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Nonlinear Processing and
Analysis of Angular Signals

Nikos Nikolaidis, Member, IEEEand Ioannis Pitas,Senior Member, IEEE

Abstract—Physical quantities referring to angles, like vector
direction, color hue, etc., exhibit an inherently periodic nature.
Due to this periodicity, digital filters and edge operators proposed
for data on the line cannot be applied on such data. In this paper,
we introduce filters for angular signals (circular mean, circular
median, circular a-trimmed mean, circular modified trimmed
mean). Particular emphasis is given to the circular median filter,
for which some interesting properties are derived. We also use
estimators of circular dispersion to introduce edge detectors for
angular signals. Three variations for the extension of quasirange
to circular data are proposed, and expressions for their output pdf
are derived. These “circular” quasiranges have good and user-
controlled properties as edge detectors in noisy angular signals.
The performance of the proposed edge operators is evaluated on
angular edges, using certain quantitative criteria. Finally, a series
of experiments featuring one-dimensional (1-D) angular signals
and hue images is used to illustrate the operation of the new
filters and edge detectors.

I. INTRODUCTION

T HE GREAT majority of signal processing literature deals
with signals whose domain is a straight line. However,

certain applications exist where the need to process angular
data arises. Such an application comes from color image
processing. In HSI, HSV, HLS, , and
color representation systems that are used in computer graphics
[1] and color image analysis, hue is essentially a measure of
direction. Instantaneous frequency (IF) estimates, which are
of particular importance for applications like radar signal pro-
cessing, seismic signal processing, and underwater acoustics,
are angular in nature and should be processed (e.g., smoothed)
as such [2]. Another area where angular signals can occur is
multichannel signal processing; representation of vectors by
means of vector direction angle and vector magnitude, i.e., in
a polar coordinate system, can provide a natural context to
deal with certain problems. Applications that involve vector
direction manipulation (estimation of wind direction from
noisy wind velocity data or vehicle direction estimation) can
be good candidates for treatment in polar coordinates. Phase
information is also angular and should be treated accordingly.

Physical quantities referring to angles are calledangular,
directional, or circular data. Two-dimensional (2-D) angular
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signals will be called angular images. Angular data exhibit
an inherently periodic nature. Due to this periodicity, the
statistical theory used for data on the line cannot be used to
deal with such quantities. This is probably the main obstacle to
the extended use of angular data processing/analysis in digital
signal and image processing. For example, very useful color
domains, e.g., HSI, HSV, HLS, that match best the actual hu-
man perception of color, were left solely to computer graphics
people because the image processing specialists did not like
the periodicity of hue and the discontinuity of its domain.

Fortunately, a special statistical theory, called the theory of
angular or directional statistics, has been developed to deal
with angular data. A complete and comprehensive review of
angular statistics can be found in [5]. An extensive list of
references on directional statistics can be found in [6]. In this
paper, we use the theory of angular statistics and, particularly,
the part related to location estimation, to introduce a number
of filters (circular mean and median filter) for angular signals.
Special attention is paid to circular median filter for which
the output pdf and some novel interesting properties (the edge
preservation and impulse rejection property) are derived. The
pdf for which the circular median filter is the ML estimator
of location is also derived. A novel notion of ordering for
angular data is proposed. Based on this ordering principle, we
extend some order statistics filters (-trimmed mean, modified
trimmed mean filter) to handle angular data. The properties of
the new class of circular filters are illustrated by experiments
involving 1-D angular signals. Furthermore, the proposed
filters are successfully applied in color hue estimation from
noisy color images. Another class of multichannel filters that
operate in the direction-magnitude domain (the so-called vec-
tor directional filters) have been proposed recently [3]. These
filters separate the processing of vector data to directional
processing and magnitude processing. Fuzzy versions of the
same filters have also been proposed [4]. Vector directional
filters were applied successfully in noisy color image filtering.

Analysis of angular signals (segmentation, edge detection,
feature extraction, etc.) can be also of interest in many
applications. Hue image edge detection and segmentation are
particularly important since they provide luminance invariant
segmentation/edge detection. Such an invariance is crucial for
many color image processing applications (e.g., traffic sign
recognition or recognition of color-coded objects in industrial
applications) since luminance changes (e.g., shadows) render
image analysis more difficult. The circular filters proposed in
this paper can be used as a preprocessing stage in such a hue-
based segmentation. Hue and saturation were used in [8] to
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(a) (b)

(c)

Fig. 1. (a) Original angular signal. (b) Output of a grayscale range edge detector. (c) Output of a circular range edge detector.

segment human faces from the background. In [7], hue alone is
successfully used for color image segmentation. Segmentation
of color images based on the direction (i.e., the chromaticity)
of the RGB vectors is proposed in [9]. In [10], the angular
dispersion of the intensity gradient direction is used as an
indicator for the existence of an edge.

In this paper, we will concentrate on edge detection on
angular signals. Detection of edges on angular signals cannot
be done using standard edge detectors. To give an example, a
standard range edge detector applied on the one-dimensional
(1-D) angular signal shown in Fig. 1(a) detects an edge
of height 340 [Fig. 1(b)] between the two homogeneous
regions with values 10and 350, respectively, whereas the
circular range edge detector [Fig. 1(c)] that will be described
in Section III estimates the real edge height, i.e., 20(the
smallest arc joining the points related to angles 10, 350
on the unit circle). Therefore, new edge detectors have to
be introduced for data of periodic nature. In this paper, we
use measures of angular dispersion that have been proposed
in the statistical literature (sample circular variance, circular
mean difference, circular range) to introduce edge operators for
angular data. We also proceed further by introducing three new
noise-robust extensions (the circular quasirange the modified
circular quasirange and the median-based circular quasirange)
of the notion of quasirange for angular data. Expressions for
the output pdf of the circular quasirange and the modified
circular quasirange are derived.

This paper is organized as follows. Section II contains
some basic notions and definitions from the theory of angular
statistics. Novel filter structures for the filtering of angular data
are introduced, and some interesting properties are derived. In
Section III, we give definitions for angular measures of disper-
sion that can be used as edge detectors. Three extensions of the
quasirange for angular data are proposed. In Section IV, sim-
ulations involving one-dimensional (1-D) signals are used to

(a) (b)

Fig. 2. (a) Sample mean directionx0 and the sample median directionxmed.
(b) Circular range(arcM5M4), the CQR of orderi = 1 (arcM1M3), and
the MCQR of orderi = 1 (arcM2M4) for N = 5 angular data points.

exemplify the operation of the proposed filters, whereas exper-
iments on hue images help compare their performance in hue
estimation with other filters acting on the RGB domain. Exper-
imental performance evaluation of the proposed edge detectors
along with edge detection experiments on noisy hue images
are also presented in the same section. Conclusions follow.

II. PROCESSING OFANGULAR SIGNALS

A. Location Measures for Directional Data

Directional data can be represented as points on a unit circle.
An angular observation is represented by a point on a
unit circle centered at point such that the angle between

and the horizontal axis , which is measured in the
counterclockwise direction, equals. The same observation
can also be represented as a unit vector [Fig. 2(a)].
Because of the periodicity of angular data, the pdf of a
directional random variable is also periodic with a period of

. Measures of location for angular data should take under
consideration their periodic nature. The classical measures of
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location, which are proposed for use with data on a line,
depend on the choice of the zero direction on the circle.
Therefore, new measures of location that will be invariant to
the change of origin must be defined. Themean direction
[5] of an angular random variable is defined as the phase
angle of the resultant vector , where

(1)

The sample mean direction of observations
represented by sample points on a unit circle
centered at point is the direction of the mean resultant vector

of the unit vectors [Fig. 2(a)]. Its value is
given by

(2)

The sample mean direction is proven to be the maximum
likelihood estimator of location for data distributed according
to the von Mises distribution [5]

(3)

where is the modified Bessel function of the first kind
and order zero. The parameter is the mean direction,
whereas the parameter is the concentration parameter of
the distribution.

The median direction [5] of an angular random variable
distributed according to pdf is the solution of the equation

(4)

with the additional constraint that . The
sample median direction of a set of sample points around
the unit circle is the point that divides, by the diameter that
passes through it, the rest of the points in two equal subsets
[Fig. 2(a)]. The previous definition holds for an odd number
of samples. The sample median direction for a set of angular
observations is different from the “classical” median [11] of
these points. In the following, the termstandard medianwill
be used for this median to distinguish it from the sample
median direction. The sample median direction is not always
unique. This can be an inconvenient property if we want to
use sample median direction, in practice, for angular signal
filtering. Luckily enough, the following property [5] can be
used to resolve this ambiguity.

Let be a set of points and a direction on the
unit circle. Then, the sample median direction minimizes the
following measure of dispersion around

arc (5)

arc (6)

where arc is the smallest of the two angles that are
defined by the points and on the unit circle. is called

circular mean deviation. In the case of multiple sample median
directions, one of them will result in the global minimum for
(5), whereas the rest will be local minima. Therefore,can be
used to define a median for circular data that will be unique
and, thus, useful in practice. The term arc distance median
(ADM) has been introduced in [12] to define the observation
that minimizes , and we have adopted the same terminology.
The output vector of basic vector directional filter (BVDF)
proposed in [3] is the vector whose direction is the ADM of
the directions of the input vectors.

B. Circular Filters: Definitions and Some Properties

The direction estimators that have been presented in the
previous section can be used to introduce filters for angular
signals. These filters will be calledcircular filters in contrast
with the filters for data on the line that will be referred to as
standard filters. One-dimensionalcircular meanand circular
median filters of size can be defined by the
input–output relations

sample mean direction (7)

ADM (8)

where is the output value, and are
the input samples. Expressions for the 2-D counterparts of the
previously defined filters can be easily deduced.

We have proven that the output pdf of the 1-D circular
median filter of length is given by

(9)

where is the indicator function that equals unity when the
event holds and zero otherwise. In our case,is the event

(10)

which makes the ADM of the points .
The proof is given in Appendix A. The theoretical output pdf
of a circular median filter applied on data distributed according
to von Mises distribution for filter lengths

can be seen in Fig. 3.
We have shown that ADM is the maximum likelihood

estimator of location for the distribution with the pdf

(11)

The proof is given in Appendix B.
It can be easily proven that if at least out of the

points inside the 1-D circular median window
have the same value, then the output of the filter is, which
is a property that also holds for the standard median. Therefore,
in the case of bilevel angular signals, the output of the standard



3184 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 12, DECEMBER 1998

Fig. 3. Output pdf of circular median filters of lengthN = 3 andN = 5

for input data distributed according tok = 4; �0 = � von Mises distribution.

median and the circular median are identical and equal to the
most frequent sample. As a result, a number of properties that
hold for the standard median on bilevel signals [13] also apply
to the circular median filter. The circular median filter has
edge preservation properties similar to those of the standard
median. It does not corrupt an edge modeled as step function.
In contrast, the circular mean smooths a step edge to a ramp
function. Furthermore, the circular median filter effectively
removes impulses in contrast with the circular mean filter,
which fails completely in this type of noise. The probability
of correct signal reconstruction for the circular median filter
of length , in constant signal areas corrupted with impulsive
noise having probability of occurrence, equals the probability
that less than half of the observations inside the median
window are corrupted by the noise

(correct reconstruction) (12)

In order to define general order statistics filters for angular
data, we must introduce the notion of angular data ordering.
The new ordering scheme should take under consideration the
periodic nature of the data. This requirement inhibits the use
of standard Cartesian ordering. Furthermore, the new scheme
should be coherent with the definition of sample median
direction. An ordering scheme that meets the above needs is
the following.

Let us denote by the th ordered sample on the
circle. Let be samples distributed according to
some circular distribution, and let be the
Cartesian ordered samples, i.e.,

(13)

We calculate first the arc distance median .
Let us suppose that corresponds to . The rest of the
ordered samples can be defined by

(14)

where mod denotes the modulo operator. This ordering
scheme can be used to detect, and subsequently remove,
extreme observations. However, due to the periodicity of the
angular data, no minimum or maximum observation can be
specified. The proposed scheme can be better described as
ordering in terms of centrality, the median being at the central
most position and the rest of the samples being ordered in
pairs of descending centrality

(15)

Other ordering principles for angular data (angular Tukey’s
depth, angular simplicial depth, arc distance depth) have also
been proposed in the statistical literature. Some of them are
summarized in [14]. A more detailed description of these
principles along with a discussion on their advantages and
disadvantages can be found in [12]. It is worthwhile to observe
that the notion of outliers is somewhat different for circular
data because angular distributions have bounded support. On
the line, the more extreme the valueof an outlier, the greater
the distance from the main data mass. However, in the case
of circular data, there is limited space for an observation to
outlie. Consider, for example, the following observations: 5
20 33 40 50 351. If these observations represent data on the
line, then the point 351 can be safely recognized as outlying.
However, if these numbers represent angular data (in degrees),
then 351 is in perfect agreement with the rest of the data.
Due to the bounded support of angular data, outliers can be
easily detected only when the observations are sufficiently
concentrated around a particular point. The angular deviation
(6) between a data point and the population sample mean or
median direction can be used to tell whether the observation is
outlying or not. Four statistical tests for outliers among angular
data can be found in [15]. With certain modifications, some of
these statistics can be utilized in angular data ranking.

Having defined the way that the circular data are ordered,
the derivation of the various-order statistics filters is straight-
forward. For example, the 1-Dcircular -trimmed mean filter
[11] of length has the definition

sample mean direction

(16)

where are considered to be integers, and
are the ordered input samples . Parameter

controls the number of the smaller and the bigger samples
in the filter window that will be rejected as outliers. Another
order-statistics-based filter that can be easily modified to
handle angular data is the modified trimmed mean filter [11].
The 1-D circular modified trimmed mean(CMTM) of length

can be defined as

sample mean direction arc

(17)

where is the ADM of samples . The
circular modified trimmed mean filter excludes samples that
differ considerably from the local circular median. The number
of rejected samples is controlled by the parameter.
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(a) (b)

Fig. 4. (a) “Pepper” test color image, size256 � 256. (b) Hue color component of test image “Pepper.”

III. A NGULAR SIGNAL EDGE DETECTION

A. Measures of Angular Dispersion

Circular measures of dispersion can be used as edge de-
tectors for angular data since edges are areas having large
local signal variance. Thecircular variance[5] of an angular
random variable is such a measure. It is defined as

(18)

where is the mean direction of . The sample circular
variance of angular data points

takes values in the interval and is defined as

(19)

where is the sample mean direction (2). Thecircular mean
difference [5] is another useful measure of dispersion. It
is defined by

arc

(20)

where arc is the deviation (6) between two angles
and . The circular range is defined as the length of

the smallest arc that includes all the sample observations
[Fig. 2(b)]. The circular range can be evaluated as

(21)

where are measures of the arcs between adjacent samples

(22)

and are the Cartesian ordered directional
samples .

All the above measures of dispersion can be used to detect
angular edges. For example, a 2-D edge detector for angular
images that is based on the circular mean difference can be
defined by the input–output relation

circular mean difference (23)

where is the edge detector window, are the input
samples inside this window, and is the detector output.

B. Circular Quasirange

Unfortunately, the edge detectors described in Section III-A
have poor performance when acting on noisy angular signals.
This is illustrated in Fig. 5, where the output of a
circular mean difference edge detector operating on the hue
component of image “Pepper” (Fig. 4) corrupted by impulsive
noise acting independently on each RGB channel can be seen.
In the following, we shall introduce extensions of the circular
range, i.e., circular quasiranges, that are suitable for edge
detection on noisy angular signals. Their big advantage is
that they allow noise suppression to be done along with edge
detection, thus making the edge detector operator more robust.
Noise suppression is achieved by leaving out a certain amount
of extreme points (that depends on the order of the quasirange).

In the case of data on the line, theth quasirange of
observations is defined by

(24)

The first way to extend this definition to circular data is by
making use of the circular range (21). The circular quasirange

of order for angular observations
( odd) can be found by evaluating the circular rangeand
“stripping” out data points from each of the two ends of
the arc . The arc that includes all data points except for the

points that have been rejected [Fig. 2(b)] will be called
the th-ordercircular quasirange(CQR). For , CQR and
circular range (21) are equivalent.

The evaluation of the output pdf for the circular quasirange,
when this is applied on a noisy angular edge modeled as
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(a) (b)

Fig. 5. (a) Hue component of test image “Pepper” corrupted by 10% impulsive noise of impulse value 255 acting independently on each RGB channel.
(b) Output of a 5� 5 circular mean difference edge detector (thresholdT = 28).

(a) (b)

Fig. 6. Theoretical (solid line) and experimental (dashed line) (a) mean and (b) variance of the response of a circular quasirange edge detector of order
i = 1 and N = 5 on a step edge corrupted by impulsive noise of constant impulse value.

a step function, is very cumbersome for a general noise
distribution. In Appendix C, we present the output pdf of a
circular quasirange operator of length and order for the
tractable case of impulsive noise of constant impulse value
and probability of occurrence that corrupts a 1-D angular
edge of the form

(25)

Fig. 6 depicts the theoretical and experimental mean and
variance for a circular quasirange of order and window
length applied on an edge-bearing signal (25) having

and . The edge
is corrupted by impulsive noise of impulse value
and probability of occurrence . It can be seen that
theoretical and simulation results are in perfect agreement. The
large mean output value of the circular quasirange response on
the edge, compared with the small mean output value in the

homogeneous regions, clearly indicates that CQR can be used
as an edge detector. Note that the mean output value at the
edge is 60, i.e., the actual edge height.

A second way of defining the circular quasirange is through
the utilization of the angular data ordering that is based on
the arc distance median. Let be angular
samples ordered according to this ordering principle. Then,
the th-ordermedian-based circular quasirange(MBCQR) is
given by

arc

where arc denotes the arc on the unit circle that is lim-
ited by points and includes the arc distance
median. It is obvious that in general, . However,
simulations with noisy images showed that edge detectors
based on CQR and MBCQR produce almost the same output.

A third definition for the circular quasirange of data
points can be the following: We define asmodified circular
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quasirange (MCQR) of order the smallest arc that
contains all points except for successive points [Fig. 2(b)].
For , MCQR coincides with the circular range (21).
Modified circular quasirange can be evaluated in the
following way: We order in the Cartesian way the directional
samples and evaluate arc lengths between
points being samples apart in a circular manner,
i.e.,

(26)
where mod denotes the modulo operator. is then
given by

(27)

Since MCQR is evaluated using Cartesian ordering of data
samples, the output pdf of the related edge detector in constant
signal regions corrupted by additive noise can be evaluated
using the theory of order statistics on the line. We have proven
that the output pdf of the 1-D MCQR for
(i.e., the circular range) for constant signal areas corrupted by
zero-mean additive noise having pdf is given by

(28)

(29)

The proof can be found in Appendix D. The pdf of for
can be derived using exactly the same methodology,

Fig. 7. Theoretical (solid line) and experimental (dashed line) output pdf for
the modified circular quasirange of lengthN = 3 and orderi = 0 for input
data distributed according tok = 4; �0 = � von Mises distribution.

but results will be omitted because the resulting formulae are
rather lengthy.

The theoretical output pdf of the circular range for length
when the input data are corrupted by noise distributed

according to von Mises distribution can be seen in Fig. 7 along
with the experimental pdf. Using the derived pdf, we can
evaluate the mean and variance of the edge detector output in
constant signal areas and, consequently, choose an appropriate
threshold so that the output of the detector at background
points does not exceed this threshold. Evaluation of the output
pdf for the actual edge region would be of equal importance.
However, this is difficult to do since it requires order statistics
from dependent, nonidentically distributed random variables.

IV. EXPERIMENTAL RESULTS

A. Circular Filters

In our effort to illustrate the operation of the proposed
circular filters and to demonstrate the inability of the standard
filters to handle angular data, we have conducted two sets
of experiments featuring 1-D angular signals. In the first
experiment, a 1-D angular signal (one horizontal line of the hue
component of color image “Pepper”) [Fig. 8(a)] was corrupted
by impulsive noise of constant value 120and probability of
occurrence 20% [Fig. 8(b)]. The output of the standard median
filter and the circular median filter applied on the noisy signal
can be seen in Figs. 8(c) and (d), respectively. The window
size for both filters was . Note that the standard median
filter fails to reject the impulses that exist within the segment
that includes samples 60 to 120. This failure can be explained
by the fact that the samples in this segment have values close to
0 and 360, which are mistakingly not treated as neighboring
ones by the median filter. On the other hand, the circular
median filter successfully rejects the impulses in this area by
taking into account the periodic nature of the signal. In the
second experiment, a 1-D signal (another line from the hue
component of “Pepper”) [Fig. 9(a)] was corrupted by zero-
mean additive von Mises noise having concentration parameter
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(a) (b)

(c) (d)

Fig. 8. (a) Original angular signal. (b) Angular signal corrupted by impulsive noise of constant impulse value. (c) Output of a standard median filter having
window sizeN = 5. (d) Output of a circular median filter of the same window size.

(a) (b)

(c) (d)

Fig. 9. (a) Original angular signal. (b) Angular signal corrupted by von Mises noise. (c) Output of a standard mean filter having window sizeN = 5.
(d) Output of a circular mean filter of the same window size.

. [Fig. 9(b)]. The output of the standard mean filter and
the circular mean filter (window size ) applied on the
noisy signal can be observed in Fig. 9(c) and (d), respectively.

It is obvious that the standard mean filter destroys the angular
signal, whereas the circular mean filter achieves sufficient
noise smoothing. In order not to misinterpret Fig. 9(d), bear in
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mind that due to the signal periodicity, samples close to 360
are also very close to 0.

The effectiveness of the proposed circular filters in the
filtering of directional data was further illustrated in two
additional sets of experiments dealing with noise filtering in
the hue component of color images represented in the HSV
color space. HSV is a cylindrical color space that matches
best the actual human perception of color [1]. Hue represents
the angle around the vertical axis with red being at 0, green
at 120 , and blue at 240. The test color image “Pepper”
of size was used for all simulations [Fig. 4(a)].
The hue color component of “Pepper” (calledhue imagefrom
now on), scaled and represented as a gray-level image, can
be seen in Fig. 4(b). Due to the the periodic nature of hue,
both black and white pixels in this image correspond to red
0 . Intermediate colors are represented as shades of gray. In
both experimental settings, we tested the performance of the
proposed circular filters in the case of hue estimation on noisy
color images. The reason for this investigation is that correct
hue estimation is important in many applications (e.g., in
graphics, printing arts, or as a preprocessing step for luminance
invariant color object segmentation). At this point, we shall
make clear that comparing circular filters with RGB domain
filters in terms of noise suppression in the RGB domain would
be unfair since circular filters operate only on hue, leaving
noise imposed on saturation and value intact. However, if full
color image filtering is required, the proposed circular filters
can be easily integrated with magnitude filters to devise a joint
direction/magnitude filtering scheme like the one proposed in
[3]. Optimal filters for the magnitude of vectors corrupted
by additive noise have been proposed in [16].

To overcome the fact that standard performance measures
cannot be used to evaluate noise suppression in the hue
component due to the periodic nature of the angular data, we
introduced modifications of the well-known noise reduction in-
dex (NRI) and signal-to-noise ratio (SNR). The modifications
make them suitable for circular data by substituting standard
signal difference with a measure of angular difference, i.e., the
deviation (6) between two angular data points. The resulting
performance measures will be calledcircular noise reduction
index NRI andcircular signal-to-noise ratio SNR

NRI (30)

SNR (31)

In the previous definitions, are the filtered,
noisy, and original angular observations, respectively.

In the third set of experiments, we tested the performance of
the proposed angular data filters in the case of hue estimation
on color images that were corrupted by various noise models
in the RGB color space. Two filter classes were tested and
compared: multichannel filters on the RGB domain and circu-
lar filters directly on hue. The methodology that was adopted
was the following. The original RGB image was first corrupted

TABLE I
CIRCULAR NOISE REDUCTION INDEX NRIc FOR VARIOUS

NOISE MODELS CORRUPTING THE RGB COLOR

COORDINATES OR THEHUE COMPONENT OFIMAGE “PEPPER”

by one of the following types of multivariate noise:

• additive zero-mean Gaussian noise having standard devi-
ation on each RGB channel;

• impulsive noise having constant value 255 and probability
of occurrence 5% on each channel;

• additive zero-mean Laplacian noise with on each
channel.

Obviously, due to the nonlinear nature of the RGB-HSV
transformation, the noise pdf on the hue domain differs from
the noise originally imposed on the RGB channels. In the
case of multichannel filters operating on Cartesian coordinates,
images were filtered in the RGB domain and then transformed
to HSV in order to assess filter performance in hue estimation.
The following filters were used for comparison:

• marginal (componentwise) median;
• vector median;
• componentwise arithmetic mean.

In the case of circular filters, noisy RGB images were trans-
formed to HSV, the hue component was filtered, and their
performance was evaluated. The circular filters that were tested
included circular median, circular mean, circular trimmed
mean filter or , and circular modified
trimmed mean with or . The standard,
single-channel mean and median filters were also used to filter
hue on the HSV domain. The window size for all filters in
this set of experiments was 3 3. The results of the filtering
with respect to NRI are summarized in Table I. The use of
SNR instead of NRI yields very similar results (the ranking
of the various filters remains the same), which will not be
reported here due to lack of space. As expected, the standard,
single-channel mean, and median filters operating on hue had
very bad performance; actually, standard mean destroyed the
image. For Gaussian noise, componentwise mean filtering in
RGB, which is the MLE for this type of noise in Cartesian
coordinates, gave the best hue noise suppression, closely
followed by circular mean. The circular trimmed mean filter
with trimming coefficient gave the best results in the
filtering of Laplacian noise. Finally, in the case of impulsive
noise, circular median performed better than vector median.

The fourth set of experiments aimed at investigating the
performance of the circular filters in the case of hue estimation
in color images where noise was applied directly on hue.
Although this scenario might not be realistic in the case of
color image data (no sensor produces hue data), we have
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included these experiments for two reasons: 1) To give readers
an idea of the behavior of the proposed filters in other types of
angular signals where such noise models might arise; 2) some
noise types cast on the RGB domain might result in hue noise
that can be modeled using one of the pdfs discussed bellow.
Test image “Pepper” was transformed to HSV, and its hue
component was corrupted by the following types of noise:

• impulsive noise of constant value 120(green) and prob-
ability of occurrence 10% (denoted as imp1 in Table I);

• impulsive noise with uniformly distributed impulse value
and probability of occurrence 10% (denoted as imp2 in
Table I);

• zero-mean additive von Mises noise with concentration
parameter .

Filtering was performed using the filters and performance eval-
uation procedures described in the previous set of experiments.
For all filters, the window size was 3 3. The results can be
seen in the second part of Table I. As expected, Von Mises
noise was filtered more effectively by the circular mean filter,
which is the maximum likelihood estimator for this type of
noise. On the other hand, the circular median proved to be the
best choice for the removal of both kinds of impulsive noise
on hue.

Similar results were obtained when we applied the circular
filters on the vector direction of noisy vector fields. These
results are not presented here due to lack of space.

B. Angular Data Edge Detectors

The quantitative evaluation of edge detector performance,
especially in the presence of noise, is not an easy task. Various
quantitative criteria have been presented in the literature. In
this paper, we have used a quantitative criterion similar to
the edge detection error rate described in [17] in order
to evaluate and compare the performance of the proposed
edge detectors for various noise types. Usually, the output
of an edge detector is thresholded, and pixels with value over
the threshold are considered as edge points. The thresholding
operation is therefore crucial for the performance of the
edge detector, and the choice of the optimum threshold
for a certain type of noise must be done carefully. In the
following, we shall define three threshold-dependent quantities
that characterize the performance of an edge detector. The
probability of false alarm for a given threshold is the
probability of a nonedge point to be classified as an edge, i.e.,
the probability the output value of the detector at this point to
be above the specified threshold. The probability of detection

is the probability that an edge point is detected as
such. Finally, the probability of nondetection is the
probability an edge point not to be detected as such, i.e.,
to be classified in the background. An edge detector has
good performance if is close to unity (and, therefore,

close to zero) and tends to zero. In order
to monitor all three characteristic quantities, we construct the
ratio

(32)

As increases and tend to zero, tends
to zero. On the other hand, as decreases and tends
to unity, tends to infinity. The smaller the value of

, the better the performance of an edge detector. The
optimum threshold is the one that minimizes . In
the case of an efficient edge detector, the output pdf of the
background points will be well separated from the output pdf
of the edge points. In this situation, the optimum threshold

totally separates the two groups of points (edge points
and background points), achieving a small value for .
The performance of different edge detectors on the same
type of noise can be assessed by comparing the minimum
value . In our experiments, we used
to evaluate the performance of CQR and MCQR edge detec-
tors of various orders on synthetic hue edges. Comparisons
were limited only to these two detectors because, as it was
mentioned earlier, edge operators for data on the line (Sobel,
Laplace, Canny, etc.) produce erroneous results when applied
on angular data. A 2-D three-channel RGB signal whose cross
section contains a step edge on the red and green channels
was used in the simulations as

Red

Green

Blue

(33)

If we transform this signal to HSV, we obtain a hue edge
whose cross section is

(34)

Two types of noise were used to contaminate independently
each of the three channels of the RGB signal: additive Gauss-
ian noise of zero mean and and impulsive
noise of constant value 255 and probabilities of occurrence

% and %. After that, we transformed the
noisy signal to the HSV color space and applied the circular
quasirange and modified circular quasirange edge detectors of
various orders on the hue signal using a window of size
3 3 or 5 5. Results can be seen in Fig. 10, where
is drawn as a function of order. The performance of the
detectors increases ( decreases) with until a maximum
is reached and then decreases. This decrease in the detector
performance is due to the fact that large values of order
destroy the edge. The order for which the best performance is
achieved depends on the noise power. The bigger the power of
the noise, the greater the order must be for the edge detector to
be able to reject the noisy points. In addition, for the same type
of noise, MCQR achieves its minimum value for smaller
order . Diagrams also show that the 5 5 edge detectors
have better performance than the 33 counterparts and that
the performance decreases with the noise power. Comparing
MCQR and CQR edge detectors, we can say that the two
detectors have almost the same performance for hue edges
that correspond to RGB edges corrupted by Gaussian noise.
MCQR is better in the case of hue edges resulting from RGB
edges corrupted by impulsive noise, especially for %.
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(a) (b)

(c) (d)

Fig. 10. Figure of meritRmin for CQR and MCQR angular edge detectors of window size3�3 and5�5applied on a noisy hue edge, for various ordersi.
The hue edge resulted from the HSV transformation of an RGB edge corrupted by the following noise types: Gaussian noise of standard deviation (a)� = 15

and (b)� = 25, impulsive noise of constant value 255 and probability of occurrence (c)p = 10% and (d)p = 20% on each RGB channel.

(a) (b)

Fig. 11. (a) Output of 5� 5 CQR edge detector of orderi = 4 applied on the hue component [Fig. 4(b)] of color image “Pepper” (thresholdT = 15).
(b) Output of 5� 5 MCQR edge detector of orderi = 5 applied on the hue component [Fig. 5(a)] of test image “Pepper” corrupted by 10% impulsive
noise of impulse value 255 acting independently on each RGB channel (thresholdT = 18).

The output of the proposed edge detectors applied on the
hue component of color images can be seen in Fig. 11. Both
edge images are thresholded by the threshold that gave the
best visual results. It can be seen that the performance of the
proposed edge detectors in the presence of noise is very good.
It is worthwhile to note here that hue edges do not necessarily
coincide with edges found by applying color edge detectors
in the RGB domain. For example, edges caused by highlights
or shadows will be more prominent in RGB edge maps than
in hue edge maps.

V. CONCLUSION

In this paper, we have proposed a number of digital filters
(circular mean, circular median, circular-trimmed mean
filter, and circular modified trimmed mean filter) for angular
signals. Some significant properties have been derived for the
circular median filter. The application of those filters in the
filtering of noisy 1-D angular signals and hue images gave
good results for a variety of noise types. Measures of angular
dispersion have also been used to propose edge operators for
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angular data. Three ways to extend the notion of quasirange
to circular data were introduced, and the theoretical output
pdf for two of them was derived. Those circular quasiranges
were used successfully as edge detectors on hue images. Their
comparative performance in noisy edges has been evaluated
using quantitative criteria.

APPENDIX A

Suppose that are i.i.d angular random
variables that are distributed according to distribution
function, and denote as the arc distance median of
those variables. The event
can occur if one of the random variables, e.g.,, lies in the
interval , and the values of the rest variables
are such that minimizes in (5). Therefore, the probability
of , which equals , is given by

Prob

(A.1)

and consequently

(A.2)

Multiplicative constant appears in the previous expression
because each of the variables is equally likely to be the
ADM.

APPENDIX B

It can be easily proven that (11) satisfies

(B.1)

Therefore, is appropriate for pdf of an angular variable.
The maximum likelihood estimator of location for a given
distribution minimizes

(B.2)

By substituting in the previous expression, we have

(B.3)

In Section II-A, we have seen that ADM minimizes

(B.4)

Since the other term of the sum is constant, ADM minimizes
(B.2), and therefore, it is the MLE of location for this
distribution.

APPENDIX C

We will derive the output pdf of CQR applied on a noisy
edge of the form (25), assuming that

and that when all three kinds of points are
present, the circular range equals , i.e.,

(C.1)

Analogous expressions can be found for all the other cases.
We will first derive the output for the case where the window
of the edge operator is on the constant signal region on the
left of the edge. Let be the number of signal and impulse
points, respectively, that exist inside the window. It is obvious
that . The probability of having exactly impulses
inside the window is

(C.2)

The output of the detector can take only two values i.e.,
and arc . The probability of the event
equals

(C.3)

whereas probability of the event arc is

(C.4)

The same analysis holds for the case where the edge operator
window is over the constant signal area on the right side of
the edge. The only difference is that now, the output can be
either 0 or arc .

The analysis is more complex when the window is on the
actual edge. Let be the number of points in the window
that belong to the homogeneous regions left and right of the
step edge, respectively. In addition, let be the number of
impulses and signal points that exist in the part of the window
that lies to the left side of the edge, and let be the
number of impulses and signal points in the part of the window
that lies to the right side of the edge. In this case

(C.5)

will hold. For a fixed value of , i.e., for a certain
position of the edge detector window over the edge, the
probability of the event impulses exist in the part of the
window on the left side of the edge andimpulses in the part
of the window on the right side of the edgeis given by the
expression

(C.6)

For some values of , the points inside the window can
have only two different values. These cases are the following.

• . The probability of this event is .
In this case, inside the operator window exist points
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of value and points of value , and the output
of the edge detector can be either 0 or arc .

• . In this case, all points inside the
operator window are impulses of value , and therefore,
the output of the detector is zero. The probability of this
event is .

• . The probability of this event depends
on and is given by

(C.7)

In this case, the points inside the window whose value
is are , and the points having value are

. The output of the detector is in (C.8), shown at
the bottom of the page. The probability ofbeing either

or arc is given by the sum of (C.7) for all
satisfying the corresponding inequalities in (C.8).

• . This case can be handled exactly like
the previous one.

For all the other value combinations of , the points inside
the window can have one of three different values, i.e.,

, and the output of the edge operator can take one
of four values as in

In this case, (C.9), shown at the bottom of the page, holds for
the detector output, where are the corresponding events. As
a consequence, the probability of the event is given by

for (C.10)

where is the indicator function that equals unity when
the event holds and zero otherwise.

APPENDIX D

Suppose that we have i.i.d. angular variables
. The joint pdf of the Cartesian ordered random variables

is given by [18]

(D.1)

where is the unit step function. The joint pdf of all
random variables in (26) for order , i.e., ,
cannot be evaluated directly since are linearly dependent,
and their Jacobian is zero. Instead, we evaluate the joint pdf
of the random variables by using
an auxiliary r.v. . Using the formula for the joint
pdf of functions of random variables [19], we can prove that
the joint pdf of will have the form

(D.2)

The joint pdf of can be easily derived
by integrating (D.2) with respect to as

(D.3)

Using the previous result and the fact that , we
can write the joint pdf of all in the form

(D.4)

where is the delta function. Now, we can proceed in
finding the pdf of the maximum . Since are dependent
random variables, we cannot use the well-known formula for
the pdf of order statistics of iid random variables [18]. Instead,
the probability the to be maximum and equal to will be
evaluated for each separately. The probability a certain
to be maximum among and equal to equals the
probability of to be and all the other to be smaller
than

Prob and

Prob and and

and and

(D.5)

or
arc

(C.8)

and
and
and or

and or

and

(C.9)
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The sum of these probabilities for all will
be equal to . Therefore, is given by

(D.6)

Since MCQR is given by (21), its output pdf will be

(D.7)

By substituting (D.4) in (D.7) and using (D.7) and properties
of the delta function, we obtain (29).
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