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Abstract

In this paper, a novel multi-view human movement recognition method is pre-
sented. A novel representation of multi-view human movement videos is pro-
posed that is based on learning basic multi-view human movement primitives,
called multi-view dynemes. The movement video is represented in a new feature
space (called dyneme space) using these multi-view dynemes, thus producing a
time invariant multi-view movement representation. Fuzzy distances from the
multi-view dynemes are used to represent the human body postures in the dyneme
space. Three variants of Linear Discriminant Analysis (LDA) are evaluated to
achieve a discriminant movement representation in a low dimensionality space.
The view identification problem is solved either by using a circular block shift
procedure followed by the evaluation of the minimum Euclidean distance from
any dyneme, or by exploiting the circular shift invariance property of the Dis-
crete Fourier Transform (DFT). The discriminant movement representation com-
bined with camera viewpoint identification and a nearest centroid classification
step leads to a high human movement classification accuracy.

Keywords: Activity recognition; Multi-view Dynemes; Fuzzy Vector
Quantization; Linear Discriminant Analysis

1. Introduction

Human movement recognition and analysis is an important task for various
applications. It can be used as a pre-processing stage for human behavior analysis
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in a wide variety of fields, such as surveillance [1], human–computer interaction
and games [2], model-based compression [3], augmented reality [4] and semantic
video annotation. The term human movement has been used with various mean-
ings in the literature. Sometimes it is used interchangeably with the terms human
motion and human action or activity. In this paper we adopt the taxonomy used
in [5], where movement, activity and action correspond to low-level, middle-level
and high-level motion patterns, respectively. Many approaches have been pro-
posed in order to formally describe human movement patterns. Two approaches
that exploit the global human body information in order to describe human body
posture shape are described in [6] and [7]. In [6], Motion Energy Image (MEI)
and Motion History Image (MHI) are introduced. MEI is a binary image, which
depicts the moving regions in white and still regions in black. MHI is a grayscale
image whose intensity is a function of motion recency. Alternatively, movements
can be described by a sequence of movement primitives, the so-called dynemes
[7]. This approach is inspired from speech recognition, where the term phoneme
is used to denote the smallest constructive speech unit [8].

Most movement recognition algorithms involve a training phase. The main
challenges that a movement recognition method should be able to face and we
address in this paper include:

• Inter-class variations: Several movement types are quite similar, for exam-
ple jog and run.

• Intra-class variations: Variations in motion speed, execution style, as well
as anthropometric ratios can be observed between individuals.

• Capture conditions: Person localization might be difficult in cluttered or
dynamic environments. Self occlusions or occlusions of human body parts
from other objects may result to poor human body representation.

• Human body orientation: The orientation of the person with respect to the
camera might be different from that in the training videos (e.g. side vs
frontal view). Moreover, during a movement, the person may change mo-
tion direction. A suitable human body representation which will deal with
these changes should be utilized and the movement recognition accuracy
should not be affected.

• Distance between the camera(s) and the person: The person may move in
an arbitrary distance from the camera(s) used. This will affect the size of
his/her body projection in the camera(s) plane(s).
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• Continuous operation: The method should allow continuous movement recog-
nition over time.

• Camera setup: The camera(s) used in the training and test phases may differ
in resolution and frame rate. In the case of multiple cameras, synchroniza-
tion errors between the frames coming from different cameras might occur.
Furthermore, multi-camera setups, usually require camera calibration.

The plethora of movement recognition algorithms that have been proposed can
be divided in three categories, depending on the adopted camera setup and their
ability to perform view-independent human movement recognition: single-view,
single-view/view-invariant and multi-view ones [9, 10].

Up to now, the majority of human movement recognition algorithms that have
been proposed use one fixed camera (single-view video) in both the training and
recognition phases. In [11], a codebook of movelets for each body part is produced
to represent body posture images. A movelet is defined as a collection of the im-
age patches that correspond to shape, motion and occlusion of the main human
body parts. Hidden Markov Models (HMMs) estimate the most likely sequence
of movelets and the movement depicted in a sequence. In [12], the human contour
is described by a feature vector generated by a shape descriptor. Shape context
features are clustered in Dominant Sets in each posture image. Classification is
achieved using a nearest neighbor algorithm. In [7, 13], tracking information is
exploited to form motion vectors in every video frame. Then, HMMs are used to
recognize the human movement. In [14], Locality Preserving Projections (LPP)
are used to project a sequence of moving silhouettes associated to a movement
video on a low-dimensional space. The median Hausdorff distance or the normal-
ized spatiotemporal correlation is used to classify an unknown movement within
a nearest-neighbor framework. In [15], movement prototypes are represented by
dynemes produced by Fuzzy Vector Quantization (FVQ). Linear Discriminant
Analysis (LDA) is used to project fuzzy vector distances of each posture vec-
tor within a movement sequence from the dynemes to a low dimensionality space.
In this space, the minimum Mahalanobis distance or the maximum cosine simi-
larity from movement class centers is used for human movement classification. In
[6], MEI and MHI representing a movement are concatenating in order to produce
vector containing shape and time information. Movement classification is achived
by performing a nearest neighbor procedure. An improvement of this work, which
does not require tracking is presented in [16]. Although these algorithms achieve
good recognition results, they require the same camera view angle during both
training and recognition phases. This angle must, ideally, be the one that captures
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the most discriminant motion information and, usually, corresponds to the side
view. This assumption leads to a constrained recognition environment, because
such algorithms will fail, if the person under study is captured from a different
view angle or its motion direction changes over time.

In order to overcome this limitation, researchers have come up with view in-
variant single-view movement representation and recognition approaches. In [17],
a computational representation of human movement that captures abrupt changes
in the motion speed and the direction represented by the spatio-temporal curvature
of a 2D trajectory was introduced. In [18], the view-invariant movement recog-
nition problem was tackled by utilizing the geometric invariant theory, based on
point-light displays. A convenient 2D invariant representation was obtained by
combining patches of a 3D scene. In [19], a novel movement representation was
proposed using the so-called spatio-temporal movement volumes (STV). Given
the object contours at each time instance, a movement volume was generated by
computing point correspondences between consecutive contours, based on graph
theory. Then, a movement representation in terms of the sign of mean and Gaus-
sian curvatures was obtained by analyzing the differential geometry of the local
volume surfaces. These movement descriptors were employed to define a move-
ment sketch, which is invariant to the camera viewing angle. In [20], an example-
based movement recognition approach was demonstrated, using dependencies be-
tween three dimensional movement exemplars and their 2D projections on the
image plane. 3D movement exemplars were used to produce 2D image informa-
tion in the training phase, while, in the recognition phase, HMMs were employed
in order to identify the movement sequence that best explains the image observa-
tions. An HMM variant, the Conditional Random Fields (CRFs) are used in [21]
for human movement recognition. CRFs overcome the observations independence
assumption in human movement analysis. In [22], human movements were rep-
resented as three-dimensional shapes, induced by the silhouettes in a space-time
volume. The solution of the Poisson equation is exploited to extract space-time
features, such as local space-time saliency, movement dynamics, shape structure
and orientation. These features are subsequently utilized for shape representation
and classification. The methods described above are invariant within a viewing-
angle range and, thus, their application is limited to some special cases.

Recently, researchers have proposed algorithms that use multi-camera setups.
The use of multiple cameras has several advantages. The human body is captured
from multiple views, and, thus, fully view-independent movement recognition can
be achieved. Moreover, a person being occluded in one, or more, camera(s) may
be visible from other cameras, and, thus, movement recognition can still be pos-
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sible. Finally by exploiting the multi-view human body information better recog-
nition accuracy can be obtained. However, the need to process multiple video
streams leads to higher computational cost and a multi-camera setup is more dif-
ficult to setup and more costly than a single camera one. In [23, 24], multi-view
information is exploited to achieve view-invariant movement recognition. A tem-
poral segmentation method is introduced to split a continuous movement sequence
into primitive actions. Visual hulls are computed and accumulated over a time pe-
riod into the so-called Motion History Volumes (MHVs) which are extensions of
the MHIs proposed in [6]. MHVs, transformed into cylindrical coordinates around
their vertical axis, are used to produce view-invariant features in the Fourier do-
main. In [25], Combined Local-Global (CLG) optical flow is used to extract a
motion flow feature. Invariant moments with flow deviations are used to extract
a global shape flow from multi-view image sequences. Multidimensional HMMs
(MDHMMs) are used to classify an unknown incoming movement.

In this paper, a novel view-invariant method that exploits information captured
by a multi-camera setup is proposed. Binary human body masks are obtained from
a background subtraction procedure [26, 27], or using a chroma keying technique,
or any other moving object segmentation technique. In most applications, such as
video surveillance, this is an efficient way to obtain the moving object silhouettes.
In cases where this approach can not be applied, human body pose estimation
techniques [28, 29] can be applied to the video frames of each camera to pro-
duce binary human body masks. In case of noisy binary masks, simple post pro-
cessing techniques, such as morphological operations or more advanced filtering
techniques, can be applied in order to improve their quality. The human body is
tracked in consecutive single-view video frames [30, 31] and binary masks corre-
sponding to the same person coming from all cameras are subsequently combined
to represent multi-view posture patterns. These patterns are clustered determin-
ing a number of multi-view posture primitives, the so-called multi-view dynemes,
are determined. The fuzzy distances between every multi-view posture pattern
and every multi-view dyneme are obtained in order to create a new representation
space for the multi-view body postures, the so-called multi-view dyneme space.
This new movement representation is motion speed and duration invariant. Fur-
thermore, it has proven capable to generalize over variations within one class,
distinguish between actions of different classes and cope with usual synchroniza-
tion errors. Linear Discriminant Analysis (LDA) is performed to reduce dyneme
space dimensionality by discovering an optimal discriminant subspace. The map-
ping of movement representations on this subspace produces the so-called dis-
criminant movement representation, which is used for movement classification by
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employing either the Euclidean or the Mahalanobis distance from the discriminant
movement class centers.

The proposed method is a non parametric one and exploits the rich information
captured by multiple synchronized and uncalibrated cameras in order to achieve
high human movement classification accuracy. It assumes that the person is at
short or medium distance from the cameras. The binary masks of the human body
are rescaled in low resolution posture frames. Thus, the method can operate in
settings where the human body silhouettes are of low resolution, i.e., the height of
the body is higher than 30 pixels. In settings where the body size is smaller, the
body binary mask may be affected by the presence of noise. This will affect the
recognition accuracy. The solution of the camera viewpoint identification prob-
lem, i.e., the identification of the camera position with respect to the human body,
before proceeding to movement recognition in a new test video leads to a view-
independent movement recognition technique. This is achieved by determining
the camera re-arrangement which provides the same view angle ordering as in the
training phase, or by exploiting a new, view-invariant human body representation
based on the circular shift invariance property of the Discrete Fourier Transform.
The usage of the multi-view dynemes, combined with the projection of the move-
ment representations in a low dimensionality discriminant feature space results to
fast and accurate movement recognition.

The main novel contributions of this paper are: 1) the proposal of a novel
view-invariant movement representation (multi-view dynemes), 2) the solution of
the camera viewpoint identification problem using a circular shift procedure on
the multi-view posture representation, followed by the minimum Euclidean dis-
tance from any multi-view dyneme, or by exploiting the circular shift invariance
property of DFT, 3) the use of LDA variants for dimensionality reduction in the
multi-view dyneme space.

The remainder of this paper is structured as follows. Section 2 provides an
overview of the recognition framework used in the proposed approach and a small
discussion concerning the movement recognition task. Section 3 presents tech-
nical details that clarify the processing steps performed in the proposed method.
Section 4 presents experiments conducted for assesing the performance of the
proposed method. Finally, conclusions are drawn in Section 5.

2. Problem Statement

One of the most commonly used multi-camera setups is the converging one,
where all N synchronized cameras involved point to the observation space center,
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as shown in Figure 1a) for eight (N = 8) cameras. The capture volume is the
space which can be seen from all N cameras. The distance between the cameras
and the person is application related. In the case of movement recognition in
short range settings, such as indoors movement recognition, this distance will
probable be small, while in far field settings, such as movement recognition in
outdoor environments, e.g., a parking lot, this distance will usually be higher. In
the later case, the size of the human in the videos will be small and this might
affect the recognition accuracy. Every camera captures one video frame at each
time instance, that will be called single-view frame. A collection of frames from
all cameras acquired at the same time instance is referred as an N -view frame. An
example is shown in Figure 1b).

(a) (b)

Figure 1: a) A converging eight-view camera setup and its capture volume, b) an eight-view video
frame

Let M be a set of M elementary movement classes, such as walk, run, bend,
etc. Since most human movements are periodic, the term elementary movement
corresponds to a single period of the movement, e.g., to one walking step. In the
case of non-periodic movements, e.g. ’bend’, the elementary movement includes
the whole movement sequence. Let a person perform an elementary movement
m, 1 ≤ m ≤ M inside the camera capture volume, being captured in a N -view
video, called elementary movement video. Obviously different elementary move-
ments have different durations Ntm , m = 1, ...,M . For example, a run period
consists on average of only 9 video frames in a 25 fps video, whereas a bend pe-
riod consists of 40 video frames. The problem to be solved is to recognize the
elementary movement at hand. In the following, the word movement will denote
elementary movement, unless otherwise stated. The proposed method copes with
the elementary movement recognition problem, but is also extended, (see section
3.7) in order to recognize continuous movement videos containing many consec-

7



utive movement periods. This is done by using a sliding window consisting of
adequate number of video frames. By moving this window, elementary videos are
obtained and recognition is performed at every sliding window position.

Elementary movement classes highly overlap in the video frame space, since
the same body postures (N -view video frames) appear in different movements.
This can be seen in Figure 2, where three eight-view video frames of a person
performing the movements ’jump in place’, ’jump forward’ and ’sit’ are shown.
Even a human observer can be confused when he/she must decide which pos-
ture corresponds to each movement, when viewed in isolation and not within a
sequence. However, there are certain postures that characterize uniquely certain
movement classes. Furthermore, as already mentioned, different movements dif-
fer in duration. A movement representation scheme should take into account all
these observations, in order to achieve good recognition results. Finally, a move-
ment recognition technique should allow continuous movement recognition, be
fast and take into account various factors related to camera setup, such as the
camera-actor distances and the synchronization errors.

Movement recognition is a difficult task in such a setup. Indeed, the person
may freely move inside the cameras capture volume. Thus, his/her view angle
from a certain camera may change during movement. For example, whereas cam-
era #1 can, at a certain time instance, depict a side view of a person, a change
in his/her movement direction may result in a frontal view in this camera. Thus,
the camera viewpoint identification problem should be solved in order to achieve
a view-independent movement recognition. An alternative solution could be the
use of view-invariant movement representation.

3. Proposed Method

3.1. Preprocessing
As previously described, a movement performed inside the camera capture

volume is captured from all N cameras in a N -view movement video consisting
of Ntm N -view video frames that depict one movement period. The number of
frames Ntm in a N -view video frame may vary, according to the movement class
m, 1 ≤ m ≤ M . During training, a N -view movement video depicting a num-
ber of consecutive periods is manually split in elementary N -view videos that are
subsequently used in the training procedure. During testing, in the case of contin-
uous movement recognition, a sliding window of an appropriately chosen length
that moves over a N -view video segment is used and recognition is performed for
each temporal position of this window.
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(a)

(b)

(c)

Figure 2: Multi-view video frames of (a) ’jump in place’, (b) ’jump forward’ and (c) ’sit’ se-
quences.

Moving object segmentation techniques [26, 27] are applied to the frames of
a N -view video to create binary single-view masks depicting the person’s body
in white over a black background. These masks are centered at the person center
of mass. Binary single-view posture masks of size equal to that of the maxi-
mum bounding box (region of interest, ROI) that encloses the person body in each
single-view video are created and rescaled accordingly to H × W = 64 × 64
pixels to produce binary single-view posture masks of fixed size. Apart from
reducing the computational cost, the use of low resolution single-view posture
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masks reduces the effect of local image segmentation errors which may occur in
the cases of clutter background. Single-view binary posture masks of eight move-
ments {’walk’, ’run’, ’jump in place’, ’jump forward’, ’bend’, ’sit’, ’fall’ and
’wave one hand’} performed by the same person and being captured from various
view-angles are shown in Figure 3.

Figure 3: Binary single-view posture masks of eight movements captured from various view angles.
From left to right: ’bend’, ’jump forward’, ’fall’, ’run’, ’sit’, ’walk’, ’wave one hand’ and ’jump
in place’.

In the training phase, binary single-view posture masks of all the N views
corresponding to the same time instance t are combined by placing the one that
depicts the person’s frontal view first and the remaining in a clockwise manner to
create N -view binary posture masks. An eight-view binary posture mask from a
’bend’ video is shown in Figure 4.

Figure 4: An eight-view posture mask of a bend sequence.

Binary N -view posture masks are scanned column-wise to produce posture
vectors. That is, every multi-view movement video of N × H × W pixels (per
N -view frame) consisting of Ntm video frames, is described Ntm N -view posture
vectors pi = [pT

i1,p
T
i2, ...,p

T
iN ]

T , i = 1, ..., Ntm , pij ∈ RH×W .

3.2. Dynemes Calculation
In the training phase, all the N -view posture vectors pi, i = 1, ..., L, L =∑M

m=1 Ntm · NT of all the NT different training N -view elementary movement
videos having Ntm , m = 1, ...,M frames each, are clustered to K clusters with-
out using the known movement labels. This approach is followed in order to
produce movement independent multi-view movement primitives, the so-called
N -view dynemes. Although this procedure can be performed by applying various
clustering techniques, such as Spectral Clustering [32, 33], Self Organizing Maps
[34], Fuzzy C-Means [35], etc., it was observed, through experimentation, that a
simple K-Means algorithm [36] can provide satisfactory N -view dynemes. The
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K-Means algorithm seeks to partition the N -view posture vectors of the training
videos into K clusters having centers vj, j = 1, ..., K, so that the following
expression is minimized:

K∑
j=1

L∑
i=1

aij ∥ pi − vj ∥2, (1)

where aij = 1 if the N -view posture vector pi is assigned to the cluster j (having
cardinality nj =

∑
ai,j) and zero otherwise.

The N -view dynemes vj, j = 1, ..., K are obtained by calculating the arith-
metic mean of the vectors assigned to each of these K clusters:

vj =
1

nj

L∑
j=1

aijpi. (2)

The optimal dyneme number K is determined using the cross-validation pro-
cedure [37]. This procedure is used to determine how a learning algorithm will
operate on data that it was not trained upon. During cross-validation, the learning
algorithm is trained multiple times (folds), each time using all but some of the
training samples that are subsequently used for testing. Depending on the sam-
ples used for testing, there are various cross-validation variations. In our case,
the videos that are being excluded from the training set (test videos) are all the
elementary movement videos depicting one person, i.e., the leave-one-person-out
cross validation procedure was applied. The cross-validation procedure is applied
for different number of dynemes and the optimal dyneme number K is the one
that provides the best movement recognition rate.

A set of twenty eight-view dynemes describing eight movements (’walk’,
’run’, ’jump in place’, ’jump forward’, ’bend’, ’fall’, ’sit’ and ’wave one hand’)
are shown in Figure 5. In this Figure, every row depicts an 8-view dyneme. As
can be seen, some dynemes correspond to body postures that appear in more than
one movements, e.g., dynemes 1 and 17 include postures of movements ’walk’
and ’run’, while dynemes 2, 8, 9, 10 and 12 include postures of movements ’jump
in place’, ’jump forward’ and ’sit’. Some dynemes, however correspond to pos-
tures that appear only in one movement. Such a dyneme can uniquely determine
this movement, e.g. dynemes 14 and 20 describe movement ’bend’, dynemes 4,
11, 15, 16 and 19 describe movement ’wave one hand’. Two different movement
classes should contain one or more different body postures. Using this approach,
a movement can be described as a unique combination of dynemes, even if some
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of the dynemes appear in more than one similar movements. Overall, it will sub-
sequently proven that the dynemes have enough discriminant power to provide a
good representation space for N -view movement posture vectors.

Figure 5: A set of twenty dynemes derived from eight-view posture vectors of eight movements
(’walk’, ’run’, ’jump in place’, ’jump forward’, ’bend’, ’fall’, ’sit’ and ’wave one hand’).

3.3. Movement Representation
As already mentioned, every elementary movement video is described by a set

of Ntm N -view posture vectors pi ∈ RNs , Ns = N × H × W, i = 1, ..., Ntm ,
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where Ntm varies, accross movement types. After the dyneme calculation, the
fuzzy distances:

dik = (∥ pi − vk ∥2))−
2

q−1 (3)

of every N -view posture vector pi from all the K dynemes vk, k = 1, ..., K are
calculated. q is the fuzzification parameter (q > 1), which is set equal to 1.1 for
all the experiments presented in this paper. Each N -view posture vector pi is thus
mapped to the following distance vector:

di = [di1, di2, ..., diK ]
T ∈ RK . (4)

The distance vectors di are normalized to produce membership vectors ui ∈ RK ,
which are the posture vectors representations in the K-dimensional dyneme space:

ui =
di

∥ di ∥
. (5)

If a movement video sequence consists of Ntm video frames, the membership vec-
tors ui corresponding to each posture vector (one per video frame) are combined
to produce the so-called movement vector s ∈ RK , which represents the move-
ment video in the dyneme space. To this end, simple arithmetic mean is chosen,
in order to avoid taking into account any temporal information in the movement
representation:

s =
1

Ntm

Ntm∑
i=1

ui. (6)

Finally, the movement vectors s representing every movement video in the train-
ing dataset are normalized to have zero mean and unit standard deviation.

3.4. LDA Projection
In order to discriminate movement classes, the labeling information available

in the training phase can be exploited. The dimensionality of training movement
vectors smj ∈ RK can be reduced to D < K dimensions, using a discriminant
subspace method. Assuming that the movement classes are linearly separable,
LDA [38] is used to project them to a low-dimensional discriminant subspace
RD, D < K. The use of LDA in movement recognition, where the number of
movement classes is equal to M , can be performed either in a multi-class setting,
or by formulating M one-against-all problems, followed by M(M−1)

2
two-class

problems. In this paper, three variants of the LDA algorithm are utilized. The first
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is the traditional multi-class algorithm, that will be presented in Subsection 3.4.1.
The second one is a multi-class algorithm similar to Weighted Piecewise Linear
Discriminant Analysis (WPLDA) [39] to be described in Subsection 3.4.2. The
third approach is a combination of one-versus-all and two-class LDA problems
that will be described in Subsection 3.4.3. LDA algorithms specify the optimal
discriminant subspace by minimizing:

Ψopt = argmin
Ψ

trace{ΨTSwΨ}
trace{ΨTSbΨ}

. (7)

The matrix Ψ represents a linear transformation and Sb, Sw are the between and
within scatter matrices of the training movement vectors scj, c = 1, ..., C, j =
1, ...Nc belonging to the C classes of the problem at hand [40], Nc being the num-
ber of training videos belonging to class c. In multi-class LDA problems, the
number of classes C is equal to the number of movement classes, i.e., C = M .
In each of the one-against-all LDA problems, the training movement vectors are
divided in positive and negative training vector samples and the number of classes
in each problem is C = 2. Finally, in the one-versus-one case, the training move-
ment classes are divided in M(M−1)

2
movement class pairs and, thus, the number

of classes in each of them is C = 2. The rank of Sw is at most Nc − K. Sw

is invertible, if the number Nc of the training videos belonging to class c is ade-
quately larger than the number of dynemes K. The optimal matrix Ψopt is formed
by the C − 1 generalized eigenvectors that correspond to the largest eigenvalues
of S−1

w Sb. In the case where Sw is not invertible, i.e., when the number of training
samples belonging to every problem class is smaller than the dimensionality of
the dyneme space (Nc < K), one of the LDA variants described in [41, 42] can
be used instead.

3.4.1. Multi-Class LDA
The training movement vectors smj, m = 1, ...,M, j = 1, ...Nm that rep-

resent each movement video are labeled. The application of multi-class LDA
will result to the projection of every movement vector smj ∈ RK in a (M − 1)-
dimensional discriminant space RM−1, producing discriminant movement vectors
ymj ∈ RM−1 ymj = ΨT

optsmj . In this space, discriminant movement vectors ymj

belonging to different movement classes are well separated. The optimal matrix
Ψopt is formed by the M−1 generalized eigenvectors that correspond to the largest
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eigenvalues of S−1
w Sb. In this case, the two scatter matrices mentioned above are:

Sw =
M∑

m=1

Nm∑
j=1

(smj − µm)(smj − µm)
T

Nm

(8)

Sb =
M∑

m=1

(µm − µ)(µm − µ)T

Nm

(9)

where µm is the mean vector of class m, and µ is the mean vector of all the
training movement vectors and Nm is the number of movement vectors belonging
to class m.

In the testing phase, the movement vector s, representing the test multi-view
movement video, is mapped to the discriminant movement subspace RM−1. In
this space, the reduced dimensionality vector y = ΨT

opts is classified to the nearest
class centroid, using either Euclidean or Mahalanobis distance.

3.4.2. Weighted Piecewise Multi-Class Linear Discriminant Analysis (WPLDA)
In WPLDA the training movement vectors smj ∈ RK , of dimensionality equal

to the number of dynemes K, are broken down in lower dimensionality feature
vectors smjn ∈ RKs , such that smj = [sTmj1, ...s

T
mjn...s

T
mjNs

]T , thus creating Ns

subsets of feature vectors, each having dimensionality Ks = K
Ns
, n = 1, ..., Ns.

Ns is chosen in such a way, so that the number of training movement vectors in
each class is sufficient for applying LDA, that is, the resulting scatter matrices are
invertible, i.e., Nm > Ks ≥ M − 1. By applying LDA, using the scatter matrices
defined similarly as in (8) and (9), discriminant feature vectors ymjn ∈ RM−1

are produced. The resulting discriminant features ymjn are concatenated forming
ymj = [yT

mj1, ...y
T
mjn...y

T
mjNs

]T and a second LDA step is applied. This results to
the generation of the discriminant movement vectors zmj ∈ RM−1 that represent
each movement video in this discriminant subspace. The procedure described
above is illustrated in Figure 6.

After the determination of the final discriminant subspace, all training move-
ment vectors smj, m = 1, ...,M, j = 1, ..., Nm are mapped to this subspace and
the class centroids are found.

In the test phase, the movement vector s, representing the test multi-view
movement video, is broken down to Ns vectors sn, n = 1, ..., Ns, which are
mapped in discriminant subspaces to produce Ns discriminant feature vectors.
These feature vectors are concatenated and a second mapping to a discriminant
subspace is applied. This results to the generation of the discriminant movement
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Figure 6: Discriminant movement representation using two LDA steps.

vector z that represents the movement video in this feature space. Then z is clas-
sified to the nearest centroid, using either Euclidean or Mahalanobis distance.

3.4.3. One-versus-all plus two-class LDAs
The M -class classification problem can be split in M one-against-all prob-

lems, followed by M(M−1)
2

two-class classification problems. For all these prob-
lems, the dimensionality of the training vectors is reduced to 1. In other words,
after the projection, the sample smj, m = 1, ...,M, j = 1, ..., Nm becomes a
scalar: ymj = Ψoptsmj . For each of the one-versus-all problems, the movement
vectors belonging to the specified movement class are used as positive samples,
while the remaining movement vectors are used as negative samples. The scatter
matrices are defined in the form:

Sw =
∑
p

Np∑
j=1

(spj − µp)(spj − µp)
T

Np

(10)

where p indexes the positive and the negative training samples for each one-
against all problems and

Sb = (µp − µn)(µp − µn)
T (11)

where µp, µn are the mean vectors of the positive and the negative classes, re-
spectively. These projections are combined with nearest centroid classification.
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In the second step, if more than two classifiers decide positively for a given
test sample, then the final classification decision is taken according to the projec-
tions that use information only from these classes. Thus M(M−1)

2
LDA projection

vectors are calculated, one for each pair of classes. For each of the M(M−1)
2

two-
class LDA problems for movement classes p, q ∈ {1, ...,M}, the scatter matrices
are defined as follows:

Sw =
∑
i

Ni∑
j=1

(sij − µi)(sij − µi)
T

Ni

(12)

Sb = (µp − µq)(µp − µq)
T (13)

where i takes values in {p, q} and µp, µq are mean movement vectors of the p, q
movement classes, respectively.

In the test phase, the movement vector s, representing the test multi-view
movement video, is mapped to each of the discriminant subspaces that were deter-
mined in the training phase for all the one-versus-all LDA problems and is classi-
fied to a movement class depending on its Euclidean or Mahalanobis distance from
the class centroid of every positive movement class defined in the corresponding
discriminant subspace. In the case of only one positive classification result, the
movement vector s is classified to the corresponding movement class. In the case
of more than one positive classification results, the movement vector s is mapped
to the discriminant subspaces specified for the two-class problems that correspond
to every couple of the previously recognized movements classes. In these spaces,
the movement vector is classified in one of the two classes, according to the Eu-
clidean or Mahalanobis distance from discriminant movement prototypes. This
procedure is repeated until the final classification of the test movement video in
one movement class. An example is illustrated in Figure 7 in order to better ex-
plain the procedure followed in the one-versus-all plus two-class classification
problem. In this example, a multi-view video depicting a person performing the
movement ’run’ is mapped to the discriminant subspaces determined by the one-
versus-all problems, which separate every movement from all others. Euclidean,
or Mahalanobis distance from the positive discriminant movement prototype de-
fines if this sequence is recognized to contain the examined movement or not. In
this example, the one-versus-all classification problems related to the movements
walk and run produced positive results, while the rest ones produced negative ones
(not jump, not bend, etc). In this case, the two-class problem that separates ’walk’
from ’run’ is used to recognize the correct movement class. The movement vector
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describing the video is mapped to the discriminant subspace that separates move-
ments walk and run. In this space, the Euclidean or Mahalanobis distance from
class centers is used to conclude that the test movement is a ’run’.

Figure 7: An example of the one-versus-all plus two-class classification procedure.

3.5. Camera Viewpoint Identification Problem
As previously described, the arrangement of the N single-view movement

videos within a test N -view movement video should be consistent to the cam-
era viewpoint arrangement used during the training phase to form N -view posture
vectors. This means that the first video should correspond to the frontal view and
all other ones should follow in a clock-wise manner (e.g. 45o, right side view,
135o, etc). Obviously, such a camera arrangement does not necessary hold for a
newly acquired multi-view movement video. Thus, the camera viewpoint identi-
fication problem should be solved, before the recognition (test) process starts. To
this end, two solutions are proposed. The first one discovers the arrangement of
views corresponding to that used in the training procedure, while the second one
exploits the circular invariance property of the DFT. Both methods achieve a view
independent posture vector representation, which results to view independent hu-
man movement representation and recognition.

3.5.1. Multi-view posture vector rearrangement
As already mentioned, in the training phase, all available views of every N -

view movement video are manually arranged. After this procedure, all training N -
view posture vectors pi depict the movement in a consistent way, i.e., by placing
the frontal view first, followed by all other views in a clockwise manner. This
results to the construction of consistent N -view dynemes.
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In the recognition (test) phase, the arrangement of the posture vectors should
be the same as in the training phase. To achieve this in the general case, all
possible arrangements of the N available views should be considered. Fortu-
nately, in most cases (including the camera setup used in this paper) the spatial
relationship between cameras is a priori known, i.e., camera #1 is followed by
camera #2, camera #2 is followed by camera #3 in a clockwise manner and
so on. Thus, the number of arrangements that should be examined is equal to
the number of the cameras N and are obtained by applying a block circular shift
p′
ij = pij′ , j

′ = N−jmodN of the N -view posture vector elements (single-view
binary posture vectors).

To obtain the correct arrangement of single-view posture vectors p′
ij, i =

1, ..., Ntm , j = 1, ..., N , of an incoming test N -view movement video, all N block
shifted N -view posture vectors p′

i = [p′T
i1 ,p

′T
i2 , ...,p

′T
iN ]

T , i = 1, ..., Ntm are com-
pared with every N -view dyneme obtained in the training phase. This procedure
is applied to all the N -view multi-view posture vectors comprising the test move-
ment video and involves computing the Euclidean distance between every dyneme
vector and each circularly shifted posture vector p′

ij of the incoming movement
video. The shifted version p′

ij that provides the minimum distance indicates the
correct view order and all posture vectors are rearranged with respect to this view
order:

argmin
j

min
ik

∥ pij − vk ∥2, i = 1, ..., Ntm , j = 1, ..., N, , k = 1, ..., K.

(14)
where vk denotes the k-th dyneme.

3.5.2. Fourier view-invariant posture representation
A new, view-invariant posture representation is proposed to solve the camera

viewpoint identification problem. This representation exploits the circular shift
invariance of the magnitude of DFT coefficients:

P (k) = |
Ns−1∑
n=0

p(n)e−i 2πk
Ns

n|, k = 1, ..., Ns − 1. (15)

The view-invariant posture vector representation is obtained by concatenating all
the N single-view posture vectors pj, j = 1, ..., N in a single vector p =
[pT

1 ,p
T
2 , ...,p

T
N ]

T , in the order they are produced by the cameras and computing
the magnitude of its Discrete Fourier transform coefficients P (k). In the case of
a multi-camera setting, only circular shifts by H × W elements (entire single-
view frames) have a physical meaning. It will be proven experimentally in section

19



4 that the transformed posture vector representation is indeed robust to camera
viewpoint circular shifts.

3.6. Movement Classification (test phase)
To classify an unknown N -view video containing Ntm binary masks of a mov-

ing person from each of the N views, the ROI of every body posture ROI is cen-
tered at the person’s center of mass and binary single-view posture videos of frame
size equal to the maximum ROI that encloses the person’s body are created for ev-
ery view. These are rescaled to the size H ×W pixels used in the training phase
(64× 64 in the experiments presented in this paper) and vectorized to produce N
single-view posture vectors. These vectors are concatenated, by placing the pos-
ture vector that corresponds to the first camera in the first position, followed by
the single-view posture vectors that come from all other cameras in a clockwise
manner. The final N -view posture vectors pi, i = 1, ..., Ntm are produced either
by calculating the magnitude of the Discrete Fourier Transform of the N -view
posture vectors using (15) or by solving the camera viewpoint identification prob-
lem using the circular shift procedure described in Subsection 3.5.1. The fuzzy
distances dij, i = 1, ..., Ntm , j = 1, ..., K between the resulting N -view posture
vectors pi and the N -view dynemes vj are calculated using (3) and combined in
(4) in order to map all the N -view posture vectors from the input space to the
dyneme space and produce the membership vectors ui, i = 1, ..., Ntm . Mem-
bership vectors ui are normalized using (5) and combined through (6) to produce
the movement vector s for the multi-view test video, which is subsequently nor-
malized using the mean and standard deviation vectors of the training movement
vectors. Finally, the movement vector s is projected to the discriminant subspace
specified in the training phase for one of the LDA variants described in Subsection
3.4 and is classified to one of the movement classes m, 1 ≤ m ≤ M .

3.7. Continuous movement recognition
As noted in Section 2, a movement recognition technique should not be con-

fined to elementary movement recognition (i.e., over one movement period) but
should allow continuous movement recognition over time. In order to achieve con-
tinuous operation, a sliding window can be utilized. Thus, for movement recog-
nition at time instance t using a sliding window consisting of NW frames, the
video frames fi, i = t, t − 1, ..., t − NW + 1 are used. Since the average length
Ntm of the elementary movement of different classes varies, the sliding window
should contain a sufficient number NW of video frames to enable the method to
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correctly recognize movement classes that their elementary periods consist of dif-
ferent video frame numbers. By performing recognition at every sliding window
position, a continuous recognition operation is achieved over time. The procedure
described above is illustrated in Figure 8.

Figure 8: Continuous movement recognition procedure.

4. Experimental Results

In this Section, the experimental results produced on the i3DPost multi-view
movement video database [43] are presented. Furthermore, the ability of the pro-
posed method to perform continuous movement recognition and its robustness to
synchronization errors that can occur in a multi-camera setup are demonstrated.
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Finally, we compare our method with state of the art methods aiming to view-
invariant movement recognition on the INRIA IXMAS multi-view movement
recognition database [23].

4.1. The i3DPost multi-view database
The i3DPost multi-view movement video database contains 64 high-resolution

1920× 1080 pixel image sequences of eight persons (six males and two females),
each performing eight movements. Every movement is captured from eight views.
The video capture took place in a studio at University of Surrey with blue back-
ground and capture volume dimensions of 4 × 3 × 2 cubic meters. The cameras
were positioned around the capture volume at a height of 2m above the studio floor
and were equally spaced in a ring of 8 m diameter. In these 64 eight-view image
sequences, the persons perform one or more periods of the following movements:
’walk’ (wk), ’run’ (rn), ’jump in place’ (jp), ’jump forward’ (jf), ’bend’ (bd), ’fall’
(fl), ’sit’ (st) and ’wave one hand’ (wo). Binary masks for every single-view image
sequence were extracted by thresholding the blue color in the HSV color space,
i.e., pixels with values H > 200, S > 0.3, V > 0.1 and MAX(R,G,B) = B
were set to zero (denoting background) and all remaining pixels were set to 1
(foreground).

4.2. The IXMAS multi-view database
The INRIA (Institut National de Recherche en Informatique et Automatique)

IXMAS Motion Acquisition Sequences database contains 330 low resolution 291×
390 pixel image sequences of ten persons (five males and five females), each per-
forming eleven movements. Every movement is performed three times from each
person and is captured from five views. The persons freely change position and
orientation during movement execution. The movements performed are: ’check
watch’ (cw), ’cross arm’ (ca), ’scratch head’ (sh), ’sit down’ (sd), ’get up’ (gu),
’turn around’ (tu), ’walk in a circle’ (wk), ’wave hand’ (wh), ’punch’ (ph), ’kick’
(kk), and ’pick up’ (pu). Binary masks of the persons’ body are provided by the
database.

4.3. Cross-validation in i3DPost multi-view database
In an off-line preprocessing procedure, elementary videos containing one sin-

gle movement period, e.g., one walk period, were manually created during both
training and testing. These videos were further preprocessed, as discussed in Sub-
section 3.1, to produce videos containing single-view binary posture masks. In
this preprocessing step, the dimensions required to contain the person’s body in
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all frames were determined in every video and bounding boxes of this size were
extracted, centered at the person’s center of mass and rescaled to H×W = 64×64
pixels for every video frame.

As previously described, the leave-one-person-out cross validation procedure
has been used to identify the optimal number of multi-view dynemes. Thus, in
every fold of this procedure preprocessed videos of seven persons were used for
training and the videos of the eighth person were used for testing. The experi-
ment included eight folds of the cross-validation procedure, one for each person
left out. In the test phase, the order of the single-view movement videos followed
the arrangement of the cameras, i.e., the first video was that from the camera #1,
followed by the videos of the rest of the cameras in a clockwise manner. In other
words, the test videos were fed in a random order, in terms of the relative position
of the views with respect to the person. The plots in Figures 9 and 10 illustrate
the movement recognition rates obtained for every LDA variant described in Sec-
tion 3.4 with respect to the number of eight-view dynemes for the posture vector
representation in the spatio-temporal and the DFT domain, respectively. It can be
seen that the multi-class approach outperforms the one-versus-all plus two-class
classification approach. In the case of the one-versus-all plus two-class approach,
the best recognition rate, 85.88%, was achieved using the DFT posture vector rep-
resentation, 35 eight-view dynemes and the Euclidean distance. In the case of
multi-class LDA, the best recognition rate, 89.41%, was achieved using the DFT
posture vector representation, 25 eight-view dynemes and the Euclidean distance.
The WPLDA approach proved to be the best, as it provides higher classification
rates in most experiments. A 94.37% classification rate was achieved using the
DFT posture vector representation and 60 eight-view dynemes by splitting the
60-dimensional movement vectors to six 10-dimensional vectors and using the
Euclidean distance. To summarize: 1) the DFT posture vector representation
followed by the Euclidean distance provide the best classification rates; 2) the
multi-class approach outperforms the one-versus-all plus two-class approach; 3)
the WPLDA approach outperforms the simple multi-class approach.

The confusion matrix corresponding to the optimal parameters and procedures
(DFT posture vector representation, 60 eight-view dynemes, WPLDA movement
vector, dimensionality reduction to 10 and Euclidean distance) is shown in Table
1. In this Table, a row represents the actual movement class and a column the
movement recognized by the algorithm. As can be seen, movements which con-
tain discriminant postures, e.g., ’walk’, ’run’, ’bend’, ’fall’ and ’wave one hand’,
are well separated and classified with 100% recognition accuracy. Movements
that share a large number of similar postures, i.e. ’jump in place’, ’jump forward’
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and ’sit’ are more difficult to recognize. Movement ’jump in place’ is confused to
’jump forward’ and to ’sit’ in 12% and 8% of the cases respectively. Movement
’sit’ is misclassified as ’jump in place’ in 25% of the cases.

(a) (b)

Figure 9: Movement recognition rate vs the number of dynemes using movement posture vector
rearrangement combined with: a) Euclidean, b) Mahalanobis distance.

(a) (b)

Figure 10: Movement recognition rate vs the number of dynemes for Fourier representation com-
bined with: a) Euclidean, b) Mahalanobis distance.

4.4. Continuous movement recognition
This section illustrates the capability of the proposed method to perform con-

tinuous recognition. A multiple movement video depicting one of the persons
performing ten iterations of every elementary movement was used for this study.
This video was created by concatenating video segments that depict the person
performing elementary movements. The movement recognition algorithm was
trained using as training samples the binary videos of the remaining seven per-
sons. The DFT posture vector representation, 60 eight-view dynemes, movement
vectors broken down to 6 10-dimensional vectors and the Euclidean distance were
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Table 1: Confusion matrix containing classification rates (%) in movement recognition on the
i3DPost database.XXXXXXXXXXXactual

recognized
wk rn jp jf bd st fl wo

wk 100
rn 100
jp 80 12 8
jf 100
bd 100
st 25 75
fl 100

wo 100

used. A sliding window was employed and recognition was performed at every
sliding window position. Since the length Ntm of the elementary movement pe-
riods of different classes varies in the range of 9 to 40, it was decided to use
NW = 21 video frames within the sliding window, so that the window contains a
sufficient number of frames to accommodate lengthier movements. The larger the
window length NW used, the bigger the movement recognition accuracy is, when
the person performs only one movement. However, a large NW requires bigger
computational effort, postpones the first classification decision till NW frames are
available and has bigger problems at the transition between two different move-
ments. Therefore, NW = 21 was experimentally found to be a good trade off.
Figure 11a) illustrates the results of this experiment. In this Figure, the move-
ment label ground truth is illustrated by a continuous line and the recognition
results by a dashed line. It can be seen that no movement was recognized for
the first 20 frames, as the algorithm needs at least 21 frames to perform recog-
nition (NW = 21). Furthermore, it can be seen that correct classification of the
new movement is delayed up to NW frames in the transition between two move-
ment classes. Despite the fact that NW = 21 was chosen, which is significantly
lower than the duration of the elementary bend (Ntm = 40), this movement was
correctly classified, because the body postures that appear in a bend uniquely
sequence characterize this movement. Therefore, a few video frames are suffi-
cient for its recognition. As expected, the only recognition errors occurred during
movement transitions. To eliminate these errors, a majority voting filter over the
recognition results has been used inside a window of length NW = 21 frames.
Figure 11b) illustrates the results achieved after majority voting. As it can be
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seen, the continuous movement recognition results are very satisfactory.

(a) (b)

Figure 11: Continuous movement recognition results: a) output of the algorithm, b) after applying
a majority voting filter.

4.5. Robustness against synchronization errors
It was noted in Section 3 that the cameras used to capture multi-view move-

ment videos should be synchronized. However, in multi-camera setups, synchro-
nization errors are rather frequent, leading to arbitrary time lags between the
frames of different cameras. This section illustrates the robustness of the pro-
posed method to these errors.

To do so, an experiment was performed, where desynchronized videos are
tested in a system that has been trained using synchronized videos. The test video
was desynchronized by shifting the video frames of different cameras in time by a
random shift, with respect to the frames captured by camera #1. Two eight-view
posture frames that correspond to the same time instance can be seen in Figure
12. The top one is synchronized, while the bottom one is desynchronized, with
synchronization errors equal to 0, 2, 7, 4, 5, 4, 6 and 6 frames, respectively (from
left to right).

(a)

(b)

Figure 12: Synchronized (a) and desynchronized (b) multi-view posture frame.

The leave-one-person-out cross-validation procedure, using 60 eight-view dy-
nemes, movement vectors broken down to six 10-dimensional vectors and the Eu-
clidean distance, was applied for different desynchronization levels of the test
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videos. The random frame shift followed a uniform distribution in the range
[0, nD]. The movement recognition accuracy achieved in these desinchronised
videos versus the frame shift range nD is illustrated in Figure 13. As can be seen,
synchronization errors with range up to nD = 2 frames shifts do not influence at
all the performance of the proposed method. Moreover, desynchronization shifts
of up to 7 frames shifts does not influence significantly the performance of the pro-
posed approach. This can be explained by the fact that temporally adjacent body
postures do not differ much. Furthermore, the proposed movement representation
utilizes movement posture primitives and similar postures produce similar mem-
berships on the dynemes. This results to similar movement vectors, which are
finally classified to the correct movement class.

Figure 13: Recognition rate vs synchronization error (in frames).

4.6. Comparison with other methods
In order to compare our method with state of the art methods aiming to view-

independent movement recognition we conducted experiments on the IXMAS
multi-view movement recognition database using the same experimental setup.
The leave-one-person-out cross validation procedure was performed. In every
fold of this procedure preprocessed videos of nine persons were used for train-
ing and the videos of the tenth person were used for testing. The experiment
included ten folds of the cross-validation procedure, one for each person left out.
In the test phase, the test videos were fed in a random order, in terms of the
relative position of the views with respect to the person. Because the camera
setup used in the database does not provide a 360o coverage of the scene, the
DFT posture vector representation is not applicable. In order to obtain view in-
variant posture vector representation, the posture vector rearrangement procedure
described in subsection 3.5.1 was applied, examining all possible single view pos-
ture vector rearrangements. A 83.47% classification rate was achieved using 80
five-view dynemes by splitting the 80-dimensional movement vectors to eight 10-
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dimensional vectors and using the Euclidean distance. The corresponding confu-
sion matrix is shown in Table 2. Table 3 contains comparison results with several
other methods proposed in the literature. As can be seen, the proposed method
achieves state of the art movement classification rates.

Table 2: Confusion matrix containing classification rates (%) in movement recognition on the
IXMAS database.

cw ca sh sd gu tu wk wh ph kk pu
cw 75.7 15.2 9.1
ca 6.1 81.8 12.1
sh 3.1 9.1 84.8
sd 84.9 10.1 3.0
gu 12.1 75.7 3.0 6.1 6.1
tu 93.9 6.1
wk 100
wh 9.1 6.1 9.1 72.7 3.0
ph 15.1 63.7 21.2
kk 100
pu 3.0 9.1 3.0 84.9

Table 3: Comparison results in the IXMAS five-view action recognition database.
Method Accuracy
Method in [44] 81.3%

Method in [45] 81%

Method in [46] 80.6%

Proposed method 83.47%

5. Discussion and Conclusion

In this paper, a novel view-invariant human movement representation and
recognition method that exploits synchronized and uncalibrated multi-view video
was presented. View-invariant representation is achieved either by circular shifts
of the available views or by exploiting the circular shift invariance property of
DFT. Three variants of the LDA projection method were evaluated using these
movement representations. It has experimentally been found that the multi-class
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classification approach outperforms the one-against-all and the two-class classifi-
cation procedure. The use of a discriminant feature representation leads to well
separated movement classes and a simple Nearest Centroid classification algo-
rithm is sufficient to provide correct classification. The use of a low-computation
3D posture representation combined with the movement representation in a low
dimensional discriminant space results to a fast movement recognition method,
which achieves high recognition rates and is not affected by movement speed vari-
ations across persons. The proposed approach can be easily applied for continuous
movement recognition, can tolerate moderate camera synchronization errors, and
performs better than other state of the art methods operating on multi-view video
sets.

Acknowledgment

The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement no 211471 (i3DPost).

References

[1] L. Weilun, H. Jungong, P. With, Flexible Human Behavior Analysis Frame-
work for Video Surveillance Applications, International Journal of Digital
Multimedia Broadcasting 2010 (2010) 9, ISSN 1687-7578.

[2] P. Barr, J. Noble, R. Biddle, Video game values: Human-computer interac-
tion and games, Interacting with Computers 19 (2) (2007) 180–195.

[3] B. Song, E. Tuncel, A. Chowdhury, Towards A Multi-Terminal Video Com-
pression Algorithm By Integrating Distributed Source Coding With Geomet-
rical Constraints, Journal of Multimedia 2 (3) (2007) 9–16.

[4] T. Hfllerer, S. Feiner, D. Hallaway, B. Bell, M. Lanzagorta, D. Brown,
S. Julier, Y. Baillot, L. Rosenblum, User interface management techniques
for collaborative mobile augmented reality, Computers and Graphics 25 (5)
(2001) 799–810.

[5] A. Bobick, Movement, activity and action: the role of knowledge in the
perception of motion, Philosophical Transactions of the Royal Society B:
Biological Sciences 352 (1358) (1997) 1257–1265.

29



[6] A. Bobick, J. Davis, The recognition of human movement using temporal
templates, IEEE Transactions on Pattern Analalysis and Machine Intelli-
gence 23 (3) (2001) 257–267.

[7] R. Green, L. Guan, Quantifying and recognizing human movement patterns
from monocular video images-part I: A new framework for modeling human
motions, IEEE Transactions on Circuits and Systems for Video Technology
14 (2) (2004) 179–190.

[8] H. Dudley, S. Balashek, Automatic recognition of phonetic patterns in
speech, The Journal of the Acoustical Society of America 30 (1958) 721
pages.

[9] P. Turaga, R. Chellappa, V. Subrahmanian, O. Udrea, Machine recognition
of human activities: A survey, IEEE Transactions on Circuits and Systems
for Video Technology 18 (11) (2008) 1473–1488.

[10] X. Ji, H. Liu, Advances in View-Invariant Human Motion Analysis: A Re-
view, IEEE Transactions on Systems, Man and Cybernetics Part–C 40 (1)
(2010) 13–24.

[11] X. Feng, P. Perona, Human action recognition by sequence of movelet code-
words, in: Proceedings of the 1st International Symposioum on 3D Data
Processing Visualization and Transmission, 717–733, 2002.

[12] Q. Wei, W. Hu, X. Zhang, G. Luo, Dominant sets-based action recognition
using image sequence matching, in: Proceedings of IEEE International Con-
ference on Image Processing, vol. 6, 113–136, 2007.

[13] R. Green, L. Guan, Quantifying and recognizing human movement pat-
terns from monocular video images-part II: Applications to biometrics, IEEE
Transactions on Circuits and Systems for Video Technology 14 (2) (2004)
191–198.

[14] L. Wang, D. Suter, Learning and matching of dynamic shape manifolds for
human action recognition, IEEE Transactions on Image Processing 16 (6)
(2007) 1646–1661.

[15] N. Gkalelis, A. Tefas, I. Pitas, Combining fuzzy vector quantization with
linear discriminant analysis for continuous human movement recognition,

30



IEEE Transactions on Circuits and Systems for Video Technology 18 (11)
(2008) 1511–1521.

[16] T. Xiang, S. Gong, Beyond tracking: Modelling activity and understanding
behaviour, International Journal of Computer Vision 67 (1) (2006) 21–51,
ISSN 0920-5691.

[17] J. Niebles, L. Fei-Fei, View-Invariant representation and recognition of ac-
tions, International Journal of Computer Vision 50 (2) (2002) 203–226.

[18] V. Parameswaran, R. Chellappa, View invariants for human action recogni-
tion, in: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, vol. 2, 613–619, 2003.

[19] A. Yilmaz, M. Shah, Actions sketch: a novel action representation, in: Pro-
ceedings of IEEE Conference on Computer Vision and Pattern Recognition,
vol. 1, 984–989, 2005.

[20] D. Weinland, F. Grenoble, E. Boyer, R. Ronfard, A. Inc, Action recognition
from arbitary views using 3D exemplars, in: Proceedings of IEEE Confer-
ence on Computer Vision, 1–7, 2007.

[21] J. Lafferty, A. McCallum, F. Pereira, Conditional random fields: probabilis-
tic models for segmenting and labeling sequence data, in: Proceedings of
IEEE Conference on Machine Learning, 282–289, 2001.

[22] M. Blank, L. Gorelick, E. Shechtman, M. Irani, R. Basri, Actions as space-
time shapes, in: Proceedings of IEEE Conference on Computer Vision,
vol. 2, 1395–1402, 2005.

[23] D. Weinland, R. Ronfard, E. Boyer, Free viewpoint action recognition using
motion history volumes, Computer Vision and Image Understanding 104 (2–
3) (2006) 249–257.

[24] D. Weinland, R. Ronfard, E. Boyer, Automatic discovery of action tax-
onomies from multiple views, in: Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition, vol. 2, 1639–1645, 2006.

[25] M. Ahmad, S. Lee, Human action recognition using shape and CLG-motion
flow from multi-view image sequences, Pattern Recognition 41 (7) (2008)
2237–2252.

31



[26] M. Seki, T. Wada, H. Fujiwara, K. Sumi, Background subtraction based on
the cooccurrence of image variations, in: Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, vol. 2, 65–72, 2003.

[27] C. Stauffer, W. Grimson, Adaptive background mixture models for real-time
tracking, in: Proceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition, vol. 2, 246–252, 1999.

[28] A. Agarwal, B. Triggs, Recovering 3D human pose from monocular images,
IEEE transactions on pattern analysis and machine intelligence (2006) 44–
58ISSN 0162-8828.

[29] M. Lee, R. Nevatia, Human pose tracking in monocular sequence using mul-
tilevel structured models, IEEE transactions on pattern analysis and machine
intelligence (2008) 27–38ISSN 0162-8828.

[30] B. Lei, L. Xu, Real-time outdoor video surveillance with robust foreground
extraction and object tracking via multi-state transition management, Pattern
recognition letters 27 (15) (2006) 1816–1825, ISSN 0167-8655.

[31] J. Xue, N. Zheng, J. Geng, X. Zhong, Tracking multiple visual targets via
particle-based belief propagation, Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on 38 (1) (2008) 196–209, ISSN 1083-4419.

[32] A. Ng, M. Jordan, Y. Weiss, On spectral clustering: Analysis and an algo-
rithm, in: Advances in Neural Information Processing Systems 14: Proceed-
ing of the 2001 Conference, 849–856, 2001.

[33] U. Luxburg, A tutorial on spectral clustering, Statistics and Computing
17 (4) (2007) 395–416, ISSN 0960-3174.

[34] T. Kohonen, The self-organizing map, Proceedings of the IEEE 78 (9) (2002)
1464–1480, ISSN 0018-9219.

[35] J. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms,
New York: Plenum, 1981.

[36] A. Webb, Statistical Pattern Recognition, 2nd ed, Wiley, 2002.

[37] P. Devijver, J. Kittler, Pattern Recognition: A Statistical Approach, Prentice-
Hall, 1982.

32



[38] R. Duda, P. Hart, D. Stork, Pattern Classification, 2nd ed, Wiley-
Interscience, 2000.

[39] M. Kyperountas, A. Tefas, I. Pitas, Weighted piecewise LDA for solving the
small sample size problem in face verification, IEEE Transactions on Neural
Networks 18 (2) (2007) 506–519.

[40] H. Oja, S. Sirkia, J. Eriksson, Scatter matrices and independent component
analysis, Austrian Journal of Statistics 35 (2–3) (2006) 175–189.

[41] J. Yang, A. Frangi, J. Yang, D. Zhang, Z. Jin, KPCA plus LDA: a complete
kernel Fisher discriminant framework for feature extraction and recogni-
tion, IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (2)
(2005) 230–244.

[42] M. Zhu, A. Martinez, Subclass discriminant analyzis, IEEE Transactions on
Pattern Analysis and Machine Intelligence 28 (8) (2006) 1274–1286.

[43] N. Gkalelis, H. Kim, A. Hilton, N. Nikolaidis, I. Pitas, The i3DPost multi-
view and 3D human action/interaction database, in: 6th Conference on Vi-
sual Media Production, 159–168, 2009.

[44] D. Weinland, E. Boyer, R. Ronfard, Action recognition from arbitrary views
using 3d exemplars, in: in Proceedings International Conference Computer
Vision, IEEE, 1–7, 2007.

[45] D. Tran, A. Sorokin, Human activity recognition with metric learning, Com-
puter Vision–ECCV 2008 (2008) 548–561.

[46] F. Lv, R. Nevatia, Single view human action recognition using key pose
matching and viterbi path searching, in: 2007 IEEE Conference on Com-
puter Vision and Pattern Recognition, IEEE, 1–8, 2007.

33


