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Abstract—In this paper, a novel view invariant action recog-
nition method based on neural network representation and
recognition is proposed. The novel representation of action videos
is based on learning spatially related human body posture
prototypes using Self Organizing Maps (SOM). Fuzzy distances
from human body posture prototypes are used to produce a time
invariant action representation. Multilayer perceptrons are used
for action classification. The algorithm is trained using data from
a multi-camera setup. An arbitrary number of cameras can be
used in order to recognize actions using a Bayesian framework.
The proposed method can also be applied to videos depicting
interactions between humans, without any modification. The use
of information captured from different viewing angles leads to
high classification performance. The proposed method is the first
one that has been tested in challenging experimental setups, a
fact that denotes its effectiveness to deal with most of the open
issues in action recognition.

Index Terms— Human action recognition, Fuzzy Vector Quan-
tization, Multi-layer Perceptrons, Bayesian Frameworks.

I. INTRODUCTION

Human action recognition is an active research field, due
to its importance in a wide range of applications, such as
intelligent surveillance [1], human-computer interaction [2],
content-based video compression and retrieval [3], augmented
reality [4], etc. The term action is often confused with the
terms activity and movement. An action (sometimes also called
as movement) is referred to as a single period of a human
motion pattern, such as a walking step. Activities consist
of a number of actions/movements, i.e., dancing consists of
successive repetitions of several actions, e.g. walk, jump,
wave hand, etc. Actions are usually described by using either
features based on motion information and optical flow [5], [6],
or features devised mainly for action representation [7], [8].
Although the use of such features leads to satisfactory action
recognition results, their computation is expensive. Thus, in
order to perform action recognition at high frame rates, the use
of simpler action representations is required. Neurobiological
studies [9] have concluded that the human brain can perceive
actions by observing only the human body poses (postures)
during action execution. Thus, actions can be described as
sequences of consecutive human body poses, in terms of
human body silhouettes [10], [11], [12].

After describing actions, action classes are, usually, learned
by training pattern recognition algorithms, such as Artificial
Neural Networks (ANNs) [13], [14], [15], Support Vector
Machines (SVMs) [16], [17] and Discriminant dimensionality
reduction techniques [18]. In most applications, the camera
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viewing angle is not fixed and human actions are observed
from arbitrary camera viewpoints. Several researchers have
highlighted the significant impact of the camera viewing
angle variations on the action recognition performance [19],
[20]. This is the so-called viewing angle effect. To provide
view-independent methods, the use of multi-camera setups
has been adopted [21], [22], [23]. By observing the human
body from different viewing angles, a view-invariant action
representation is obtained. This representation is subsequently
used to describe and recognize actions.

Although multi-view methods address the viewing angle
effect properly, they set a restrictive recognition setup, which
is difficult to be met in real systems [24]. Specifically, they
assume the same camera setup in both training and recognition
phases. Furthermore, the human under consideration must be
visible from all synchronized cameras. However, an action
recognition method should not be based on such assumptions,
as several issues may arise in the recognition phase. Humans
inside a scene may be visible from an arbitrary number
of cameras and may be captured from an arbitrary viewing
angle. Inspired from this setting, a novel approach in view-
independent action recognition is proposed. Trying to solve
the generic action recognition problem, a novel view-invariant
action recognition method based on ANNSs is proposed in this
paper. The proposed approach does not require the use of
the same number of cameras in the training and recognition
phases. An action captured by an arbitrary number N of
cameras, is described by a number of successive human body
postures. The similarity of every human body posture to
body posture prototypes, determined in the training phase
by a self-organizing neural network, is used to provide a
time invariant action representation. Action recognition is
performed for each of the IV cameras by using a Multi-Layer
Perceptron (MLP), i.e., a feed-forward neural network. Action
recognition results are subsequently combined to recognize
the unknown action. The proposed method performs view-
independent action recognition, using an uncalibrated multi-
camera setup. The combination of the recognition outcomes
that correspond to different viewing angles leads to action
recognition with high recognition accuracy.

The main contributions of this paper are: a) the use of
Self Organizing Maps (SOM) for identifying the basic posture
prototypes of all the actions, b) the use of cumulative fuzzy
distances from the SOM in order to achieve time-invariant
action representations, ¢) the use of a Bayesian framework
to combine the recognition results produced for each camera,
d) the solution of the camera viewing angle identification
problem using combined neural networks.

The remainder of this paper is structured as follows. An



overview of the recognition framework used in the proposed
approach and a small discussion concerning the action recog-
nition task is given in Section I-A. Section II presents details
of the processing steps performed in the proposed method.
Experiments for assessing the performance of the proposed
method are described in Section III. Finally, conclusions are
drawn in Section IV.

A. Problem Statement

Let an arbitrary number of N cameras capturing a scene at
a given time instance. These cameras form a N¢-view camera
setup. This camera setup can be a converging one or not. In
the first case, the space which can be captured by all the No
cameras is referred as capture volume. In the later case, the
cameras forming the camera setup are placed in such positions
that there is not a space which can be simultaneously captured
by all the cameras. A converging and a non-converging camera
setup is illustrated in Figure 1. N, video frames from a
specific camera f;, ¢ = 1,..., Ny, form a single-view video
f=[f], £], ...,ff,t]T.

(b)
Fig. 1. a) A converging and b) a non-converging camera setup.

Actions can be periodic (e.g., walk, run) or not (e.g., bend,
sit). The term elementary action refers to a single human action
pattern. In the case of periodic actions, the term elementary
action refers to a single period of the motion pattern, such
as a walk step. In the case of non-periodic actions, the term
elementary action refers to the whole motion pattern, i.e., a
bend sequence. Let A be a set of N4 elementary action classes
{a1,...,an,}, such as walk, jump, run, etc. Let a person
perform an elementary action a;, 1 < j < Ny, captured by
N < N¢ cameras. This results to the creation of NV single-
view action videos f; = [fiTl,fiTQ,...,fgvt 17, i = 1,..,N
each depicting the action from a different viewing angle.
Since different elementary actions have different durations,
the number of video frames Ny, j = 1,..., N4 that consist
elementary action videos of different action classes varies.
For example, a 'run’ period consists of only 10 video frames,
whereas a ’sit’ sequence consists of 40 video frames in average
at 25 fps. The action recognition task is the classification
of one or more action videos, depicting an unknown person
performing an elementary action in one of the known action
classes specified by the action class set A.

In the following, we present the main challenges for an
action recognition method:

o The person can be seen from N < N cameras. The case
N < N¢ can occur either when the used camera setup is
not a converging one, or when using a converging camera
setup, the person performs the action outside the capture
volume, or in the case of occlusions.

o During the action execution, the person may change
movement direction. This affects the viewing angle he/she
is captured from each camera. The identification of
the camera position with respect to the person body
is referred as the camera viewing angle identification
problem and needs to be solved in order to perform view-
independent action recognition.

o Each camera may capture the person from an arbitrary
distance. This affects the size of the human body projec-
tion in each camera plane.

o Elementary actions differ in duration. This is observed
in different realizations of the same action performed by
different persons or even by the same person at different
times or under different circumstances.

o The method should allow continuous action recognition
over time.

« Elementary action classes highly overlap in the video
frame space, i.e., the same body postures may appear in
different actions. For example many postures of classes
"jump in place’ and ’jump forward’ are identical. Further-
more, variations in style can be observed between two
different realizations of the same action performed either
by the same person or by different persons. Considering
these observations, the body postures of a person per-
forming one action may be the same to the body postures
of another person performing a different action. More-
over, there are certain body postures that characterize
uniquely certain action classes. An action representation
should take into account all these observations in order
to lead to a good action recognition method.

o Cameras forming the camera setup may differ in resolu-
tion and frame rate and synchronization errors may occur
in real camera setups, that is, there might be a delay
between the video frames produced by different cameras.

e The use of multi-camera setups involves the need of
camera calibration for a specific camera setting. The
action recognition algorithms need to be retrained even
for small variations of the camera positions.

The objective is the combination of all available information
coming from all the available cameras depicting the person
under consideration to recognize the unknown action. The pro-
posed method copes with all the above mentioned issues and
constraints. According to the best of the authors knowledge
this is the first time where an action recognition method is
tested against all these scenarios with very good performance.

II. PROPOSED METHOD

In this section, each step of the proposed method is de-
scribed in detail. The extraction of posture data, used as input
data in the remaining steps, is presented in subsection II-
A. The use of a Self Organizing Map (SOM) to determine
human body posture prototypes is described in subsection II-
B. Action representation and classification are presented in
subsections II-C and II-D, respectively. A variation of the
original algorithm, that exploits the observation’s viewing
angle information is presented in subsections II-E and II-F.
Finally, subsection II-G presents the procedure followed in
the recognition phase.



A. Preprocessing Phase

As previously described, an elementary action is captured
by N cameras in elementary action videos consisting of N,
1 < 5 < Ny, video frames that depict one action period.
The number N;; may vary over action classes, as well as over
elementary action videos coming from the same action class.
Multi-period action videos are manually split in elementary
action videos, which are subsequently used for training and
testing in the elementary action recognition case. In the case
of videos showing many action periods (continuous action
recognition), a sliding window of possibly overlapping video
segments having suitably chosen length Ny, is used and
recognition is performed at each window position, as will be
described in Section III-D. In the following, the term action
video will refer to an elementary action video.

Moving object segmentation techniques [25], [26] are ap-
plied to each action video frame to create binary images
depicting person’s body in white and the background in black.
These images are centered at the person’s center of mass.
Bounding boxes of size equal to the maximum bounding
box enclosing person’s body are extracted and rescaled to
Ny x Ny pixels to produce binary posture images of fixed
size. Eight binary posture images of eight actions ("walk’,
run’, “jump in place’, ’jump forward’, *bend’, ’sit’, ’fall’ and
’wave one hand’) taken from various viewing angles are shown
in Figure 2.
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Fig. 2. Posture images of eight actions taken from various viewing angles.

Binary posture images are represented as matrices and
these matrices are vectorized to produce posture vectors p €
RP, D = Ny x Ny. That is, each posture image is finally
represented by a posture vector p. Thus, every action video
consisting of N;, video frames is represented by a set of
posture vectors p; € RP, i =1, .., N¢;. In the experiments
presented in this paper the values Ny = 64, Ny = 64 have
been used and binary posture images were scanned column-
wise.

B. Posture prototypes Ildentification

In the training phase, posture vectors p;, ¢ = 1,..., N;,, IV,
being the total number of posture vectors consisting all the
N training action videos, having th video frames each, are
used to produce action independent posture prototypes without
exploiting the known action labels. To produce spatially related
posture prototypes, a SOM is used [27]. The use of SOM leads
to a topographic map (lattice) of the input data, in which the
spatial locations of the resulting prototypes in the lattice are
indicative of intrinsic statistical features of the input postures.
The training procedure for constructing the SOM is based on
three procedures:

1) Competition: For each of the training posture vectors
pi, its Euclidean distance from every SOM weight, wg; €
RP, j =1,..., Ng is calculated. The winning neuron is the

one that gives the smallest distance:
g" = arg min|| p; — ws; [|2. (1)

2) Cooperation: The winning neuron j* indicates the cen-
ter of a topological neighborhood h;-. Neurons are excited
depending on their lateral distance, r;-, from this neuron. A
typical choice of h;- is the Gaussian function:
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where k corresponds to the neuron at hand, n is the iteration
of the algorithm, r;-; is the Euclidean distance between
neurons j* and k in the lattice space and o is the “effective
width” of the topological neighborhoood. ¢ is a function of

n: o(n) = ogexp(—x;), where Ny is the total number of

o1 (n) = exp(

training iterations. o(0) = by 4lh in our experiments. l,, and
I, are the lattice width and height, respectively.

3) Adaptation: At this step, each neuron is adapted with
respect to its lateral distance from the wining neuron as

follows:

wsk(n+ 1) = wgi(n) +n(n)h-k(n)(p; — wsk(n)), (3)

where 7n(n) is the learning-rate parameter:
1(0) exp(—35)- 7(0) = 0.1 in our experiments.
The optimal number of update iterations is determined by
performing a comparative study on the produced lattices. In a
preliminary study, we have conducted experiments by using a
variety of iteration numbers for the update procedure. Specif-
ically, we trained the algorithm by using 20, 50, 60, 80, 100
and 150 update iterations. Comparing the produced lattices,
we found that the quality of the produced posture prototypes
does not change for update iterations number greater than 60.
The optimal lattice topology is determined using the cross-
validation procedure, which is a procedure that determines
the ability of a learning algorithm to generalize over data that
was not trained on. That is, the learning algorithm is trained
using all but some training data, which are subsequently used
for testing. This procedure is applied multiple times (folds).
The test action videos used to determine the optimal lattice
topology were all the action videos of a specific person not
included in the training set. A 12 x 12 lattice of posture
prototypes produced using action videos of action classes
walk’, ’run’, ’jump in place’, ’jump forward’, ’bend’, ’sit’,
“fall” and *wave one hand’ captured from eight viewing angles
097, 4527, °90°°, *1357, *180’, 225, *270°* and ’315%’
(with respect to the person’s body) is depicted in Figure 3.
As can be seen, some posture prototypes correspond to body
postures that appear in more than one actions. For example,
posture prototypes in lattice locations (1, f), (1,¢), (7,d)
describe postures of actions ’jump in place’, ’jump for-
ward’ and ’sit’, while posture prototypes in lattice locations
(3,k), (6,1), (8,1) describe postures of actions 'walk’ and
run’. Moreover, some posture prototypes correspond to pos-
tures that appear to one only action class. For example,
posture prototypes in lattice locations (1,%), (10,4), (12,€)
describe postures of action ’bend’, while posture prototypes
in lattice location (4, f), (3,7), (5,;) describe postures of
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Fig. 3. A 12 x 12 SOM produced by posture frames of eight actions captured
from eight viewing angles.

action ’wave one hand’. Furthermore, one can notice that
similar posture prototypes lie in adjacent lattice positions.
This results to a better posture prototype organization. To
illustrate the advantage given by the SOM posture prototype
representation in the action recognition task, Figure 4 presents
the winning neurons in the training set used to produce the
12 x 12 lattice presented in Figure 3 for each of the action
classes. In this Figure, only the winning neurons are shown,
while the grayscale value of the enclosing square is a function
of their wins number. That is, after determining the SOM, the
similarity between all the posture vectors belonging to the
training action videos and the SOM neurons was computed
and the winning neurons corresponding to each posture vector
was determined. The grayscale value of the enclosing squares
is high for neurons having large number of wins and small for
those having a small one. Thus, neurons enclosed in squares
with high grayscale value correspond to human body poses
appearing more often in each action type. As can be seen,
posture prototypes representing each action are quite different
and concentrate in neighboring parts of the lattice. Thus,
one can expect that the more non-overlapping these maps
are the more discriminant representation they offer for action
recognition.

(€9) (h)

Fig. 4. Winning neurons for eight actions: a) walk, b) run, c) jump in place,
d) jump forward, e) bend, f) sit, g) fall and h) wave one hand.

By observing the lattice shown in Figure 3, it can be seen
that the spatial organization of the posture prototypes defines
areas where posture prototypes correspond to different viewing
angles. To illustrate this, Figure 5 presents the wining neurons

for all action videos that correspond to a specific viewing
angle. It can be seen that the wining neurons corresponding
to different views are quite distinguished. Thus, the same
representation can also be used for viewing angle identifica-
tion, since the maps that correspond to different views are
quite non-overlapping. Overall, the SOM posture prototype
representation has enough discriminant power to provide a
good representation space for the action posture prototype
vectors.

(a) (b) (d)

(e) (2

Fig. 5. Wining neurons for eight views: a) 0°, b) 45°, c¢) 90°, d) 135°, e)
180°, f) 225°, g) 270° and h) 315°.

C. Action Representation

Let posture vectors p;, 1 = 1,..., Ny, 7 = 1, ..., N consist
an action video. Fuzzy distances of every p; to all the SOM
weights wgg, & = 1,..., Ng are calculated to determine the
similarity of every posture vector with every posture prototype:

__2
di = (|| Pi = Wsk [|2)” ™1, 4)

where m is the fuzzification parameter (m > 1). Its optimal
value is determined by applying the cross-validation proce-
dure. We have experimentally found that a value of m = 1.1
provides satisfactory action representation and, thus, this value
is used in all the experiments presented in this paper. Fuzzy
distances allow for a smooth distance representation between
posture vectors and posture prototypes.

After the calculation of fuzzy distances, each posture
vector is mapped to the following distance vector d; =
[di1,diz, ..., ding]T. Distance vectors d;, i = 1,..., Ny, are
normalized to produce membership vectors u; = Hgij\l’ u; €
RNs | that correspond to the final representations of the pos-
ture vectors in the SOM posture space. The mean vector
N%]Zf\bl u;, s € RNs of all the N;; membership
vectors comprising the action video is called action vector
and represents the action video.

The use of the mean vector leads to a duration invariant
action representation. That is, we expect the normalized cu-
mulative membership of a specific action to be invariant to
the duration of the action. This expectation is enhanced by
the observation discussed in Subsection II-B and illustrated in
Figure 4. Given that the winning SOM neurons corresponding
to different actions are quite distinguished, we expect that the
distribution of fuzzy memberships to the SOM neurons will
characterize actions. Finally, the action vectors representing all

S =



N training action videos s;, j = 1, ..., Ny are normalized to
have zero mean and unit standard deviation. In the test phase,
all the N action vectors s, k = 1, ..., N that correspond to NV
test action videos depicting the person from different viewing
angles are normalized accordingly.

D. Single-view Action Classification

As previously described, action recognition performs the
classification of an unknown incoming action captured by N <
N¢ action videos, to one of the N4 known action classes
aj, j =1,..., N4 contained in an action class set 4. Using the
SOM posture prototype representation, which leads to spatially
related posture prototypes, and expecting that action videos of
every action class will be described by spatially related posture
vectors, a MLP is proposed for the action classification task
consisting of Ng inputs (equal to the dimensionality of action
vectors s), N4 outputs (each corresponding to an action class
aj, j=1,...,N4) and using the hyperbolic tangent function
fsigmoia(x) = o tanh(bx), where the values o = 1.7159 and
b= % were chosen [28], [29].

In the training phase, all Np training action vectors s;, ¢ =
1,..., Ny accompanied by their action labels are used to
define MLP weights W 4 using the Backpropagation algorithm
[30]. Outputs corresponding to each action vector, o, =
[0i1, -, 0in,]T, are set to o0;; = 0.95 for action vectors
belonging to action class k£ and o;; = —0.95 otherwise,
k =1,..., N4. For each of the action vectors s;, MLP response
6; = [0i1,...,0in,]T is calculated by:

éik = fsigmoid(s;rwAk) (5)

where w 45, is a vector that contains the MLP weights corre-
sponding to output k.

The training procedure is performed in an on-line form,
i.e., adjustments of the MLP weights are performed for each
training action vector. After the feed of a training action vector
s; and the calculation of the MLP response 0;, the modification
of weight that connects neurons 7 and j follows the update
rule:

AWaji(n+ 1) = cAWy;i(n) + ndj(n)y;(n), (6)

where d;(n) is the local gradient for the j-th neuron, y; is
the output of the i-th neuron, 7 is the learning-rate, c is a
positive number, called momentum constant (n = 0.05 and
¢ = 0.1 in the experiments presented in this paper) and n
is the iteration number. Action vectors are introduced to the
MLP in a random sequence. This procedure is applied until
the Mean Square Error (MSE) falls under an acceptable error

rate e:
1

N (
The optimal MSE parameter value is determined performing
the cross-validation procedure using different threshold values
for the mean square error (MSE) ¢ and the number of iterations
parameters of the algorithm Np,. We used values of ¢ equal
to 0.1, 0.01 and 0.001 and values of Ny, equal to 100, 500
and 1000. We found the best combination to be ¢ = 0.01 and
Ninaz = 1000 and used them in all our experiments.

E[(+—(6; — 0,))?] < e. )

In the test phase, a set S of action vectors s;, i =1,..., N
corresponding to N action videos captured from all the NV
available cameras depicting the person is obtained. To classify
S to one of the N4 action classes a; specified by the action
set A, each of the N action vectors s; is fed to the MLP and
N responses are obtained:

6; = [0i1, .., 0in,], ©=1,..,N. )]
Each action video is classified to the action class a;, j =
1,..., N4 that corresponds to the MLP maximum output:

a; = argmax 0;; , t=1,..,N, j=1,..,Na. (9
J

Thus, a vector & = [a1,...,an]T € RN containing all
the recognized action classes is obtained. Finally, expecting
that most of the recognized actions a; will correspond to the
actual action class of S, S is classified to an action class by
performing majority voting over the action classes indicated
in &.

Using this approach, view-independent action recognition
is achieved. Furthermore, as the number N of action vectors
forming S may vary, a generic multi-view action recognition
method is obtained. In the above described procedure, no
viewing angle information is used in the combination of
classification results a;, ¢ = 1,..., N, that correspond to each
of the N cameras, to produce the final recognition result. As
noted before, actions are quite different when they are captured
from different viewing angles. Thus, some views may be more
discriminant for certain actions. For example, actions ’walk’
and ’run’ are well distinguished when they are captured from
a side view but they seem similar when they are captured from
the front view. In addition, actions *wave one hand’ and ’jump
in place’ are well distinguished when they are captured from
the front or back view, but not from the side views. Therefore,
instead of majority vote, a more sophisticated method can be
used to combine all the available information and produce
the final action recognition result by exploiting the viewing
angle information. In the following, a procedure based on a
Bayesian framework is proposed in order to combine the action
recognition results from all N cameras.

E. Combination of single-view action classification results
using a Bayesian Framework

The classification of an action vector set S consisting of
N < N¢ action vectors s;, ¢ = 1,..., N, each corresponding
to an action video coming from a specific camera used for
recognition, in one of the action classes a;, j=1,..., Ny of
the action class set A, can be performed using a probabilistic
framework. Each of the N action vectors s; of S is fed
to the MLP and N vectors containing the responses 6; =
[6i1, 042, .., 6in 4] are obtained. The problem to be solved is
to classify S in one of the action classes a; given these obser-
vations, i.e., to estimate the probability P(a;|6{,67,...,6%,.)
of every action class given MLP responses. In the case where
N < Ng, N — Ne MLP outputs 6; will be set to zero, as no
recognition result is provided for these cameras. Since MLP
responses are real valued, P(a;|67,63,...,6},,) estimation



is very difficult. Let a; denote the action recognition result
corresponding to the test action vector s; representing the
action video captured by the i-th camera, taking values in the
action class set .A. Without loss of generality, s;, i =1,..., N
is assumed to be classified to the action class that provides
the highest MLP response, i.e., @; = argmax 0;;. That is,

the problem to be solved is to estimate'7 the probabilities
P(ajl|ai,as,...,an, ) of every action class a;, given the dis-
crete variables @;, i = 1, ..., N¢. Let P(a;) denote the a priori
probability of action class a; and P(d;) the a priori probability
of recognizing a; from camera i. Let P(ay,dz,...,an.) be
the joint probabilities of all the N cameras observing one
of the N4 action classes a;. Furthermore, the conditional
probabilities P(a1, a2, ..., dn|a;) that camera 1 recognizes
action class aj, camera 2 recognizes action class ao, etc.,
given that the actual action class of S is a;, can be calculated.
Using these probabilities, the probability P(a;|a1, ao, ..., an.)
of action class a;, j = 1, ..., N4, given the classification results
a; can be estimated using the Bayes formula:

P(a,a2,...,a i) - P(aj
P(aj|ay, ds, ... an) = NA(Cth’Q:A ,aN|flJ) (a5)
Zl:lP(al,ag,...,ale)oP(al)

In the case of equiprobable action classes, P(a;) = NLA If
this is not the case, P(aj) should be set to their real values and
the training data should be chosen accordingly. Expecting that
training and evaluation data come from the same distributions,
P(a1,a2,...,an,|a;) can be estimated during the training
procedure. In the evaluation phase, S can be classified to the
action class providing the maximum conditional probability,
ie., as = argmax P(a;|a1,d2,...,an,). However, such a

10)

system cannot lJ)e applied in a straightforward manner, since
the combinations of all the N cameras providing N4 + 1
action recognition results is enormous. The case N4 + 1
refers to the situation where a camera does not provide an
action recognition result, because the person is not visible
from this camera. For example, in the case of No = 8 and
N, = 8, the number of all possible combinations is equal
to (N4 + 1)Ne = 43046721. Thus, in order to estimate the
probabilities P(d1, s, ..., Gn,|a;) an enormous training data
set should be used.

To overcome this difficulty, the action classification task
could be applied to each of the IV available cameras indepen-
dently and the N classification results could subsequently be
combined to classify the action vector set S to one of the action
classes a;. That is, for camera 4, the probability P(a;|a;) of
action class a; given the recognized action class a; can be
estimated using the Bayes formula:

P(a;|a;) - P(a;) '
YA Plaglar) - P(ay)

As previously described, since the person can freely move,
the viewing angle can vary for each camera, i.e., if a camera
captures the person from the front viewing angle at a given
time instance, a change in his/her motion direction may result
that this camera captures him/her from a side viewing angle
at a subsequent time instance. Since the viewing angle has
proven to be very important in the action recognition task,

the viewing angle information should be exploited to improve
the action recognition accuracy. Let P(d;, 9;) denote the joint
probability denoting that camera 7 recognizes action class
a; captured from viewing angle v;. Using P(a;,?;), the
probability P(aj|a;,v;) of action class aj, given a; and ¥;
can be estimated by:

P(a;, ;|a;) - P(ay) .
YA Plag, vilar) - Play)

P(ajlai, o;) = (12)

The conditional probabilities P(a;|a;,?;) are estimated in
the training phase. After training the MLP, action vectors
corresponding to the training action videos are fed to the
MLP in order to obtain its responses. Each action vector
is classified to the action class providing the highest MLP
response. Exploiting the action and viewing angle labels
accompanying the training action videos, the conditional prob-
abilities P(a;,?;|a;) corresponding to the training set are
calculated. Finally, P(a;|a;, ;) are obtained using Equation
(12). In the recognition phase, each camera provides an action
recognition result. The viewing angle corresponding to each
camera should also be estimated automatically to obtain ;.
A procedure to this end, which exploits the vicinity property
of the SOM posture prototype representation is presented
in the next subsection. After obtaining the a; and o;, i =
1,..., N, the action vector set S is classified to the action
class providing the maximum probability sum [31], i.e., as =
argmax Zf\il P(ajla, 0;).

J

In (12), the denominator Zj\]:“‘l P(ai, 0;|la;) - Pla;) =
P(a;,0;) refers to the probability that action vectors cor-
responding to action videos captured from the recognized
viewing angle 9; belong to the recognized action class a;. This
probability is indicative of the ability of each viewing angle
to correctly recognize actions. Some views may offer more
information to correctly classify some of the action vectors to
an action class. In the case where 9; is capable to distinguish
a; from all the other action classes, P(a;,d;) will be equal
to its actual value, thus having a small impact to the final
decision P(a,|d;, ;). In the case where ¥; confuses some
action classes, P(a;,?;) will have a value either higher, or
smaller than its actual one and will influence the decision
P(aj|a;, 0;). For example, consider the case of recognizing
action class ’bend’ from the front viewing angle. Because
this action is well distinguished from all the other actions,
when it is captured from the front viewing angle, P(a;, ;)
will not influence the final decision. The case of recognizing
action classes ’jump in place’ and ’sit’ from a 270° side
viewing angle is different. Action videos belonging to these
action classes captured from this viewing angle are confused.
Specifically, all the action videos recognized to belong to
action class ’jump in place’ actually belong to this class, while
some action videos recognized to belong to action class ’sit’
belong to action class “jump in place’. In this case P(a;, ;)
will be of high value for the action class ’sit’, thus providing
a low value of P(aj|a;,?;), while P(a;,9;) will be of low
value for the action class ’jump in place’, thus providing a
high value of P(a;|a;, ;). That is, the recognition of action
classes ’sit” from the 270° side viewing angle is ambiguous,



as it is probable that the action video belongs to action class
’jump in place’, while the recognition of the action class ’jump
in place’ from the same viewing angle is of high confidence,
as action videos recognized to belong to action class ’jump in
place’ actually belong to this class.

The term P(a;,0;]a;) in (12) refers to the probability of
the ¢-th action vector to be detected as action video captured
from viewing angle ?; and classified to action class a,,
given that the actual action class of this action vector is
a;. This probability is indicative of the similarity between
actions when they are captured from different viewing angles
angles and provides an estimate of action discrimination
for each viewing angle. Figure 6 illustrates the probabilities
P(CALiﬂA}z"aj), j = 1, ...,NA, 1= 1, ...,Nc, &i = ay, i.e., the
probabilities to correctly classify an action video belonging
to action class a; from each of the viewing angles ©; for an
action class set A = {"walk’, jump in place’, “jump
forward’, ’bend’, ’sit’, ’fall’, 'wave one hand’} produced
using a 12 x 12 SOM and an 8-camera setup, in which each
camera captures the person from one of the eight viewing
angles V' = {0°,45°,90°,135°,180°,225°,270°,315°}. In
this Figure, it can be seen that action vectors belonging to
action classes “jump in place’, ’bend’, and ’fall’ are almost
correctly classified by every viewing angle. On the other hand,
action vectors belonging to the remaining actions are more
difficult to be correctly classified for some viewing angles. As
was expected, the side views are the most capable in terms of
classification for action classes 'walk’, 'run’, ’jump forward’
and ’sit’, while in the case of action class wave one hand’
the best views are the frontal and the back ones.
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Fig. 6.  Single-view action classification results presented as input to the
Bayesian framework for eight actions captured from eight viewing angles.

F. Camera Viewing Angle Identification

The proposed method utilizes a multi-camera setup. The
person that performs an action can freely move and this
affects the viewing angles he/she is captured by each camera.
Exploiting the SOM posture prototype representation in Figure

3a and the observation that posture prototypes corresponding
to each viewing angle lie in different lattice locations as
presented in Figure 5, a second MLP is proposed to identify
the viewing angle ©; the person is captured from each camera.
Similarly to the MLP used in action classification, it consists
of Ng input nodes (equal to the dimensionality of action
vectors s), N¢ outputs (each corresponding to a viewing
angle) and uses the hyperbolic tangent function as activation
function. Its training procedure is similar to the one presented
in Subsection II-G. However, this time, the training outputs are
set to 0; = 0.95, k=1, ..., N, for action vectors belonging
to action videos captured from the k-th viewing angle and
0;x = —0.95 otherwise.

In the test phase, each of the NV action vectors s; consisting
an action video set S that corresponds to the same action
captured from different viewing angles, is introduced to the
MLP and the corresponding to each action vector viewing
angle 9; is recognized based on the maximum MLP response:

@i = argmax 6“7 7, = 1, ) NC- (13)

J

N, j=1,..,

G. Action Recognition (test phase)

Let a person performing an action captured from N < N¢o
cameras. In the case of elementary action recognition, this
action is captured in N action videos, while in the case of
continuous action recognition, a sliding window consisted of
Ny, video frames is used to create the N action videos
used to perform action recognition at every window location.
These videos are preprocessed as discussed in Section II-A
to produce N x N; posture vectors p;j, ¢ = 1,..., N, j =

., Nt, where Ny = Ny, or Ny = Ny, in the elementary and
the continuous action recognition tasks, respectively. Fuzzy
distances d;;;, from all the test posture vectors p;; to every
SOM posture prototype wsi, k = 1,..., Ng, are calculated
and a set S of IV test action vectors, s;, is obtained. These
test action vectors are fed to the action recognition MLP
and N action recognition results a; are obtained. In the case
of majority voting, the action vector set S is classified to
the action class a; that has the most votes. In the Bayesian
framework case, the [V action vectors s; are fed to the view-
ing angle identification MLP to recognize the corresponding
viewing angle ¥; and the action vector set S is classified to the
action class a; that provides the highest cumulative probability
according to the Bayesian decision. Figure 7 illustrates the
procedure followed in the recognition phase for the majority
voting and the Bayesian framework cases.

III. EXPERIMENTS

The experiments conducted in order to evaluate the perfor-
mance of the proposed method are presented in this section.
To demonstrate the ability of the proposed method to correctly
classify actions performed by different persons, as variations
in action execution speed and style may be observed, the
leave-one-person-out cross-validation procedure was applied
in the i3DPost multi-view action recognition database [32] and
the experiments are discussed in subsection III-C. Subsection
II-D discusses the operation of the proposed method in
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Fig. 7. Action recognition system overview (test phase).

case of multi-period action videos. Subsection III-E presents
its robustness in the case of action recognition at different
frame rates between training and test phases. In III-F a
comparative study that deals with the ability of every viewing
angle to correctly classify actions is presented. The case of
different camera setups in the training and recognition phases
is discussed in Subsection III-G, while the case of action
recognition using an arbitrary number of cameras at the test
phase is presented in subsection III-H. The ability of the
proposed approach to perform action recognition in the case
of human interactions is discussed in Subsection III-I.

A. The i3DPost multi-view database

The i3DPost multi-view database [32] contains 80 high )

resolution image sequences depicting eight persons performing
eight actions and two person interactions. Eight cameras
having a wide 45° viewing angle difference to provide 360°
coverage of the capture volume were placed on a ring of 8m
diameter at a height of 2m above the studio floor. The studio
was covered by blue background. The actions performed in 64
video sequences are: *walk’ (wk), 'run’ (rn), ’jump in place’
(p), ’jump forward’ (jf), bend’ (bd), *fall’ (fl), ’sit on a chair’
(st) and 'wave one hand’ (wo). The remaining 16 sequences
depict two persons that interact. These interactions are: ’shake
hand’ (sh) and "pull down’ (pl).

B. The IXMAS multi-view database

The INRIA (Institut National de Recherche en Informa-
tique et Automatique) Xmas Motion Acquisition Sequences
database [22] contains 330 low resolution (291 x 390 pixels)
image sequences depicting 10 persons performing 11 actions.
Each sequence has been captured by five cameras. The persons
freely change position and orientation. The actions performed
are: “check watch’, *cross arm’, ’scratch head’, ’sit down’, *get
up’, ’turn around’, *walk in a circle’, "wave hand’, ’punch’,

’kick’, and ’pick up’. Binary images denoting the person’s
body are provided by the database.

C. Cross-validation in i3DPost multi-view database

The cross-validation procedure described in Subsection II-B
was applied to the i3DPost eight-view database, using the ac-
tion video sequences of the eight persons. Action videos were
manually extracted and binary action videos were obtained by
thresholding the blue color in the HSV color space. Figure
8a illustrates the recognition rates obtained for various SOM
lattice topologies for the majority voting and the Bayesian
framework cases. It can be seen that high recognition rates
were observed. The optimal topology was found to be a 12x 12
lattice. A recognition rate equal to 93.9% was obtained for
the majority voting case. The Bayesian approach outperforms
the majority voting one, providing a recognition rate equal to
94.04% for the view-independent approach. As can be seen,
the use of viewing angle information results to an increase of
the recognition ability. The best recognition rate was found to
be equal to 94.87%, for the Bayesian approach incorporating
the viewing angle recognition results. The confusion matrix
corresponding to the best recognition result is presented in
Table I. In this matrix, rows represent the actual action classes
and columns the recognition results. As can be seen, actions
which contain discriminant body postures, such as ’bend’,
“fall” and *wave right hand’ are perfectly perfectly classified.
Actions having large number of similar body postures, such
as ’walk’-’run’, or ’jump in place’-’jump forward’-’sit’, are
more difficult to be correctly classified. However, even for
these cases, the classification accuracy is very high.

class label 2

" Som Latices

Fig. 8. a) Action recognition rates vs various lattice dimensions of the SOM.
b) Recognition results in the case of continuous action recognition.

D. Continuous action recognition

This section presents the functionality of the proposed
method in the case of continuous (multiple period) action
recognition. Eight multiple period videos, each corresponding
to one viewing angle, depicting one of the persons of the
13DPost eight-view action database were manually created by
concatenating single period action videos. The algorithm was
trained using the action videos depicting the remaining seven
persons using a 12 x 12 lattice and combining the classifica-
tion results corresponding to each camera with the Bayesian
framework. In the test phase, a sliding window of N, = 21
video frames was used and recognition was performed at every
sliding window position. A majority vote filter, of size equal
to 11 video frames, was applied at every classification result.



Figure 8b illustrates the results of this experiment. In this
Figure, ground truth is illustrated by a continuous line and
recognition results by a dashed one. In the first 20 frames no
action recognition result was produced, as the algorithm needs
21 frames (equal to the frames of the sliding window Ny )
to perform action recognition. Moreover, a delay is observed

in the classification results, as the algorithm uses observations _ |
that refer to past video frames (t,t — 1,...,£ — N; + 1). This £
delay was found to be between 12 and 21 video frames. Only :

one recognition error occurred at the transition between actions
’sit’” and ’fall’.

TABLE I
CONFUSION MATRIX FOR EIGHT ACTIONS.

wk m ip it bd st fl | wo
wk | 0.95 | 0.05
m | 0.05 | 095
ip 0.92 | 0.02 0.06
it 0.05 | 0.9 0.05
bd 1
st 0.13 0.87
fl 1
wo 1

E. Action recognition in different video frame rates

To simulate the situation of recognizing actions using
cameras of different frame rates, between training and test
phases, an experiment was set as follows. The cross-validation
procedure using a 12 x 12 lattice and the Bayesian framework
was applied for different camera frame rates in the test phase.
That is, in the training phase the action videos depicting the
training persons were used to train the algorithm using their
actual number of frames. In the test phase, the number of
frames consisting the action videos were fewer, in order to
achieve recognition at lower frame rate. That is, for action
recognition at the half frame rate, the test action videos
consisted from the even-numbered frames, i.e., n; mod 2 = 0,
where n; is the frame number of each video frame and mod
refers to the modulo operator. In the case of a test frame rate
equal to 1/3 of the training frame rate, only frames with frame
number n; mod 3 = 0 were used, etc. In the general case,
where the test to training video frame rate ratio was equal
to %, the test action videos consisted of the video frames
satisfying n; mod K = 0. Figure 9a shows the results for
various values of K. It can be seen that the frame rate variation
between the training and test phases does not influence the
performance of the proposed method. In fact, it was observed
that, for certain actions, a single posture frame that depicts a
well distinguished posture of the action is enough to produce
a correct classification result. This verifies the observation
made in Subsection II-D that human body postures of different
actions are placed at different positions on the lattice. Thus, the
corresponding neurons are responsible to recognize the correct
action class. To verify this, the algorithm was tested using
single body posture masks that depict a person from various
viewing angles. Results of this experiment are illustrated in
Figure 10. In this Figure, it can be seen that the MLP can

correctly classify action vectors that correspond to single
human body postures. Even for difficult cases, such as *Walk
0°°, or 'Run 315°, the MLP can correctly recognize the action
at hand.

i 5 O 7 g
Number of cameras.

(a) (b)

Fig. 9. a) Recognition results for different video frame rates between training
and test phase. b) Action recognition rates vs various occlusion levels.
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Fig. 10. MLP responses for single human body posture images as input.

F. Actions versus viewing angle

A comparative study that specifies the action discrimination
from different viewing angles is presented in this subsection.
Using a 12 x 12 lattice and the Bayesian framework, the
cross-validation procedure was applied for the action videos
depicting the actions in each of the eight viewing angles
{0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°}. That is, eight
single-view elementary action recognition procedures were
performed. Figure 11 presents the recognition rates achieved
for each of the actions. In this Figure, the probability to
correctly recognize an incoming action from every viewing
angle is presented, e.g., the probability to correctly recognize
a walking sequence captured from the frontal view is equal
to 77.7%. As was expected, for most action classes, the side
views are the most discriminant ones and result in the best
recognition rates. In the case of action ’wave one hand’, the
frontal and the back views are the most discriminant ones and
result in the best recognition rates. Finally, well distinguished
actions, such as ’bend’ and ’fall’, are well recognized from
any viewing angle. This can be explained by the fact that the
body postures that describe them are quite distinctive at any
viewing angle.

Table II presents the overall action recognition accuracy
achieved in every single-view action recognition experiment.
In this Figure, the probability to correctly recognize an incom-
ing action from any viewing angle is presented. For example,



the probability to correctly recognize one of the eight actions
captured from the frontal view is equal to 77.5%. As can be
seen, side views result in better recognition rates, because most
of the actions are well discriminated when observed by side
views. The best recognition accuracy is equal to 86,1% and
comes from a side view (135°). It should be noted that the use
of the Bayesian network improves the recognition accuracy
as the combination of these recognition outputs leads to a
recognition rate equal to 94.87%, as discussed in Subsection
I-C.
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Fig. 11.  Recognition rates of different actions when observed from different
viewing angles.

TABLE II
RECOGNITION RATES OBTAINED FOR EACH VIEWING ANGLE.
0° 45° 90° 135°
77.5% | 80.9% | 82.4% | 86.1%
180° 215° 260° 315°
74.1% | 80.5% | 79.2% | 80.2%

G. Action recognition using reduced camera setups

In this subsection, a comparative study between different
reduced camera setups is presented. Using a 12 x 12 lattice, the
cross-validation procedure was applied for different reduced
test camera setups. In the training phase, all action videos
depicting the training persons from all the eight cameras were
used to train the proposed algorithm. In the test phase, only
the action videos depicting the test person from the cameras
specified by the reduced camera setup were used. Because
the movement direction of the eight persons varies, cameras
in these experiments do not correspond to a specific viewing
angle, i.e., camera #1 may or may not depict to the person’s
front view. Figure 12 presents the recognition rates achieved
by applying this procedure for eight different camera setups.
As can be seen, a recognition rate equal to 92.3% was achieved
using only 4 cameras having a 90° viewing angle difference to
provide 360° coverage of the capture volume. It can be seen

that, even for 2 cameras placed at arbitrary viewing angles a
recognition rate greater than 83% is achieved.

H. Recognition in occlusion

To simulate the situation of recognizing actions using an
arbitrary number of cameras an experiment was set as follows.
The cross-validation procedure using a 12 x 12 lattice and
the Bayesian framework was applied for a varying number of
cameras in the test phase. That is, in the training phase the
action videos depicting the training persons from all the eight
cameras were used to train the algorithm. In the test phase,
the number and the capturing view of the testing person’s
action videos were randomly chosen. This experiment was
applied for a varying number of cameras depicting the testing
person. The recognition rates achieved in these experiments
can be seen in Figure 9b. Intuitively, we would expect the
action recognition accuracy to be low when using a small
number of cameras in the test phase. This is due to the viewing
angle effect. By using a large number of cameras in the test
phase, the viewing angle effect should be addressed properly,
resulting to an increased action recognition accuracy. Using
one arbitrarily chosen camera, a recognition rate equal to 79%
was obtained, while using four arbitrarily chosen cameras, the
recognition rate was increased to 90%. Recognition rates equal
to 94.85% and 94.87% were observed using five and eight
cameras, respectively. As it was expected, the use of multiple
cameras resulted to an increase of action recognition accuracy.
This experiment illustrates the ability of the proposed approach
to recognize actions at high accuracy, in the case of recognition
using an arbitrary number of cameras that depict the person
from arbitrary view angles.
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Fig. 12. Recognition rates for the eight different camera setups.

1. Recognition of human interactions

As previously described, the action recognition task refers
to the classification of actions performed by one person. To
demonstrate the ability of the proposed approach to correctly
classify actions performed by more than one persons, i.e.,
human interactions, the cross-validation procedure was applied
to the i3DPost eight-view database including the action videos
that depict human interactions, e.g.: ’shake hands’ and ’pull
down’. A recognition rate equal to 94.5% was observed for a
lattice of 13 x 13 neurons and the Bayesian framework. An
example of 13x 13 lattice is shown in Figure 13. The confusion
matrix of this experiment can be seen in Table III.
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Fig. 13. A 13 x 13 SOM produced by posture frames of actions and
interactions.

To illustrate the continuous action recognition functionality
of a system that can recognize interactions, an experiment
was set up as follows: the algorithm was trained using the
action videos depicting the seven persons of the I3DPost
action dataset including the two interactions (’shake hand’
and ’pull dawn’) using a 13 x 13 lattice topology and the
Bayesian framework. The original action videos depicting the
side views of the eight person performing these interactions
was tested using a sliding window of Ny = 21 video frames.
Figure 14 illustrates qualitative results of this procedure. When
the two persons were separated, each person was tracked at
subsequent frames using a closest area blob tracking algorithm
and the binary images depicting each person were fed to the
algorithm for action/interaction recognition. When the two
persons interacted, the whole binary image was introduced
to the algorithm for recognition. In order to use the remaining
cameras, more sophisticated blob tracking methods could be
used [33], [34]. As can be seen, the proposed method can be
extended to recognize interactions in a continuous recognition
setup.

TABLE III
CONFUSION MATRIX FOR EIGHT ACTIONS AND TWO INTERACTIONS
wk m ip it bd hs Pl st fl wo
wk 0.95 0.05
m 0.05 0.95
ip 081 0.1 0.02 0.07
it 0.05 | 095
bd 1
hs 1
Pl 1
st 0.13 0.87
fl 1
wo 0.03 0.05 0.92

Fig. 14. Continuous recognition of human interactions.

J. Comparison against other methods

In this section we compare the proposed method with state
of the art methods, recently proposed in the literature, aiming

to view-independent action recognition using multi-camera
setups. Table IV illustrates comparison results with three meth-
ods by evaluating their performance in the i3DPost multi-view
action recognition database using all the cameras consisting
the database camera setup. In [35], the authors performed
the LOOCV procedure in an action class set consisting of
the actions “walk”, ”run”, ”jump in place”, ”jump forward”
and “bend”. The authors in [36] included action “wave one
hand” in their experimental setup and performed the LOOCV
procedure using six actions and removed action “run”, in
order to perform the LOOCV procedure by using five actions.
Finally, the authors in [37] applied the LOOCV procedure by
using all the eight actions appearing in the databse. As can
be seen in Table IV, the proposed method outperforms all the

aforementioned methods.

TABLE IV
COMPARISON RESULTS IN THE I3DPOST MULTI-VIEW ACTION
RECOGNITION DATABASE.

5 actions | 8 actions | 5 actions | 6 actions
Method [35] 90% - - -
Method [37] - 90.88% - -
Method [36] - - 97.5% 89.58%
Proposed method | 94.4% 94.87% 97.8% 95.33%

In order to compare our method with other methods us-
ing the IXMAS action recognition datase we performed the
LOOCYV procedure by using the binary images provided in the
database. In an off-line procedure, each image sequence was
split in smaller segments, in order to produce action videos.
Subsequently, the LOOCV procedure has been performed by
using different SOM topologies and the Bayessian framework
approach. By using a 13 x 13 SOM an action recognition rate
equal to 89.8% has been obtained. Table V illustrates compar-
ison results with three methods evaluating their performance
in the IXMAS multi-view action recognition database. As
can be seen, the proposed method outperforms these methods
providing up to 8.5% improvement on the action classification
accuracy.

TABLE V
COMPARISON RESULTS IN THE IXMAS MULTI-VIEW ACTION
RECOGNITION DATABASE.

Method [39] | Method [40]
81% 80.6%

Method [38]
81.3%

Proposed method
89.8%

IV. CONCLUSION

A very powerful framework based on Artificial Neural Net-
works has been proposed for action recognition. The proposed
method highlights the strength of ANN in representing and
classifying visual information. SOM human body posture rep-
resentations is combined with Multilayer Perceptrons. Action
and viewing angle classification is achieved independently for
all cameras. A Bayesian framework is exploited in order to
provide the optimal combination of the action classification
results, coming from all available cameras. The effectiveness
of the proposed method in challenging problem setups has



been demonstrated by experimentation. According to authors’
knowledge, there is no other method in the literature that can
deal with all the presented challenges in action recognition.
Furthermore, it has been shown that the same framework can
be applied for human interaction recognition between persons,
without any modification.
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