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In this paper, we employ multiple Single-hidden Layer Feedforward Neural Networks for

multi-view action recognition. We propose an extension of the Extreme Learning Machine
algorithm that is able to exploit multiple action representations and scatter information
in the corresponding ELM spaces for the calculation of the networks’ parameters and

the determination of optimized network combination weights. The proposed algorithm
is evaluated by using two state-of-the-art action video representation approaches on five
publicly available action recognition databases designed for different application sce-
narios. Experimental comparison of the proposed approach with three commonly used

video representation combination approaches and relating classification schemes illus-
trates that ELM networks employing a supervised view combination scheme generally
outperform those exploiting unsupervised combination approaches, as well as that the
exploitation of scatter information in ELM-based neural network training enhances the

network’s performance.

Keywords: Extreme Learning Machine; Multi-view Learning; Single-hidden Layer Feed-
forward networks; Human Action Recognition.

1. Introduction

Human action recognition is intensively studied to date due to its importance in

many real-life applications, like movie (post-)production, intelligent visual surveil-

lance, human-computer interaction, automatic assistance in healthcare of the el-

derly for independent living and video games, to name a few. Early human action

recognition methods investigated a restricted recognition problem. According to

this problem, action recognition refers to the recognition of simple motion pat-

terns, like a walking step, performed by one person in a scene containing a simple

background1,4. Based on this scenario, most such methods describe actions as series

of successive human body poses, represented by human body silhouettes evaluated

by applying video frame segmentation techniques or background subtraction8,19,22.

However, such an approach is impractical in most real-life applications, where ac-

tions are performed in scenes having a complex background, which may contain

1
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multiple persons as well. In addition, actions may be observed by one or multiple,

possibly moving, camera(s), capturing the action from arbitrary viewing angles. The

above mentioned problem is usually referred to as ‘action recognition in the wild’

and is the one that is currently addressed by most action recognition methods.

1.1. Action recognition in the wild

The state-of-the-art approach in this, unrestricted, problem describes actions by em-

ploying the Bag-of-Features (BoF) model3,2. According to this model, sets of shape

and/or motion descriptors are evaluated in spatiotemporal locations of interest of a

video and multiple (one for each descriptor type) video representations are obtained

by applying (hard or soft) vector quantization using sets of descriptor prototypes,

referred to as codebooks. The descriptors that provide the current state-of-the-art

performance in most action recognition databases are: the Histogram of Oriented

Gradients (HOG), the Histogram of Optical Flow (HOF) and the Motion Boundary

Histogram (MBH) 5. These descriptors are evaluated on the trajectories of densely

sampled video frame interest points, which are tracked for a number of consecutive

video frames. The normalized location of the tracked interest points is also employed

in order to form another descriptor type, referred to as Trajectory (Traj). While it

has been shown that video representations exploiting dense sampling provide better

action classification rates5,6, their calculation is computationally expensive. When

fast action recognition is important, visual information appearing in Space-Time

Interest Points (STIPs) can be exploited. STIPs are video frame pixel locations

that correspond to abrupt image intensity changes39,40, hence containing motion

information that is useful for action description.

Since different descriptor types express different properties of interest for ac-

tions, it is not surprising the fact that a combined action representation exploiting

all the above mentioned (single-descriptor based) video representations results to in-

creased performance5,6. Such combined action representations are usually obtained

by employing unsupervised combination schemes, like the use of concatenated rep-

resentations (either on the descriptor, or on the video representation level), or by

combining the outcomes of classifiers trained on different representation types7, e.g.,

by using the mean classifier outcome in the case of SLFN networks10. However, the

adoption of such combination schemes may decrease the generalization ability of the

adopted classification scheme, since all the available action representations equally

contribute to the classification result. Thus, supervised combination schemes are re-

quired in order to properly combine the information provided by different descriptor

types.

1.2. Multi-view action recognition

While the above-described approach has been shown to provide state-of-the-art

performance in many realistic action databases, the fact that actions are observed

by only one camera (viewpoint) complicates the recognition problem. This is due
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to the fact that the visual appearance of actions is quite different, when observed

from different view angles32,33,34. Therefore, single-view methods, i.e., methods em-

ploying one camera, usually perform well when the same view angle is used during

both training and testing. If this assumption is not met, the performance of single-

view action recognition methods decreases. Multi-view action recognition methods,

i.e., methods exploiting visual information captured by multiple viewpoints, have

been proposed in order to perform view-independent human action recognition.

Two approaches have been investigated to this end. The first one exploits the en-

riched visual information obtained by multi-camera setup usage in order to deter-

mine view-independent action representations, like visual hulls35, motion history

volumes36, multi-view postures9, or skeletal and super-quadratic body models37.

The use of such body representations assumes that the human body is visible from

all the cameras forming the camera setup in both the training and test phases. In

addition, most of these methods assume that both training and test camera setups

are formed by the same number of (calibrated) cameras. In a different case, the

obtained human body representation will be incomplete and, thus, action recogni-

tion performance will probably decrease. This fact renders such multi-view methods

applicable only in some, rather restrictive, action recognition scenarios38.

In order to overcome these restrictions, multi-view methods that are based on

single-view ensembles have been proposed10,21,19,22. In these methods, multiple rec-

ognizers (experts) are trained in order to perform single-view view-independent

human action recognition. In the test phase, single-view view-independent action

recognition is performed by all the experts observing the performed action inde-

pendently and their outcomes are properly combined in order to provide the final

action classification result. While the performance of each single-view recognizer

is usually low, action recognition outcomes combination is able to provide state-of-

the-art performance in many multi-view action databases10,21. Thus, the creation of

supervised combination schemes is important in order to properly combine the in-

formation provided by different single-view recognizers (experts). Such combination

schemes are also referred to as multi-view learning techniques.

1.3. Extreme Learning Machine

Extreme Learning Machine (ELM)11 is an algorithm for fast Single-hidden Layer

Feedforward Neural (SLFN) networks training that belongs to the family of ran-

domized neural networks12,14,13,16,15. Conventional SLFN training algorithms re-

quire adjustment of the network weights and the bias values, using a parameter

optimization approach, like gradient descent. However, gradient descent learning

techniques are, generally, slow and may lead to local minima. In ELM, the input

weights and the hidden layer bias values are randomly chosen, while the network

output weights are analytically calculated. By using a sufficiently large number of

hidden layer neurons, the ELM classification scheme can be thought of as being a

non-linear mapping of the training data on a high-dimensional feature space, called
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ELM space hereafter, followed by linear data projection and classification. ELM not

only tends to reach a small training error, but also a small norm of output weights,

indicating good generalization performance17. ELM has been successfully applied

to many classification problems, including human action recognition18,19,21,22,23.

1.4. Contributions

In this paper we employ the ELM algorithm in order to perform human action recog-

nition from videos. We investigate two action recognition scenarios. The first one

refers to single-view recognition of human actions in unconstrained environments

based on multiple video representations. For this case, we adopt the state-of-the-art

BoF-based action video representation described above6, in order to describe videos

depicting actions, called action videos hereafter, by multiple vectors (one for each

descriptor type), each describing different properties of interest for actions. The

second action recognition scenario refers to the recognition of actions when they are

observed by multiple viewpoints. Since in these cases multiple video streams need

to be simultaneously processed, fast single-view action recognition is required. In

order to avoid the increased computational cost of video representations based on

dense sampling, we employ STIP-based video representation for multi-view action

recognition. In order to properly combine the information provided by different de-

scriptor types and single-view recognizers, we exploit a variant of ELM that is able

to incorporate multiple video representations in its optimization process41. In order

to enhance action classification performance, we extend the MVRELM algorithm41

so that to incorporate the (class) variance of the training data in each of the ELM

spaces. An iterative optimization scheme is proposed, where the contribution of each

video representation is appropriately weighted. We evaluate the performance of the

proposed algorithm on three single-view and two multi-view databases, where we

compare it with that of relating classification schemes and three commonly adopted

video representation combination schemes.

The proposed approach is closely related to Multiple Kernel Learning

(MKL)28,29,30. MKL methods aim at the determination of an “improved” feature

space for nonlinear data mapping. This is usually approached by employing a linear

combination of a set of kernel functions followed by the optimization of an objective

function by employing the training data for the determination of the kernel com-

bination weights. A recent review on MKL methods can be found in31. Our work

differs from MKL in that in the proposed approach the feature spaces employed

for nonlinear data mapping are determined by employing randomly chosen network

weights. After obtaining the data representations in the (usually high-dimensional)

ELM spaces, we aim at optimally weighting the contribution of each data represen-

tation in the outputs of the combined network outputs.

This paper extends our previous work41 in that:

• We extend MVRELM algorithm so that to incorporate the (class) variance

of the training data in each of the ELM spaces. This leads to enhanced
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action classification performance.

• We investigate two action recognition scenarios, i.e., single-view action

recognition based on multiple video representations and multi-view action

recognition where each view corresponds to a specific viewpoint.

• We compare the performance of the proposed approach with that of relating

classification schemes and three commonly adopted video representation

combination schemes.

The remainder of the paper is structured as follows. In Section 2, we briefly

describe the ELM algorithm. Multi-view Regularized ELM (MVRELM) algorithm

is described in Section 3. The proposed Multi-view ELM algorithm exploiting the

(class) variance of the data in each of the ELM spaces is described in Section 4.

Experimental results evaluating its performance are illustrated in Section 5. Finally,

conclusions are drawn in Section 6. In Table 1, we summarize the notation that will

be used in the paper.

Table 1. Notation.

Symbol Explanation

xi BoF-based representation of video i.
ci Action class label of video i.
C Number of action classes.

D Dimensionality of xi.
H Number of network hidden layer neurons.
Win Network hidden layer weights.
b Network hidden layer bias values.

Wout Network output weights.
Φ(·) Hidden layer activation function.
ϕi Network hidden layer output for xi.

vj j-th column of Win.
uk k-th row of Wout.
oi Network output for xi.
Φ Hidden layer output matrix.

T Network target matrix.
Sw Within-class scatter matrix.
ST Between-class scatter matrix.
WV

in Network hidden layer weights for view v.

Wv
out Network output weights for view v.

γ View combination weight vector.
Su w Within-class scatter matrix for view v.
Su T Between-class scatter matrix for view v.

c, λ Regularization parameters.

2. Extreme Learning Machine

ELM has been proposed for single-view classification11. Let xi and ci, i = 1, ..., N be

a set of labeled action vectors and the corresponding action class labels, respectively.

We would like to employ them in order to train a SLFN network. For a classification
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problem involving the D-dimensional action vectors xi, each belonging to one of

the C action classes, the network should contain D input, H hidden and C output

neurons. The number of the network hidden layer neurons is, typically, chosen to be

higher than the number of action classes, i.e., H ≫ C. The network target vectors

ti = [ti1, ..., tiC ]
T , each corresponding to one labeled action vector xi, are set to

tij = 1 for vectors belonging to action class j, i.e., when ci = j, and to tij = −1

otherwise.

In ELM, the network input weights Win ∈ RD×H and the hidden layer bias

values b ∈ RH are randomly chosen, while the output weights Wout ∈ RH×C are

analytically calculated. Let vj denote the j-th column of Win, uk the k-th column

of Wout and ukj be the j-th element of uk. For a given hidden layer activation

function Φ(·) and by using a linear activation function for the output neurons, the

output oi = [oi1, . . . , oiC ]
T of the ELM network corresponding to training action

vector xi is given by:

oik =
H∑
j=1

ukj Φ(vj , bj ,xi), k = 1, ..., C. (1)

Many activation functions Φ(·) can be employed for the calculation of the hidden

layer output, such as sigmoid, sine, Gaussian, hard-limiting and Radial Basis (RBF)

functions. The most popular choices are the sigmoid and the RBF functions, i.e.:

Φsigmoid(vj , bj ,xi) =
1

1 + exp
(
−(vT

j xi + bj)
) , (2)

ΦRBF (vj , b,xi) = exp

(
−∥xi − vj∥22

2b2

)
, (3)

leading to MLP and RBF networks, respectively. The RBF-χ2 activation function

can also be employed:

Φχ2(vj , b,xi) = exp

(
− 1

2b

D∑
d=1

(xid − vjd)
2

xid + vjd

)
, (4)

since it has been found to outperform both the above two alternative choices for

BoF-based data representations5,6,42.

By storing the hidden layer neuron outputs in a matrix Φ:

Φ =

 Φ(v1, b1,x1) · · · Φ(v1, b1,xN )

· · ·
. . . · · ·

Φ(vH , bH ,x1) · · · Φ(vH , bH ,xN )

 , (5)

equation (1) can be written in a matrix form as O = WT
outΦ. Finally, by assuming

that the predicted network outputs O are equal to the desired ones, i.e., oi = ti, i =

1, ..., N , Wout can be analytically calculated by solving for:

WT
outΦ = T, (6)
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where T = [t1, . . . , tN ] is a matrix containing the network target vectors. Using (6),

the network output weights minimizing ∥WT
outΦ−T∥F are given by:

Wout = Φ† TT , (7)

where ∥X∥F is the Frobenius norm of X and Φ† =
(
ΦΦT

)−1
Φ is the generalized

pseudo-inverse of ΦT . By observing (8), it can be seen that this equation can be

used only in the cases where the matrix B = ΦΦT is invertible, i.e., when N > D.

A regularized version of the ELM algorithm addressing this issue has been proposed

in24, where the network output weights are obtained, according to a regularization

paramter c > 0, by:

Wout =

(
ΦΦT +

1

c
I

)−1

ΦTT . (8)

By exploiting the fact that the second processing step of ELM training corre-

sponds to a linear projection of the (high-dimensional) data to a low-dimensional

feature space determined by the network target vectors, the ELM algorithm has

been extended in order to exploit the (class) variance of the data in the ELM

space21,42. In this case the network output weights are obtained by solving for:

Minimize: J =
1

2
∥S 1

2Wout∥2F +
c

2

N∑
i=1

∥ξi∥22 (9)

Subject to: WT
outϕi − ti = ξi, i = 1, ..., N. (10)

and are given by:

Wout =

(
ΦΦT +

1

c
S

)−1

ΦTT , (11)

where S can be either the within-class scatter matrix Sw given by:

Sw =
C∑

j=1

N∑
i=1

βij

Nj
(ϕi − µj)(ϕi − µj)

T . (12)

or the total scatter matrix of the data in the ELM space ST given by:

ST =
N∑
i=1

(ϕi − µ)(ϕi − µ)T . (13)

In (12) and (13), βij is an index denoting if action vector xi belongs the to action

class j, i.e., βij = 1, if ci = j and βij = 0 otherwise and Nj =
∑N

i=1 βij is the

number of training action vectors belonging to action class j. µj ∈ RH is the mean

vector of class j and µ ∈ RH is the mean vector of the entire training set in RH ,

i.e., µj =
1
Nj

∑N
i=1 βijϕi and µ = 1

N

∑N
i=1 ϕi.

The adoption of the optimization scheme in (9) leads to the calculation of net-

work output weights providing a compromise between the training error of the net-

work and the within-class or total scatter of the network outputs for the training

data.
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After calculating the network output weightsWout, a test action vector xt can be

introduced to the trained network and be classified to the action class corresponding

to the maximal network output, i.e.:

ct = arg max otj , j = 1, ..., C. (14)

3. Multi-view Regularized Extreme Learning Machine

The above described ELM algorithm can be employed for single-view (i.e., single-

representation) action classification. In this section, we describe the MVRELM al-

gorithm that can be used for multi-view action classification41, i.e., in the cases

where each action is represented by multiple action vectors xv
i , v = 1, . . . , V .

Let us assume that the N training action videos are represented by the corre-

sponding action vectors xv
i ∈ RDv , i = 1, . . . , l, . . . , N, v = 1, . . . , V . We would like

to employ them, in order to train V SLFN networks, each operating on one view.

To this end we map the action vectors of each view v to one ELM space RHv , by

using randomly chosen input weights Wv
in ∈ RDv×Hv and input layer bias values

bv ∈ RHv . Hv is the dimensionality of the ELM space related to view v.

The networks output weights Wv
out ∈ RHv×C and the view combination weights

γ ∈ RV are determined by solving the following optimization problem:

Minimize: J =
1

2

V∑
v=1

∥Wv
out∥2F +

c

2

N∑
i=1

∥ξi∥22 (15)

Subject to:

(
V∑

v=1

γvW
v T
outϕ

v
i

)
− ti = ξi, i = 1, ..., N, (16)

∥γ∥22 = 1, (17)

where ti ∈ RC , ϕv
i ∈ RHv are target vector of the i-th action video and the repre-

sentation of xv
i in the corresponding ELM space, respectively. ξi ∈ RC is the error

vector related to the i-th action video and c is a regularization parameter expressing

the importance of the training error in the optimization process.

By setting the representations of xv
i in the corresponding ELM space in a matrix

Φv = [ϕv
1, . . . ,ϕ

v
N ], the network responses corresponding to the entire training set

are given by:

O =
V∑

v=1

γvW
v T
outΦ

v. (18)

By substituting (16) in (15) and taking the equivalent dual problem, we obtain:

JD =
1

2

V∑
v=1

∥Wv
out∥2F +

c

2

N∑
i=1

∥

(
V∑

v=1

γvW
v T
outϕ

v
i

)
− ti∥22 +

λ

2
∥γ∥22

=
1

2

V∑
v=1

∥Wv
out∥2F +

c

2
∥

(
V∑

v=1

γvW
v T
outΦ

v

)
−T∥2F +

λ

2
∥γ∥22
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=
1

2

V∑
v=1

∥Wv
out∥2F +

c

2
γTPγ − crTγ +

c

2
tr
(
TTT

)
+

λ

2
γTγ, (19)

where P ∈ RV×V is a matrix having its elements equal to [P]kl =

tr
(
Wk T

outΦ
kΦl TWl

out

)
and r ∈ RV is a vector having its elements equal to

rv = tr
(
TTWv T

outΦ
v
)
. By solving for

ϑJD(γ)
ϑγ = 0, γ is given by:

γ =

(
P+

λ

c
I

)−1

r. (20)

By substituting (16) in (15) and taking the equivalent dual problem, we can also

obtain:

JD =
1

2

V∑
v=1

∥Wv
out∥2F +

c

2

N∑
i=1

∥

(
V∑

v=1

γvW
v T
outϕ

v
i

)
− ti∥22 +

λ

2
∥γ∥22

=
1

2

V∑
v=1

∥Wv
out∥2F +

c

2
∥

(
V∑

v=1

γvW
v T
outΦ

v

)
−T∥2F +

λ

2
∥γ∥22

=
1

2

V∑
v=1

tr
(
Wv T

outW
v
out

)
+

c

2
tr

(
V∑

v=1

V∑
l=1

γvγlW
v T
outΦ

vΦl TWl
out

)

− c

V∑
v=1

tr
(
γvW

v T
outΦ

vTT
)
+

c

2
tr
(
TTT

)
+

λ

2
γTγ.

By solving for
ϑJD(Wv

out)
ϑWv

out
= 0, Wv

out is given by:

Wv
out =

(
2

cγv
I+ γvΦ

vΦv T

)−1

Φv(2T−O)T , (21)

As can be observed in (20), (21), γ is a function of Wv
out, v = 1, . . . , V and

Wv
out is a function of γ. Thus, a direct optimization of JD with respect to both

{γv,Wv
out}Vv=1 is intractable. In order to determine both Wv

out, v = 1, . . . , V and

γ, we employ an iterative optimization scheme formed by two optimization steps41.

In the following, the index t is used in order to denote the iteration of the iterative

optimization scheme.

Let us denote by Wv
out,t, γt the network output and combination weights deter-

mined for the iteration t, respectively. Wv
out,1 are initialized by using (8), while the

values γ1,v = 1/V is used for all the action video representations v = 1, . . . , V . By

using γt, the network output weights Wv
out,t+1 are updated by using (21). After the

calculation of Wv
out,t+1, γt+1 is obtained by using (20). The above described process

is terminated when (JD(t)−JD(t+1))/JD(t) < ϵ, where ϵ is a small positive value

equal to ϵ = 10−10 in our experiments. Since each optimization step corresponds

to a convex optimization problem, the above described process is guaranteed to

converge in a local minimum of J .
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After the determination of the set {γv,Wv
out}Vv=1, the network response for a

given set of action vectors xv
l ∈ RD is given by:

ol =
V∑

v=1

γvW
v T
outϕ

v
l . (22)

4. Exploiting the (class) variance in MVRELM

In this Section, we describe the proposed algorithm for Multi-view SLFN network

training. By using the notations introduced in Section 3, the networks output

weights Wv
out ∈ RHv×C and the view combination weights γ ∈ RV can be de-

termined by solving the following optimization problem:

Minimize: J =
1

2

V∑
v=1

∥S
1
2
v W

v
out∥2F +

c

2

N∑
i=1

∥ξi∥22 (23)

Subject to:

(
V∑

v=1

γvW
v T
outϕ

v
i

)
− ti = ξi, i = 1, ..., N, (24)

∥γ∥22 = 1, (25)

where ti ∈ RC , ϕv
i ∈ RHv are target vector of the i-th action video and the repre-

sentation of xv
i in the corresponding ELM space, respectively. ξi ∈ RC is the error

vector related to the i-th action video and c is a regularization parameter expressing

the importance of the training error in the optimization process.

In (23), Sv ∈ RHv×Hv is a matrix describing the (class) variance of the data in

RHv . That is, it can be either the within-class scatter matrix evaluated on ϕv
i , i.e.,:

Sv,w =

C∑
j=1

N∑
i=1

βij

Nj
(ϕv

i − µv
j )(ϕ

v
i − µv

j )
T . (26)

or the total scatter matrix evaluated on ϕv
i , i.e.,:

Sv,T =
N∑
i=1

(ϕv
i − µv)(ϕv

i − µv)T . (27)

In (26) and (27), µv
j is the mean vector of class j and µv is the mean vector of the

entire training set in RHv , i.e., µv
j = 1

Nj

∑N
i=1 βijϕ

v
i and µv = 1

N

∑N
i=1 ϕ

v
i .

By substituting (24) in (23) and taking the equivalent dual problem, we obtain:

JD =
1

2

V∑
v=1

∥S
1
2
v W

v
out∥2F +

c

2

N∑
i=1

∥

(
V∑

v=1

γvW
v T
outϕ

v
i

)
− ti∥22 +

λ

2
∥γ∥22

=
1

2

V∑
v=1

∥S
1
2
v W

v
out∥2F +

c

2
∥

(
V∑

v=1

γvW
v T
outΦ

v

)
−T∥2F +

λ

2
∥γ∥22

=
1

2

V∑
v=1

∥S
1
2
v W

v
out∥2F +

c

2
γTPγ − crTγ +

c

2
tr
(
TTT

)
+

λ

2
γTγ, (28)
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where P ∈ RV×V is a matrix having its elements equal to [P]kl =

tr
(
Wk T

outΦ
kΦl TWl

out

)
and r ∈ RV is a vector having its elements equal to

rv = tr
(
TTWv T

outΦ
v
)
. By solving for

ϑJD(γ)
ϑγ = 0, γ is given by:

γ =

(
P+

λ

c
I

)−1

r. (29)

By substituting (24) in (23) and taking the equivalent dual problem, we can also

obtain:

JD =
1

2

V∑
v=1

∥S
1
2
v W

v
out∥2F +

c

2

N∑
i=1

∥

(
V∑

v=1

γvW
v T
outϕ

v
i

)
− ti∥22 +

λ

2
∥γ∥22

=
1

2

V∑
v=1

∥S
1
2
v W

v
out∥2F +

c

2
∥

(
V∑

v=1

γvW
v T
outΦ

v

)
−T∥2F +

λ

2
∥γ∥22

=
1

2

V∑
v=1

tr
(
Wv T

outSvW
v
out

)
+

c

2
tr

(
V∑

v=1

V∑
l=1

γvγlW
v T
outΦ

vΦl TWl
out

)

− c
V∑

v=1

tr
(
γvW

v T
outΦ

vTT
)
+

c

2
tr
(
TTT

)
+

λ

2
γTγ.

By solving for
ϑJD(Wv

out)
ϑWv

out
= 0, Wv

out is given by:

Wv
out =

(
2

cγv
Sv + γvΦ

vΦv T

)−1

Φv(2T−O)T , (30)

Similar to the MVRELM case, γ is a function of Wv
out, v = 1, . . . , V and

Wv
out is a function of γ. Thus, a direct optimization of JD with respect to both

{γv,Wv
out}Vv=1 is intractable. In order to determine both Wv

out, v = 1, . . . , V and

γ, we follow an iterative optimization process formed by two optimization steps. In

the following, the index t is used in order to denote the iteration of the iterative

optimization scheme.

Let us denote by Wv
out,t, γt the network output and combination weights deter-

mined for the iteration t, respectively. Wv
out,1 are initialized by using (11), while the

values γ1,v = 1/V is used for all the action video representations v = 1, . . . , V . By

using γt, the network output weights Wv
out,t+1 are updated by using (30). After the

calculation of Wv
out,t+1, γt+1 is obtained by using (29). The above described process

is terminated when (JD(t)−JD(t+1))/JD(t) < ϵ, where ϵ is a small positive value

equal to ϵ = 10−10 in our experiments. Since each optimization step corresponds

to a convex optimization problem, the above described process is guaranteed to

converge in a local minimum of J .

After the determination of the set {γv,Wv
out}Vv=1, the network response for a

given set of action vectors xl ∈ RD is given by:

ol =

V∑
v=1

γvW
v T
outϕ

v
l . (31)
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5. Experiments

In this section, we present experiments conducted in order to evaluate the perfor-

mance of the proposed algorithms. We test the proposed approach in two action

recognition scenarios, i.e., single-view action recognition based on multiple video

representations, view-independent action recognition based on multiple view repre-

sentations. For the first case we have employed three publicly available databases,

namely the Hollywood2, the Olympic Sports and the Hollywood 3D databases. For

the latter ones, we have employed a new multi-view database created for the needs

of the FP7 R&D European Project IMPARTa and a publicly available multi-view

database, namely the i3DPost database. In the following subsections, we describe

the databases and evaluation measures used in our experiments. Experimental re-

sults are provided in subsection 5.6.

We evaluate two commonly used unsupervised video representation combina-

tion schemes, i.e., the concatenation of all the available video representations be-

fore training a SLFN network and the mean output of V SLFN networks, each

trained by using one video representation. We also evaluate another unsupervised

video representation combination scheme, i.e. ELM network training by using the

(element-wise) product of the hidden-layer outputs obtained for all the V action

representations. The latter choice has been inspired by the element-wise kernel ma-

trix multiplication combination scheme20. Specifically, for RBF-based hidden layer

output calculation approaches, the element-wise multiplication combination scheme

has the physical meaning of calculating the mean (Euclidean or χ2) distance between

the training data and the hidden layer weight vectors and subsequently applying

the exponential operator for the calculation of the (combined) hidden layer output

that will be used for the calculation of the network output weights.

We compare the performance of these combination schemes for the cases of Reg-

ularized ELM (RELM)24 (eq. (8)), Minimum Class Variance ELM (MCVELM)21

(eq. (11) using (12)) and Minimum Variance ELM (MVELM)42 (eq. (11) using (13))

with that of MVRELM (eq. (21) and (20)) and the proposed MVRELM variant (eq.

(30) and (29) using (26) or (27)). On each database, we perform ten experiments,

and report the mean performance of each algorithm. For fair comparison, on each

experiment we first initialize the networks hidden layer parameters and use them

in order to map the training data in the corresponding ELM spaces. Subsequently,

we calculate the remaining networks’ parameters by employing the equations cor-

responding to each of the competing classification schemes.

Regarding the parameters of the competing algorithms used in our experiments,

the optimal value of parameter c used in all the ELM variants has been determined

by linear search using values c = 10q, q = −3, . . . , 3. The optimal value of the pa-

rameter λ used by both the MVRELM variants has also be determined by applying

linear search, using values λ = 10l, l = −3, . . . , 3.

ahttp://impart.upf.edu/



October 13, 2015 17:48 WSPC/INSTRUCTION FILE ws-ijait

Human Action Recognition based on Multi-view Regularized Extreme Learning Machine 13

5.1. The Hollywood2 database

The Hollywood2 database25 consists of 1707 videos depicting 12 actions. The videos

have been collected from 69 different Hollywood movies. The actions appearing in

the database are: answering the phone, driving car, eating, ghting, getting out of

car, hand shaking, hugging, kissing, running, sitting down, sitting up and standing

up. Example video frames of the database are illustrated in Figure 1. We used

the standard training-test split provided by the database (823 videos are used for

training and performance is measured in the remaining 884 videos). Training and

test videos come from different movies. The performance is evaluated by computing

the average precision (AP) for each action class and reporting the mean AP over all

classes (mAP)25. This is due to the fact that some sequences of the database depict

multiple actions.

Fig. 1. Video frames of the Hollywood2 database depicting instances of all the twelve actions.

5.2. The Olympic Sports database

The Olympic Sports database26 consists of 783 videos depicting athletes practicing

16 sports, which have been collected from YouTube and annotated using Ama-

zon Mechanical Turk. The actions appearing in the database are: high-jump, long-

jump, triple-jump, pole-vault, basketball lay-up, bowling, tennis-serve, platform,

discus, hammer, javelin, shot-put, springboard, snatch, clean-jerk and vault. Ex-

ample video frames of the database are illustrated in Figure 2. The database has

rich scene context information, which is helpful for recognizing sport actions. We

used the standard training-test split provided by the database (649 videos are used

for training and performance is measured in the remaining 134 videos). The per-

formance is evaluated by computing the mean Average Precision (mAP) over all

classes26. In addition, since each video depicts only one action, we also measured

the performance of each algorithm by computing the classification rate (CR).
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Fig. 2. Video frames of the Olympic Sports database depicting instances of all the sixteen actions.

5.3. The Hollywood 3D database

The Hollywood 3D database27 consists of 951 video pairs (left and right channel)

depicting 13 actions collected from Hollywood movies. The actions appearing in the

database are: dance, drive, eat, hug, kick, kiss, punch, run, shoot, sit down, stand up,

swim and use phone. Another class referred to as ‘no action’ is also included in the

database. Example video frames of this database are illustrated in Figure 3. We used

the standard (balanced) training-test split provided by the database (643 videos

are used for training and performance is measured in the remaining 308 videos).

Training and test videos come from different movies. The performance is evaluated

by computing both the mean AP over all classes (mAP) and the classification rate

(CR) measures27.

5.4. The i3DPost database

The i3DPost multi-view action database43 consists of 512 high-resolution (1080 ×
1920 pixel) videos depicting eight persons performing eight actions. The database

camera setup consists of eight cameras placed in the perimeter of a ring at a height

of 2 meters above the studio floor. The actions appearing in the database are: walk,

run, jump in place, jump forward, bend, fall down, sit on a chair and wave one

hand. The Leave-One-Person-Out cross-validation procedure is used by most action

recognition methods evaluating their performance on this data set. That is, the

algorithms are trained by using the action videos of seven persons and tested on the

action videos of the eighth one. Eight training-test rounds (folds) are performed,
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Fig. 3. Video frames of the Hollywood 3D database depicting instances of twelve actions.

one for each test person, in order to complete an experiment. The mean action

classification rate over all folds is used in order to evaluate the performance of

each method. Example video frames depicting a person walking as viewed from all

NC = 8 available view angles are illustrated in Figure 4.

Fig. 4. Video frames of the i3Dpost eight-view database depicting a person walking.

5.5. The IMPART database

The IMPART multi-view action database consists of 504 high-resolution (1080 ×
1920 pixel) videos depicting three persons performing twelve actions and interac-

tions. The database camera setup consists of fourteen cameras placed in the perime-

ter of a ring at a height of 2 meters above the studio floor. The actions appearing

in the database are: bend, fall, hand waving, jump forward, jump in place, sit, run

and walk. Sequences depicting successive actions, namely run-jump-walk and walk-

sit, are also provided. The persons also perform two interactions, namely pull and
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hand shaking. Similar to the i3DPost database, we apply the Leave-One-Person-

Out cross-validation procedure. That is, the algorithms are trained by using the

action videos of two persons and tested on the action videos of the third one. Three

training-test rounds (folds) are performed, one for each test person, in order to

complete an experiment. The mean action classification rate over all folds is used

in order to evaluate the performance of each method

5.6. Experimental Results

In our first set of experiments we applied the competing algorithms on the single-

view action recognition scenario. We employed the state-of-the-art action video

representation6, where each video is represented by five 4000-dimensional BoF-

based vectors, each evaluated by employing a different descriptor type, i.e., HOG,

HOF, MBHx, MBHy and Traj. We employed the RBF-χ2 activation function (4)

in order to calculate the network hidden layer outputs. The parameter b used in

the RBF-χ2 activation function (4) has been set equal to the mean value of the

χ2 distances between the training action vectors and the network input weights,

which is the natural scale factor for the χ2 distances between xi and vj . On each

dataset, we applied ten random initializations for each algorithm and we measure

its performance by calculating the mean performance over all experiments and the

corresponding standard deviation. Unless otherwise stated, the number of network

hidden neurons has been set equal to H = 1000, a value that has been shown to

provide satisfactory performance in many classification problems24,21.

Tables 2 and 3 illustrate the performance of the competing algorithms on the

Hollywood2, the Olympic Sports and the Hollywood 3D databases. We denote by

‘Conc. Input’ the classification scheme employing the concatenation of all the avail-

able video representations before training a SLFN network, by ‘Mul. ELM’ the clas-

sification scheme employing the (element-wise) multiplication of the hidden layer

outputs corresponding to all the V data representations for training and ‘Mean

Out’ the classification scheme employing the mean output of V SLFN networks,

each trained by using one video representation. As can be seen in these Tables, the

adoption of supervised combination schemes generally leads to better classification

performance. Overall, the MVRELM algorithm exploiting the within-class scatter

matrix Sw (eq. (26)) provides the best performance in two, out of three, databases.

In our second experiment we applied the competing algorithms on the multi-view

(multi-camera) action recognition scenario. We performed view-independent action

recognition on the IMPART database by using the action video representation6,

where each video is represented by five 4000-dimensional BoF-based vectors, each

evaluated by employing a different descriptor type, i.e., HOG, HOF, MBHx, MBHy

and Traj. RBF activation function (4) in order to calculate the network hidden layer

outputs. The parameter b used in the RBF activation function (3) has been set equal

to the mean Euclidean distance between the training action vectors and the network
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Table 2. Action Recognition Performance (mAP) on the Hollywood2,
Olympic Sports and Hollywood 3D databases.

Method Hollywood2 Olympic Sports Hollywood 3D

Conc. Input 52.38(±0.01) % 67.11(±0.01) % 25.27(±0.04) %
Mul. ELM 55.05(±0.27) % 77.78(±0.22) % 28(±0.19) %
Mean Out 57.57(±0.07) % 81.73(±0.1) % 29.7(±0.12) %

Conc. Input (Sw) 54.71(±0.11) % 79.58(±0.15) % 24.39(±0.03) %
Mul. ELM (Sw) 55.08(±0.16) % 83.24(±0.19) % 28.75(±0.12) %
Mean Out (Sw) 57.58(±0.11) % 86.4(±0.13) % 29.85(±0.1) %

Conc. Input (ST ) 54.04(±0.01) % 79.17(±0.03) % 25.27(±0.03) %
Mul. ELM (ST ) 55.08(±0.19) % 83.24(±0.16) % 28(±0.14) %

Mean Out (ST ) 57.57(±0.12) % 85.19(±0.1) % 28.75(±0.1) %

MVRELM 57.44(±0.12) % 85.19(±0.14) % 29.42(±0.21) %
MVRELM (ST ) 57.44(±0.24) % 86.39(±0.2) % 29.42(±0.2) %

MVRELM (Sw) 57.77(±0.21) % 86.66(±0.18) % 29.45(±0.18) %

Table 3. Action Recognition Performance (CR) on the
Olympic Sports and Hollywood 3D databases.

Method Olympic Sports Hollywood 3D

Conc. Input (I) 70.9(±0.01) % 27.6(±0.01) %
Mul. ELM (I) 71.65(±0.23) % 30.52(±0.2) %
Mean Out (I) 80.6(±0.15) % 31.49(±0.13) %

Conc. Input (Sw) 73.13(±0.01) % 22.4(±0.01) %
Mul. ELM (Sw) 73.88(±0.23) % 30.52(±0.13) %
Mean Out (Sw) 81.34(±0.15) % 31.49(±0.13) %

Conc. Input (ST ) 73.13(±0.01) % 27.6(±0.03) %
Mul. ELM (ST ) 73.88(±0.23) % 30.52(±0.15) %

Mean Out (ST ) 81.34(±0.11) % 34.74(±0.13) %

MVRELM (I) 82.09(±0.11) % 30.52(±0.21) %
MVRELM (ST ) 82.81(±0.18) % 31.49(±0.2) %

MVRELM (Sw) 82.84(±0.19) % 33.12(±0.17) %

input weights, which is the natural scale factor for the Euclidean distances between

xi and vj . The performance of each algorithm is illustrated in the first column of

Table 4. As can be seen, the MVRELM algorithm exploiting the within-class and

the total scatter matrices, Sw (eq. (26)) and ST (eq. (27)) respectively, provide the

best performance (equal to 72.42%).

Finally, we applied the competing algorithms on the i3DPost, where we investi-

gate the case where different views correspond to different viewpoints. We employed

a STIP-based action video representation21, where each video is represented one

200-dimensional vector obtained by applying soft vector quantization on concate-

nated HOG/HOF descriptors evaluated on video STIP locations. We employed the

RBF activation function (4) in order to calculate the network hidden layer outputs.

The parameter b used in the RBF activation function (3) has been set equal to the

mean Euclidean distance between the training action vectors and the network input

weights, which is the natural scale factor for the Euclidean distances between xi and

vj . The number of network hidden neurons has been set equal to H = 100 for all
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the competing algorithms, a value that has been found to provide satisfactory per-

formance. We chose a smaller value of H on the i3DPost database, due to the small

training set cardinality and low dimensionality of the data. A higher value of H

would probably lead to overfitting. The performance of each algorithm is illustrated

in the second column of Table 4. As can be seen, the MVRELM algorithm exploiting

the within-class scatter matrix Sw (eq. (26)) provides the best performance (equal

to 100%).

Table 4. Action Recognition Performance on the
i3DPost and IMPART databases.

Method IMPART i3DPost

Conc. Input 62.49(±1.25) % 81.05(±2.5) %
Mul. ELM 64.49(±1.65) % 83(±1.12) %

Mean Out 65.28(±1.04) % 95.23(±1.16) %

Conc. Input (Sw) 63.09(±1.35) % 79.69(±2.3) %
Mul. ELM (Sw) 64.5(±1.23) % 92.19(±1.47) %
Mean Out (Sw) 65.08(±1.15) % 98.44(±0.12) %

Conc. Input (ST ) 62.89(±1.31) % 82.81(±1.36) %

Mul. ELM (ST ) 64.29(±1.65) % 92.01(±0.27) %
Mean Out (ST ) 65.28(±1.12) % 98.44(±0.05) %

MVRELM 70.92(±1.92) % 97.06(±0.17) %
MVRELM (ST ) 72.42(±2.3) % 98.44(±0.03) %

MVRELM (Sw) 72.42(±2.3) % 100(±0.0) %

6. Conclusions

In this paper, we described a classification scheme for multi-view human action

recognition that is based on multiple Single-hidden Layer Feedforward Neural Net-

works. We proposed an extension of the Extreme Learning Machine algorithm that

is able to exploit multiple action representations and scatter information of the

training data in the corresponding ELM spaces on its optimization process. The

proposed algorithm has been evaluated by using two state-of-the-art action video

representation approaches on four publicly available action recognition databases,

where its performance has been compared with that of three commonly used video

representation combination approaches and relating classification schemes.

Some useful observations are the following: a) multi-view neural networks can be

exploited in application scenarios involving both multi-camera setups where each ac-

tion is captured from multiple viewpoints and single-view action recognition where

multiple action descriptions are used in order to express different action properties

(e.g. shape and motion). b) While the adoption of a supervised combination scheme

for multi-view neural networks training generally leads to enhanced performance,

it requires the application of an iterative optimization scheme, which might be

time consuming compared to the unsupervised view combination approach. c) the

exploitation of the within-class and total scatter information of the training data
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can enhance the performance of the network. d) In order to further enhance the

performance of multi-view neural networks nonlinear view combinations or linear

combinations expressing higher order relationships between the various views, e.g.

relationships expressed in a matrix G ∈ RV×V , may be exploited. The exploita-

tion of such combination schemes, as well as the derivation of faster optimization

schemes, could be a future research direction.
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