IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 12, DECEMBER 1998 3181

Nonlinear Processing and
Analysis of Angular Signals

Nikos Nikolaidis, Member, IEEEand loannis PitasSenior Member, IEEE

Abstract—Physical quantities referring to angles, like vector signals will be called angular images. Angular data exhibit
direction, color hue, etc., exhibit an inherently periodic nature. an inherently periodic nature. Due to this periodicity, the
Due to this periodicity, digital filters and edge operators proposed statistical theory used for data on the line cannot be used to
for data on the line cannot be applied on such data. In this paper, . L . )
we introduce filters for angular signals (circular mean, circular deal with such quantities. This is probably Fhe main O_bsltad.e _to
median, circular a-trimmed mean, circular modified trimmed the extended use of angular data processing/analysis in digital
mean). Particular emphasis is given to the circular median filter, signal and image processing. For example, very useful color
for which some interesting properties are derived. We also use domains, e.g., HSI, HSV, HLS, that match best the actual hu-
estimators of circular dispersion to introduce edge detectors for man perception of color, were left solely to computer graphics

angular signals. Three variations for the extension of quasirange . . - . .
to circular data are proposed, and expressions for their output pdf P€0Ple because the image processing specialists did not like

are derived. These “circular” quasiranges have good and user- the periodicity of hue and the discontinuity of its domain.
controlled properties as edge detectors in noisy angular signals.  Fortunately, a special statistical theory, called the theory of
The Fl)aern:(;m:sncuesi?]f tt‘:‘zr?;%poﬁgﬂtﬁgt?\?eogﬁ;?itgr?: iizaff’aglig?eg” angular or directional statistics, has been developed to deal
angu , ) , . . .
of %xperim%nts feat%ring ong-dimensional (1-D) angu)I/ar signals with angular. dfata' A complete ar?d comprehenSIVQ rev!ew of
and hue images is used to illustrate the operation of the new @ngular statistics can be found in [5]. An extensive list of
filters and edge detectors. references on directional statistics can be found in [6]. In this
paper, we use the theory of angular statistics and, particularly,
the part related to location estimation, to introduce a number
o _ o of filters (circular mean and median filter) for angular signals.
T HE GREAT majority of signal processing literature dealgpecial attention is paid to circular median filter for which
with signals whose domain is a straight line. Howevegne output pdf and some novel interesting properties (the edge
certain applications exist where the need to process angyiiservation and impulse rejection property) are derived. The
data arises. Such an application comes from color imaggs for which the circular median filter is the ML estimator
processing. In HSI, HSV, HLSL*CG, R, and L*CY, kL, of |ocation is also derived. A novel notion of ordering for
color representation systems that are used in computer graphigs iar data is proposed. Based on this ordering principle, we
[1] and color image analysis, hue is essentially a measure genq some order statistics filterstfimmed mean, modified
direction. Instantaneous frequency (IF) estimates, which gt meq mean filter) to handle angular data. The properties of
of particular importance for applications like radar signal prgpe neyy class of circular filters are illustrated by experiments
cessing, seismic signal processing, and underwater acousgw\%wing 1-D angular signals. Furthermore, the proposed
are angular in nature and should be processed (e.g., smoothgdls are syccessfully applied in color hue estimation from
as such [2]. Another area where angular signals can ocCur,iSq, color images. Another class of multichannel filters that
multichannel S|gne_1l processing; representation O_f vectgrs 8 erate in the direction-magnitude domain (the so-called vec-
means of vector direction angle and vector magnitude, €8} directional filters) have been proposed recently [3]. These
a polar_ coordmate system, can P r0y|de a naFuraI context doars separate the processing of vector data to directional
d_eal \.N'th certr_:un pr_oblems._Appllcanons_that |_nvoI_ve vect rocessing and magnitude processing. Fuzzy versions of the
direction manipulation (estimation of wind direction fromsame filters have also been proposed [4]. Vector directional

noisy wind vel_ocny data or vehlcle_ direction esur_nanon) “Aiters were applied successfully in noisy color image filtering.
be good candidates for treatment in polar coordinates. Phas nalysis of angular signals (segmentation, edge detection

information is also angular and should be treated according%ature extraction, etc.) can be also of interest in many

'Ph)'/smal qua.ntmes refering to .angle\.% are caligyular, applications. Hue image edge detection and segmentation are
directional or circular data. Two-dimensional (2-D) angular_; . : . . . . .
particularly important since they provide luminance invariant
Manuscript received May 10, 1995; revised September 12, 1997. TRegmentation/edge detection. Such an invariance is crucial for
associate editor coordinating the review of this paper and approving it fﬁ‘iany color image processing applications (e.g., traffic sign
publication was Prof. Gonzalo Arce. " . . L. .
gecognition or recognition of color-coded objects in industrial
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Fig. 1. (a) Original angular signal. (b) Output of a grayscale range edge detector. (c) Output of a circular range edge detector.

segment human faces from the background. In [7], hue alone is
successfully used for color image segmentation. Segmentation
of color images based on the direction (i.e., the chromaticity)*s
of the RGB vectors is proposed in [9]. In [10], the angular
dispersion of the intensity gradient direction is used as al
indicator for the existence of an edge.

In this paper, we will concentrate on edge detection on
angular signals. Detection of edges on angular signals cannot
be done using standard edge detectors. To give an example, a
standard range edge detector applied on the one-dimensional My
(1-D) angular signal shown in Fig. 1(a) detects an edge @) ()
of ,helght ,340 [Fig. 1(b)] between the _tWO hc)mOgeneou‘lcfig. 2. (a) Sample mean directia and the sample median directiop,.q .
regions with values I0and 350, respectively, whereas the() circular range(arciz; M. ), the CQR of order = 1 (arcM; Ms), and
circular range edge detector [Fig. 1(c)] that will be describeble MCQR of orderi = 1 (arcM; My ) for N = 5 angular data points.
in Section Il estimates the real edge height, i.e. Zthe
smallest arc joining the points related to angle$,185¢ exemplify the operation of the proposed filters, whereas exper-
on the unit circle). Therefore, new edge detectors have itoents on hue images help compare their performance in hue
be introduced for data of periodic nature. In this paper, westimation with other filters acting on the RGB domain. Exper-
use measures of angular dispersion that have been propdseghtal performance evaluation of the proposed edge detectors
in the statistical literature (sample circular variance, circul@&ong with edge detection experiments on noisy hue images
mean difference, circular range) to introduce edge operators &s¢ also presented in the same section. Conclusions follow.
angular data. We also proceed further by introducing three new
noise-robust extensions (the circular quasirange the modified [l. PROCESSING OFANGULAR SIGNALS
circular quasirange and the median-based circular quasirange)
of the notion of quasirange for angular data. Expressions #r Location Measures for Directional Data

the output pdf of the circular quasirange and the modified pirectional data can be represented as points on a unit circle.
circular quasirange are derived. An angular observatio# is represented by a poirt/; on a
This paper is organized as follows. Section Il containgnit circle centered at poin® such that the angle between
some basic notions and definitions from the theory of anguleris; and the horizontal axi® X, which is measured in the
statistics. Novel filter structures for the filtering of angular dateounterclockwise direction, equats The same observation
are introduced, and some interesting properties are derivedcém also be represented as a unit veddiv; [Fig. 2(a)].
Section I, we give definitions for angular measures of dispeBecause of the periodicity of angular data, the pdf of a
sion that can be used as edge detectors. Three extensions ofltfetional random variable is also periodic with a period of
guasirange for angular data are proposed. In Section |V, sitr. Measures of location for angular data should take under
ulations involving one-dimensional (1-D) signals are used tmnsideration their periodic nature. The classical measures of

My

M;

A




NIKOLAIDIS AND PITAS: NONLINEAR PROCESSING AND ANALYSIS OF ANGULAR SIGNALS 3183

location, which are proposed for use with data on a linejrcular mean deviationln the case of multiple sample median
depend on the choice of the zero direction on the circldirections, one of them will result in the global minimum for
Therefore, new measures of location that will be invariant {®), whereas the rest will be local minima. Therefatgcan be
the change of origin must be defined. Timean directiory,;  used to define a median for circular data that will be unique
[5] of an angular random variabke is defined as the phaseand, thus, useful in practice. The term arc distance median
angle of the resultant vecter + j3 = pe/#°, where (ADM) has been introduced in [12] to define the observation
. that minimizes{y, and we have adopted the same terminology.
a = Efcost], = E[sin6], p==FElcos(d —po)l (1) 140 output vector of basic vector directional filter (BVDF)
The sample mean directiomy of N observationd:,...,6y Proposed in [3] is the vector whose direction is the ADM of
represented by sample poinid;,..., My on a unit circle the directions of the input vectors.
centered at poin® is the direction of the mean resultant vector
R of the unit vectorsOM; - - - OMy [Fig. 2(a)]. Its value is B. Circular Filters: Definitions and Some Properties

given by The direction estimators that have been presented in the
& N previous section can be used to introduce filters for angular
To = arctan< ) Zcos 6;, S= Zsin 6;. signals. These filters will be calledrcular filters in contrast
; with the filters for data on the line that will be referred to as

(2) standard filters One-dimensionatircular meanand circular

Th | direction i t0 be th . medianfilters of size N = 2r + 1 can be defined by the
e sample mean direction is proven to be the max'mui%ut—output relations

likelihood estimator of location for data distributed according
to the von Mises distribution [5] y; = sample mean directidm;_,,...,2;, ..., i+,)  (7)

) _ 1 4, =ADM (zi_p, ., T4, o Tigs) (8)
9(0; 0. k) = 37735

0<8<2r, k>0, 0<pug<2r (3)

exp(k cos(f — o))
wherey; is the output value, and;_,., ..., z;, ..., 24, are
the input samples. Expressions for the 2-D counterparts of the
where Iy(k) is the modified Bessel function of the first kindpreviously defined filters can be easily deduced.
and order zero. The parametgy is the mean direction, We have proven that the output pfifpa: of the 1-D circular
whereas the parametdr is the concentration parameter ofmedian filter of length/V is given by
the distribution. 2% pom 27

The median directiong, [5] of an angular random variable fapu(z) = N f(z / / flwy)--- flwy_1)

distributed according to pdf is the solution of the equation
dwl dwn_1, 0<z<2n (9)

Sotm §ot+2m
/ J(0)df = /g f(6)do =1/2 (4) whereI(A) is the indicator function that equals unity when the

ot eventA holds and zero otherwise. In our caskjs the event
with the additional constraint that(&) > f(o + 7). The

sample median direction,,,., Of a set of sample points around B i Z [

the unit circle is the point that divides, by the diameter that — ’

passes through it, the rest of the points in two equal subsets = N1

[Fig. 2(a)]. The previous definition holds for an odd number o <Z I — Jwi — wi|| + |7 — |z — wkll)
of samples. The sample median direction for a set of angular p—r

observations is different from the “classical” median [11] of Vk, k=1---N—-1 (10)
these points. In the following, the terstandard mediamwill
be used for this median to distinguish it from the samplhich makesz the ADM of the N pointsz,w;,...,wy_1.

median direction. The sample median direction is not alway&e proof is given in Appendix A. The theoretical output pdf
unique. This can be an inconvenient property if we want @ a circular median filter applied on data distributed according
use sample median direction, in practice, for angular sigri@l von Mises distributionk = 4 for filter lengths N = 3,
filtering. Luckily enough, the following property [5] can beN = 5 can be seen in Fig. 3.

used to resolve this ambiguity. We have shown that ADM is the maximum likelihood
Let 6, ---O5 be a set of points and a direction on the estimator of location for the distribution with the pdf
unit circle. Then, the sample median direction minimizes the 1 )
following measure of dispersion around f(8) = melﬁ_l == 0<6<onr (11)
N
1 The proof is given in Appendix B.
dy = — arq6;, 5 ) .
0 Z a8:, @) ®) It can be easily proven that if at least+ 1 out of the
ard;, a) = = — |r — |6; — al| (6) N = 2r + 1 points inside the 1-D circular median window

have the same valug then the output of the filter is, which
where ar¢f;,a) is the smallest of the two angles that arés a property that also holds for the standard median. Therefore,
defined by the pointg and#; on the unit circledy is called inthe case of bilevel angular signals, the output of the standard
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16 T T T T . . where mod;(-) denotes the modulé®/ operator. This ordering
e, medn P scheme can be used to detect, and subsequently remove,
4 circ. median N=5 -+~ extreme observations. However, due to the periodicity of the

angular data, no minimum or maximum observation can be
specified. The proposed scheme can be better described as
N ordering in terms of centrality, the median being at the central
most position and the rest of the samples being ordered in

08+ 1 pairs of descending centrality

06 - . Oaceays (Opvm gy Opv yp)s (B o G )

0a | . CRRISIE (15)

oz b | Other ordering principles for angular data (angular Tukey’s

depth, angular simplicial depth, arc distance depth) have also
L been proposed in the statistical literature. Some of them are
6 summarized in [14]. A more detailed description of these
Fig. 3. Output pdf of circular median filters of lengfi = 3 and vV = 5  principles along with a discussion on their advantages and
for input data distributed according ko= 4, po = 7 von Mises distribution. disadvantages can be found in [12]. It is worthwhile to observe
that the notion of outliers is somewhat different for circular

median and the circular median are identical and equal to tf@f@ because angular distributions have bounded support. On
most frequent sample. As a result, a number of properties tia€ line, the more extreme the valuef an outlier, the greater
hold for the standard median on bilevel signals [13] also appije distance from the main data mass. However, in the case
to the circular median filter. The circular median filter haS' Circular data, there is limited space for an observation to
edge preservation properties similar to those of the stand@¥flie. Consider, for example, the following observations: 5
median. It does not corrupt an edge modeled as step functidf. 33 40 50 351. If these observations represent data on the
In contrast, the circular mean smooths a step edge to a raffi§, then the point 351 can be safely recognized as outlying.
function. Furthermore, the circular median filter effectiveljiowever, if these numbers represent angular data (in degrees),
removes impulses in contrast with the circular mean filteif}€n 351 is in perfect agreement with the rest of the data.
which fails completely in this type of noise. The probability’Ue to the bounded support of angular data, outliers can be
of correct signal reconstruction for the circular median filtef@sily detected only when the observations are sufficiently
of length IV, in constant signal areas corrupted with impu|sivgoncentrated around a particular point. The angular deviation
noise having probability of occurrenpeequals the probability (6) between a data point and the population sample mean or

that less than half of the observations inside the medig#edian direction can be used to tell whether the observation is
window are corrupted by the noise outlying or not. Four statistical tests for outliers among angular

data can be found in [15]. With certain modifications, some of
/N these statistics can be utilized in angular data ranking.
P(correct reconstructiony Z <k )pk(l — p)N_k. (12) Having defined the way that the circular data are ordered,
k=0 the derivation of the various-order statistics filters is straight-
ﬁrward. For example, the 1-Bircular a-trimmed mean filter
1] of length N = 2 + 1 has the definition

0 1
0 1

N-—1

In order to define general order statistics filters for angu
data, we must introduce the notion of angular data orderi
The new ordering scheme should take under consideration the y, = sample mean directic(m[(y,\url], e T[N
periodic nature of the data. This requirement inhibits the use van) 0< <05 (16)
of standard Cartesian ordering. Furthermore, the new scheme [N=an] - ’
should be coherent with the definition of sample mediamhereaN + 1, N — «N are considered to be integers, and
direction. An ordering scheme that meets the above needsjg are the ordered input samples_,.,. .., z;,. Parameter
the following. « controls the number of the smaller and the bigger samples

Let us denote bydj; the kth ordered sample on thein the filter window that will be rejected as outliers. Another
circle. Letd,0,,...,0x be samples distributed according tmrder-statistics-based filter that can be easily modified to
some circular distribution, and Ié.),6),...,6x) be the handle angular data is the modified trimmed mean filter [11].
Cartesian ordered samples, i.e., The 1-D circular modified trimmed mea(CMTM) of length

N = 2v + 1 can be defined as
Oy <) < < by (13) N
y; = sample mean directidm; 5 | ardz; 41, Tmed) < ¢
We calculate first the arc distance medi@p.q = H[M]. —v<k<y) (17)
Let us suppose thdt,.q corresponds td;). The rest of the

ordered samples can be defined by where Tmed |s the_ADM of samplesm_,,,...,xiJr,,. The
circular modified trimmed mean filter excludes samples that
o N -1 _N-1 differ considerably from the local circular median. The number
6 o NELy — e(modv\;(i—l—k))v - S k S (14) . .
(k=] / 2 2 of rejected samples is controlled by the parameter
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(b)

Fig. 4. (a) “Pepper” test color image, si266 x 256. (b) Hue color component of test image “Pepper.”

Ill. ANGULAR SIGNAL EDGE DETECTION All the above measures of dispersion can be used to detect
angular edges. For example, a 2-D edge detector for angular
A. Measures of Angular Dispersion images that is based on the circular mean difference can be

Circular measures of dispersion can be used as edge ‘&%‘?”ed by the input-output relation

tectors for angular data since edges are areas having Iarggij = circular mean differende; .. j+s;(r,s) € A) (23)
local signal variance. Theircular variance[5] of an angular

random variablé is such a measure. It is defined as where A is the edge detector windowk; . ;45 are the input
samples inside this window, ang; is the detector output.
Vo =1 — Elcos(6 — po)] (18)
where i is the mean direction of. The sample circular B- Circular Quasirange
varianceS, of N angular data pointXy,..., Xy, 0< X; < Unfortunately, the edge detectors described in Section IlI-A
27 takes values in the intervdd, 1] and is defined as have poor performance when acting on noisy angular signals.
N This is illustrated in Fig. 5, where the output of fJax 5
1 _ . . .
So=1—— ZCOS(Xi — Xo) (19) circular mean _dn‘ference edge d_etector operating on the.hue
N — component of image “Pepper” (Fig. 4) corrupted by impulsive

_ o _ noise acting independently on each RGB channel can be seen.
where.X, is the sample mean direction (2). Thiecular mean |n, the following, we shall introduce extensions of the circular
difference D [5] is another useful measure of dispersion. liange, i.e., circular quasiranges, that are suitable for edge

is defined by detection on noisy angular signals. Their big advantage is
1 NN that they allow noise suppression to be done along with edge
Dy = ~5 Z Z ara X;, X;) detection, thus making the edge detector operator more robust.
N i=1 j=1 Noise suppression is achieved by leaving out a certain amount
1 XX of extreme points (that depends on the order of the quasirange).

= S Hr— I —1Xi - X511} (20)  In the case of data on the line, thth quasirange ofV

i=1 j=1 observations is defined by
where ar¢X;, X;) is the deviation (6) between two angles Ty = T(N—i) — T(i+1)- (24)

X; and X;. The circular range is defined as the length of

the smallest arc that includes all the sample observatioh@€ first way to extend this definition to circular data is by
[Fig. 2(b)]. The circular range can be evaluated as making use of the circular range (21). The circular quasirange
w,; of orders, (0 < 4 < (N—1)/2) for N angular observations

w =27 —max(11,...,Tn) (21) (W odd) can be found by evaluating the circular rangend
“stripping” out ¢ data points from each of the two ends of

f& arcw. The arc that includes all data points except for the

Th = Xy — Xay, k=1,...,.N—-1 2 - i points that have been rejected [Fig. 2(b)] will be called

Ty =2 — X(v) + X (22) the ith-ordercircular quasirange(CQR). For: = 0, CQR and

circular range (21) are equivalent.
and Xy, X(a, ..., X(n) are the Cartesian ordered directional The evaluation of the output pdf for the circular quasirange,
samplesXy, Xo,..., Xn. when this is applied on a noisy angular edge modeled as

whereT}, are measures of the arcs between adjacent samp{
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Fig. 5. (a) Hue component of test image “Pepper” corrupted by 10% impulsive noise of impulse value 255 acting independently on each RGB channel.
(b) Output of a 5x 5 circular mean difference edge detector (thresHbld= 28).
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Fig. 6. Theoretical (solid line) and experimental (dashed line) (a) mean and (b) variance of the response of a circular quasirange edge de&ctor of ord
i = 1and N = 5 on a step edge corrupted by impulsive noise of constant impulse value.

a step function, is very cumbersome for a general noisemogeneous regions, clearly indicates that CQR can be used
distribution. In Appendix C, we present the output pdf of as an edge detector. Note that the mean output value at the
circular quasirange operator of lenghh and order:i for the edge is 60, i.e., the actual edge height.

tractable case of impulsive noise of constant impulse valye A second way of defining the circular quasirange is through
and probability of occurrence that corrupts a 1-D angularthe utilization of the angular data ordering that is based on

edge of the form the arc distance median. LeY[;;,..., Xy be N angular
samples ordered according to this ordering principle. Then,
s(k) = 4™ 0<k<l (25) the ith-ordermedian-based circular quasirang®BCQR) is
Mg L<k<M given by
Fig. 6 depicts the theoretical and experimental mean and W) = arGueq ( X144, X[N—i})

variance for a circular quasirange of order 1 and window

length NV = 5 applied on an edge-bearing signal (25) havinghere arg,.q denotes the arc on the unit circle that is lim-
M = 64,1 = 32, m,; = 40, and m,» = 100. The edge ited by points X, ;, X;y_;, and includes the arc distance
is corrupted by impulsive noise of impulse valug, = 120 median. It is obvious that in general; # w.. However,

and probability of occurrence = 0.1. It can be seen that simulations with noisy images showed that edge detectors
theoretical and simulation results are in perfect agreement. Thesed on CQR and MBCQR produce almost the same output.
large mean output value of the circular quasirange response oA third definition for the circular quasirange d¥V data

the edge, compared with the small mean output value in theints can be the following: We define asodified circular
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quasirange (MCQR) W, of order ¢ the smallest arc that os . T T T T T
contains all points except f@-4 successive points [Fig. 2(b)]. expermonial bt - |
For ¢ = 0, MCQR coincides with the circular range (21).

Modified circular quasirangéV; can be evaluated in the
following way: We order in the Cartesian way the directional
samplesX:, X, ..., Xy and evaluate arc lengthg, between
points beingA = 2¢ + 1 samples apart in a circular manner,
ie.,

T_{X(A-i—k)_X(k) 1<k<N-A
T 1on + Xmodw(a+h)) — Xy N — A<k<N

(26)
where mod,(-) denotes the moduldv operator.W; is then
given by

I ) W L 1 i

W; =21 — Tax = 20 —max(Ty,...,Tn).  (27) % p > 3 4 5 P

Since MCQRW; is evaluated using Cartesian ordering of datdg- 7. Theoretical (solid line) and experimental (dashed line) output pdf for
samples, the output pdf of the related edge detector in COI’ISt@Q&mOdmed circular quasirange of length = 3 and order: = 0 for input
signal regions corrupted by additive noise can be evaluated
using the theory of order statistics on the line. We have proven
that the output pdffyy, of the 1-D MCQRW; for i = 0 but results will be omitted because the resulting formulae are

(i.e., the circular range) for constant signal areas corrupted &her lengthy.

distributed according o = 4, o = = von Mises distribution.

zero-mean additive noise having pfif¢) is given by The theoretical output pdf of the circular range for length
N = 3 when the input data are corrupted by noise distributed
fwo(2) = fr,0 (27 — ) (28)  according to von Mises distribution can be seen in Fig. 7 along
with the experimental pdf. Using the derived pdf, we can
S (@)= N1 - </ / { Jlo =N evaluate the mean and variance of the edge detector output in
e — vy — &) (U — U — - — V2) constant signal areas and, consequently, choose an appropriate
threshold so that the output of the detector at background
- flv—un_1)f(v) dv} cu(2r — points does not exceed this threshold. Evaluation of the output
pdf for the actual edge region would be of equal importance.
— vy — - —UNn_1) w2z — 2T + V2 However, this is difficult to do since it requires order statistics
+oy_1)dvs - dun_1 + /’” ) /’” from dependent, nonidentically distributed random variables.
27
{ F— vyt — e — 3 — o) f( IV. EXPERIMENTAL RESULTS
0

A. Circular Filters

—ov @) flv = one) f(v) dv} In our effort to illustrate the operation of the proposed

u(2r — v —x— v — - — UN_1) circular filters and to demonstrate the inability of the standard

w(2r — 21 + v1 + V3 + - +UN_1)dv1 dvs filters to.handle angullar data, we have .conducted two sets
of experiments featuring 1-D angular signals. In the first

cedun_g + - / / { flv—=z experiment, a 1-D angular signal (one horizontal line of the hue
component of color image “Pepper”) [Fig. 8(a)] was corrupted

—un_g— - —v)f(v—x—vUN_2— - —V2) by impulsive noise of constant value F28nd probability of
occurrence 20% [Fig. 8(b)]. The output of the standard median
flv—x)f(v) d”} “u(2m — v —vp = - filter and the circular median filter applied on the noisy signal

can be seen in Figs. 8(c) and (d), respectively. The window

size for both filters wagv = 5. Note that the standard median

o dun_o +/ / { flv =2+ 2)f(v filter fails to reject the impulses that exist within the segment
that includes samples 60 to 120. This failure can be explained

—UN_2 — ) 2x—27r—|—vl + ot on_z2)dy

by the fact that the samples in this segment have values close to
— N1 mv) e flo = ov-) f(V) dv} 0° and 360, which are mistakingly not treated as neighboring
(21 — vy — - —un_1 —x) -u(2z — 2m + v, ~ ONES by the median filter. On the other hand, the circular

median filter successfully rejects the impulses in this area by
+ ---+vz\r_1)dv2---dv/v_1>. (29) taking into account the periodic nature of the signal. In the

second experiment, a 1-D signal (another line from the hue
The proof can be found in Appendix D. The pdf 8f; for component of “Pepper”) [Fig. 9(a)] was corrupted by zero-
1 > 0 can be derived using exactly the same methodologypean additive von Mises noise having concentration parameter
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Fig. 9. (a) Original angular signal. (b) Angular signal corrupted by von Mises noise. (c) Output of a standard mean filter having windéw=size
(d) Output of a circular mean filter of the same window size.

k = 6. [Fig. 9(b)]. The output of the standard mean filter antt is obvious that the standard mean filter destroys the angular
the circular mean filter (window siz& = 5) applied on the signal, whereas the circular mean filter achieves sufficient
noisy signal can be observed in Fig. 9(c) and (d), respectivehpise smoothing. In order not to misinterpret Fig. 9(d), bear in
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mind that due to the signal periodicity, samples close ta®360 TABLE |
are also very close to°0 O NoSE MOBELS CompUPTNG THERGE Golon
_ Tr_\e effecti_vene_:ss of the proposed cir_cular filters_ in the COORDINATES OR THEHUE COMPONENT OFIMAGE “PEPPER
filtering of directional data was further illustrated in two SOT0) T 594 L. 5 =TT [ 107 tmp2 107 05)
additional sets of experiments dealing with noise filtering in ™ mae. median 508 [ 395 | 28 NG 365 | 325
H H vector median -2, . 2.04 -1.8¢ -3.76 -2.76
the hue component of color images represented in the HS\G ottt e w0 |15 [
color space. HSV is a cylindrical color space that matches standard mediea 181 [ 310 [ 17 091 50| 0.9
. standard me 3.76 2.99 4.52 3.97 3.62 3.50
best the actual human perception of color [1]. Hue represSents i, medar | 525 v 5| 20 | V206 | 106 | 420
1 i 1 1 circular mean -3.61 -1.8L -2.80 0.65 -1.93 V 3.88
the angle around the vertical axis with red .bemg atd@reen et o 0T 60 | 298 —— ~t5 S
at 120, and blue at 240 The test color image “Pepper’ cic tr. mean02 || 346 | 372 | /29 138 3697 ] 3.66
. . . . CMTM 30° -3.46 -3.69 -2.86 -1.45 -3.66 -3.34
of size 256 x 256 was used for all simulations [Fig. 4(a)]. — s 6 | 510 % L g

The hue color component of “Pepper” (callbde imagerom

now on), scaled and represented as a gray-level image, can

be seen in Fig. 4(b). Due to the the periodic nature of huey one of the following types of multivariate noise:

both black and white pixels in this image correspond to red« additive zero-mean Gaussian noise having standard devi-
0°. Intermediate colors are represented as shades of gray. In ation & = 20 on each RGB channel;

both experimental settings, we tested the performance of the impulsive noise having constant value 255 and probability
proposed circular filters in the case of hue estimation on noisy of occurrence 5% on each channel;

color images. The reason for this investigation is that correcte additive zero-mean Laplacian noise with= 14 on each
hue estimation is important in many applications (e.g., in channel.

graphics, printing arts, or as a preprocessing step for luminar@pviously, due to the nonlinear nature of the RGB-HSV
invariant color object segmentation). At this point, we shajtansformation, the noise pdf on the hue domain differs from
make clear that comparing circular filters with RGB domaithe noise originally imposed on the RGB channels. In the
filters in terms of noise suppression in the RGB domain woutthse of multichannel filters operating on Cartesian coordinates,
be unfair since circular filters operate only on hue, leavirighages were filtered in the RGB domain and then transformed
noise imposed on saturation and value intact. However, if fub HSV in order to assess filter performance in hue estimation.
color image filtering is required, the proposed circular filterShe following filters were used for comparison:

can be easily integrated with magnitude filters to devise a joint. marginal (componentwise) median;

direction/magnitude filtering scheme like the one proposed in. yector median:

[3]. Optimal L filters for the magnitude of vectors corrupted « componentwise arithmetic mean.

by additive noise have been proposed in [16]. In the case of circular filters, noisy RGB images were trans-
To overcome the fact that standard performance measuf&$,eq to HSV, the hue component was filtered, and their
cannot be used to evaluate noise suppression in the formance was evaluated. The circular filters that were tested
component due to the periodic nature of the angular data, Weyyded circular median, circular mean, circular trimmed
introduced modifications of the well-known noise reduction iny,aan filter (@ = 0.1ora = 0.2), and circular modified
dex (NRI) and signal-to-noise ratio (SNR). The modificationg;,med mean withy = 30° or ¢ = 100°. The standard
make them suitable for circular data by substituting standagghgje-channel mean and median filters were also used to filter
signal difference with a measure of angular difference, i.e., th§e on the HSV domain. The window size for all filters in

deviation (6) between two angular data points. The resultiRgis set of experiments wass3 3. The results of the filtering
performance measures will be callesicular noise reduction \yith respect to NRI are summarized in Table I. The use of

index (NRI.) andcircular signal-to-noise ratiolSNR.) SNR. instead of NR! yields very similar results (the ranking
of the various filters remains the same), which will not be
Yol = = |y(k) — s(k)]|) reported here due to lack of space. As expected, the standard,
NRI. = 10log - (0 single-channel d median filt i hue had
S — |7 — Ja(k) — s(B)]]) single-channel mean, and median filters operating on hue ha
2 very bad performance; actually, standard mean destroyed the

SNR. = 10log 2 5(k) 5. (31) image. For Gaussian noise, componentwise mean filtering in
27— | = ly(k) = s(B)[]) RGB, which is the MLE for this type of noise in Cartesian
coordinates, gave the best hue noise suppression, closely
In the previous definitionsy(k), x(k), s(k) are the filtered, followed by circular mean. The circular trimmed mean filter
noisy, and original angular observations, respectively. with trimming coefficiente = 0.2 gave the best results in the
In the third set of experiments, we tested the performancefiifering of Laplacian noise. Finally, in the case of impulsive
the proposed angular data filters in the case of hue estimatimise, circular median performed better than vector median.
on color images that were corrupted by various noise modelsThe fourth set of experiments aimed at investigating the
in the RGB color space. Two filter classes were tested apdrformance of the circular filters in the case of hue estimation
compared: multichannel filters on the RGB domain and circin color images where noise was applied directly on hue.
lar filters directly on hue. The methodology that was adoptedthough this scenario might not be realistic in the case of
was the following. The original RGB image was first corruptedolor image data (no sensor produces hue data), we have
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included these experiments for two reasons: 1) To give readé&s Pp increases and’r, Pxp tend to zero,R(7T") tends
an idea of the behavior of the proposed filters in other typestof zero. On the other hand, d%, decreases andr tends
angular signals where such noise models might arise; 2) sotoeunity, R(7) tends to infinity. The smaller the value of
noise types cast on the RGB domain might result in hue nois%7T"), the better the performance of an edge detector. The
that can be modeled using one of the pdfs discussed bellaptimum thresholdl,,,; is the one that minimize&(T’). In
Test image “Pepper” was transformed to HSV, and its hilke case of an efficient edge detector, the output pdf of the
component was corrupted by the following types of noise: background points will be well separated from the output pdf
» impulsive noise of constant value 12(yreen) and prob- of the edge points. In this situation, the Optimum threshold
ability of occurrence 10% (denoted as imp1 in Table 1)Z totally separates the two groups of points (edge points
« impulsive noise with uniformly distributed impulse valueand background points), achieving a small value R{f’).
and probability of occurrence 10% (denoted as imp2 ihhe performance of different edge detectors on the same

Table I); type of noise can be assessed by comparing the minimum
« zero-mean additive von Mises noise with concentratiofflu€ Rmin = R(Topt). In our experiments, we uselyi,
parameterk = 6. to evaluate the performance of CQR and MCQR edge detec-

Filtering was performed using the filters and performance ev&frs of various orders on synthetic hue edges. Comparisons

uation procedures described in the previous set of experimef§re limited only to these two detectors because, as it was
For all filters, the window size was 8 3. The results can be mentioned earlier, edge operators for data on the line (Sobel,

seen in the second part of Table I. As expected, Von Misk&Place, Canny, etc.) produce erroneous results when applied
noise was filtered more effectively by the circular mean filtePn @ngular data. A 2-D three-channel RGB signal whose cross

which is the maximum likelihood estimator for this type of€Clion contains a step edge on the red and green channels
noise. On the other hand, the circular median proved to be #8S Used in the simulations as

best choice for the removal of both kinds of impulsive noise Red k) 80 0<k<M/2

on hue. T80 M/p2<k<M

_ Similar results were _obta_ined Whe_n we applieql the circular 50 0<k< M/2 (33)

filters on the vector direction of noisy vector fields. These Greerk) =y ¢, MP2<k<M

results are not presented here due to lack of space. Blue(k) = 20.

If we transform this signal to HSV, we obtain a hue edge

o . whose cross section is
The quantitative evaluation of edge detector performance, 0
300 0<k< M/2

especially in the presence of noise, is not an easy task. Various H(k) = { o
guantitative criteria have been presented in the literature. In 90° M/2<k<M.
this paper, we have used a quantitative criterion similar favo types of noise were used to contaminate independently
the edge detection error ratd”; described in [17] in order each of the three channels of the RGB signal: additive Gauss-
to evaluate and compare the performance of the proposgfl noise of zero mean and = 15, o = 25 and impulsive
edge detectors for various noise types. Usually, the outmiise of constant value 255 and probabilities of occurrence
of an edge detector is thresholded, and pixels with value over— 10% and p = 20%. After that, we transformed the
the threshold are considered as edge points. The thresholdiagy signal to the HSV color space and applied the circular
operation is therefore crucial for the performance of thguasirange and modified circular quasirange edge detectors of
edge detector, and the choice of the optimum thresigldd various ordersi on the hue signal using a window of size
for a certain type of noise must be done carefully. In thg x 3 or 5 x 5. Results can be seen in Fig. 10, whétgi,
following, we shall define three threshold-dependent quantitigs drawn as a function of order The performance of the
that characterize the performance of an edge detector. Thectors increases(,;, decreases) with until a maximum
probability of false alarnP’r(7") for a given threshold@”is the s reached and then decreases. This decrease in the detector
probability of a nonedge point to be classified as an edge, i.gerformance is due to the fact that large values of orider
the probability the output value of the detector at this point i@estroy the edge. The order for which the best performance is
be above the specified threshold. The probability of detecti@g@hieved depends on the noise power. The bigger the power of
Pp(T) is the probability that an edge point is detected ae noise, the greater the order must be for the edge detector to
such. Finally, the probability of nondetectidip(7’) is the be able to reject the noisy points. In addition, for the same type
probability an edge point not to be detected as such, i.ef.noise, MCQR achieves its minimum,;, value for smaller
to be classified in the background. An edge detector h@gleri. Diagrams also show that the % 5 edge detectors
good performance i’p(7') is close to unity (and, therefore,have better performance than thex33 counterparts and that
Pyn(T) close to zero) andPr(T') tends to zero. In order the performance decreases with the noise power. Comparing
to monitor all three characteristic quantities, we construct theCQR and CQR edge detectors, we can say that the two
ratio detectors have almost the same performance for hue edges
that correspond to RGB edges corrupted by Gaussian noise.
R(T) = Pr(T) + PND(T). (32) MCQR is better in the case of hue edges resulting from RGB
Pp(T) edges corrupted by impulsive noise, especiallyfoe 20%.

B. Angular Data Edge Detectors

(34)
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Fig. 10. Figure of merit?,,;, for CQR and MCQR angular edge detectors of window 8ize3 and5 x bapplied on a noisy hue edge, for various orders
The hue edge resulted from the HSV transformation of an RGB edge corrupted by the following noise types: Gaussian noise of standard dewatién (a)
and (b)o = 25, impulsive noise of constant value 255 and probability of occurrence é€)10% and (d)p = 20% on each RGB channel.

(@) (b)

Fig. 11. (a) Output of 5x 5 CQR edge detector of order= 4 applied on the hue component [Fig. 4(b)] of color image “Pepper” (threshoid 15).
(b) Output of 5x 5 MCQR edge detector of ordér= 5 applied on the hue component [Fig. 5(a)] of test image “Pepper” corrupted by 10% impulsive
noise of impulse value 255 acting independently on each RGB channel (thréBheid18).

The output of the proposed edge detectors applied on the V. CONCLUSION

hue cc_)mponent of color images can be seen in Fig. 11. BOthIn this paper, we have proposed a number of digital filters

edge images are thresholded by the threshold that gave the . . . .
: Ifcular mean, circular median, circulat-trimmed mean

best visual results. It can be seen that the performance of ﬁe d circul dified tri d filter f |

proposed edge detectors in the presence of noise is very g B'ifr and circular modified trimmed mean filter) for angular

It is worthwhile to note here that hue edges do not necessarffgnals. Some significant properties have been derived for the
coincide with edges found by applying color edge detectofdcular median filter. The application of those filters in the

in the RGB domain. For example, edges caused by highligfi#éering of noisy 1-D angular signals and hue images gave
or shadows will be more prominent in RGB edge maps th@®vod results for a variety of noise types. Measures of angular

in hue edge maps. dispersion have also been used to propose edge operators for
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angular data. Three ways to extend the notion of quasirange APPENDIX C

to circular data were introduced, and the theoretical output\ya will derive the output pdf of CQR applied on a noisy
pdf for two of them was derived. Those circular quasirang%age of the form (25), assuming tHaK m.; < 1 < my, <
were used successfully as edge detectors on hue images. THEIL (4 that when aII'three kinds of_poiribs ) ms b m nare

comparative performance in noisy edges has been evaluaﬁ?gsent the circular range equalsm,, — m., i.e
. . B . B ki n sl - "
using quantitative criteria.

My — M1 = min{m, — ms1, 27 — (Mg — Ms1)

APPENDIX A 2 — (my, — ms2)}. (C.1)

Suppose thatX;, X5,... Xy are V ii.d angular random Analogous expressions can be found for all the other cases.

:ana:ples thzt ;re ?(';;”bmed a;zcordlng df()tw) d|str|bl§|on fWe will first derive the output for the case where the window
unction, and denotelapym as the arc distance median Ol e eqge operator is on the constant signal region on the
those variables. The evel® = {2z < Xapm < x + dz}

. . N left of the edge. LefS, I be the number of signal and impulse
can occur if one of the random variables, eJ;, lies in the 9 ! Y '9 impu

interval (z, z + dz), and the values of the rest — 1 variables points, respectively, that exist inside the window. It is obvious
r,x XL — .- . .

! A . -~ thatS+1 = N.Th bability of h tl |

are such thak; minimizesdy in (5). Therefore, the probability ato+ e probability of having exactly impulses

o he wi .
of B, which equalsfapnm(x) dzx, is given by inside the window is

Prob(B) = fapum(z)dz = N f(z) dz /0277 /0277 . /0277 P = G)pl(l —p)N L (C.2)

The outputy of the detector can take only two values i.e.,
r—)I(A) dwy - - - dwy— Al :
flwi) - fluy-)I(A) dwy - --dwy—1 (AL) y = 0 and y = ardm,1, m,). The probability of the event
and consequently y = 0 equals

27 27 27 i N
faoma) =N [ [ [ ) Z(ﬂf )pku—p)Nu 3 (j,f )p’“u—p)N’“ (€3)
o flon—DI(A) dwy - dwy_y. (A2)  F=° =N

s . . ._whereas probability of the evept= ar is
Multiplicative constantV appears in the previous expression P y 4 Armst; mn)

because each of th& variables is equally likely to be the Nty . Nk
ADM. > < )p (1-p)N~ (C4)
k=i+1
APPENDIX B The same analysis holds for the case where the edge operator
It can be easily proven that (11) satisfies window is over the constant signal area on the right side of
o the edge. The only difference is that now, the output can be
F(6)do = 1. (B.1) either O or arGmsz,my, ).
0 The analysis is more complex when the window is on the

Therefore,f(6) is appropriate for pdf of an angular variable2ctudl €dge. LeNy, N; be the number of points in the window

The maximum likelihood estimatdF, of location for a given that belong to the homogeneous regions left and right of the
distribution minimizes step edge, respectively. In addition, gt S; be the number of

n impulses and signal points that exist in the part of the window
_Zln F(6; —Ty). (B.2) that lies to_ the left side pf the e_dge., and Bt S, be the
= number of impulses and signal points in the part of the window

o ) ) ) that lies to the right side of the edge. In this case
By substitutingf(¢) in the previous expression, we have

Ni+No=N, L1 +5 =N, IL+5=N, (CbY)

- 1
- Z {111(2(1 _ Cw)> + w0 = Tl - W} will hold. For a fixed value ofN., N, i.e., for a certain
- " position of the edge detector window over the edge, the
= nln(2(1 — ™) + n<7r 1 Z I — |6; — Tn||>- probability of the event{I; impulses exist in the part of the
n = window on the left side of the edge ahdimpulses in the part
(8.3) of the window on the right side of the edgis given by the
expression

N N. G
PIl,IQ _ <Ill> <122 >p(11 +12)(1 _p)(]\ I 12). (C6)

For some values of, I», the points inside the window can
Since the other term of the sum is constant, ADM minimizdve only two different values. These cases are the following.
(B.2), and therefore, it is the MLE of location for this « I; = I, = 0. The probability of this event i§l — p)™.
distribution. In this case, inside the operator window exiét points

In Section II-A, we have seen that ADM minimizes

1TL
do=7m— — —10; — df|. B.4
o=m n;h 16— al] (8.4)
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of valuem,; and N, points of valuem,z, and the output wherew(x) is the unit step function. The joint pdf of alV
of the edge detector can be either 0 or(atg, ms2). random variablesl} in (26) for orderi = 0, i.e., A = 1,

e Iy = Ny, I = Ns. In this case, all points inside thecannot be evaluated directly sin@g are linearly dependent,
operator window are impulses of valug,, and therefore, and their Jacobian is zero. Instead, we evaluate the joint pdf
the output of the detector is zero. The probability of thief the V — 1 random variable§},,k =1,..., N — 1 by using
event isp™. an auxiliary r.v.v = X(y). Using the formula for the joint

e Iy = Ny, I, # N>. The probability of this event dependspdf of functions of random variables [19], we can prove that
on I, and is given by the joint pdf ofv, 77, ..., Tx_1 will have the form

P (fj?)pfza -k, €7 Jemem
2 IN!'U(T1)"~U,(TN,1)'f(U—TAf,1—~~~—T1)

In this case, the points inside the window whose value X flo=Tn_y— - —To) - flv—Tn_1)f(v).
is m,, are Ny + I, and the points having value,, are (D.2)
Ny — I,. The output of the detector is in (C.8), shown at '
the bottom of the page. The probability gfbeing either The joint pdf of 73, k = 1,..., N — 1 can be easily derived
0 or ardm.,, m,2) is given by the sum of (C.7) for all, by integrating (D.2) with respect to as
satisfying the corresponding inequalities in (C.8). o
* Iy = Ny, I # N;. This case can be handled exactly like fr, 7, , = N!-w(Ty)---uw(Tn-1)- flo—TNn_1
the previous one. 0
For all the other value combinations Bf, I», the points inside — o= 1) fo = Tyv-1)f(v)dv. (D-3)
the window can have one of three different values, he.i, Using the previous result and the fact t@ﬁ Ty, = 27, we

ms2, My, and the output of the edge operator can take 0@@n write the joint pdf of allZ; in the form
of four values as in

oo, .oy =NVw(y) - w(@noy) 62 =Ty — -+ - —In)
Vi = Mp — Mg, VYQ =My — Ms2 27
Vs :07 Vi=mg —m,. ) f(U_TN—l — —Tl)f(U—TN_l
0
In this case, (C.9), shown at the bottom of the page, holds for — =) flo—Tn_1)f(v)dv (D.4)

the detector output, wheté; are the corresponding events. As

a consequence, the probability of the event V; is given by where §(x) is the delta function. Now, we can proceed in

finding the pdf of the maximunT}.. Sincel; are dependent

Mt et random variables, we cannot use the well-known formula for
Py, = Z Z Pr, p,X(A;), for (I1,I2) #(0,0) (C.10) ihe pdf of order statistics of iid random variables [18]. Instead,
5L=0 ;=0 the probability theZ;, to be maximum and equal to will be
whereI(4;) is the indicator function that equals unity wherevaluated for eacl separately. The probability a certaif
the event4; holds and zero otherwise. to be maximum amondy, ..., T and equal tor equals the
probability of 7}, to be z and all the other; to be smaller
APPENDIX D than =
Suppose that we hav# i.i.d. angular variablesy, ..., Prol(7} = z and 7}, = max(7%,...Ty))
X . The joint pdf of the Cartesian ordered random variables — Prol(T}, = x and 7} < « and

X1y,---,X(ny IS given by [18
) () g y[ ] <A 1<J}andi+1<J} . aﬂdTN<J})

XX (@150 TN)
=Nt f(z)f(@2) - flen)u(ze—21) - wlzy —2N-1) - dx-/ / Iro (Vs vi
(Dl) Vi1 - UN dvl d% 1 dU7+1 dUN (D5)
0 O< N +L<¢e or N—i<Ni+I, <N
y_{aro(mn,mSQ) i+1<N +L<N—i—1 (38)
Vi i<I1+1I, and 1< Ny — 14, (Al)
Vo i<+ 1 and N1—11Si<N—Il—IQ, (AQ)
Y= Vo (i<li+1, and N—-L — I, <i)or (C.9)
(Il+12Si<N2+Il and N1—11Si<N—Il—IQ)OI' ’
(Na + 1, <i < N), (A3)

Vi Hh+L<i<Ny+ 14 and i<N1—Il, (A4)
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max 1 max 955_959-
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