���	� 
�����
�

�Lenna� corrupted by additive
Gaussian noise ���
� 
����	��

�Lenna� using the L��lter coef�
�cients of �Trevor White� ���	��

�Trevor White� using the L��lter
coe�cients of �Lenna� ������

��



Table �� Noise reduction and Mean Absolute Error reduction 
in dB� achieved by various
L��lters in smoothing the second frame of sequence �Trevor White� that has been corrupted
by mixed impulsive and additive Gaussian noise for several reference images�

Method Ref� �nd frame Ref� �th frame Ref� �th frame
NR MAER NR MAER NR MAER

median � � � �����
 ������ � � � �
location�invariant LMS L�
�lter � � � 
� � �� ���
� ������ ������ ������ ����
 ����� ����	�

normalized LMS L�
�lter � � � 
�� � ���� ����	�	 ������ ������ ������ ����	� ����



signal�dependent normalized
LMS L��lter structure 
L� � � ��

� �� �t � ��
�� ��	��
� ��	��� �����
 �����	� ������ ������

��
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Figure �� Generalized linearly constrained adaptive processing structure�
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Figure � 
a�

Figure � 
b�
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Figure � 
c�

Figure � 
d�

Figure �� Comparison between the normalized LMS L��lter and its linear counterpart in
suppressing mixed impulsive and additive Gaussian noise�
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Figure �� Plot of the Noise Reduction and Mean Absolute Error Reduction indices achieved
by the normalized LMS L��lter versus the step�size parameter ���
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Figure 	� Comparison between the adaptive LMS L��lters under study in suppressing mixed
impulsive and additive Gaussian noise�
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Figure �� Output of various �lters in smoothing image row !��� of �Lenna� corrupted by
mixed impulsive and additive Gaussian noise� The same row of the noise�free �Lenna� is
shown overlaid in all �gures�
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