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Order Statistics Learning Vector Quantizer

1. Pitas, C. Kotropoulos, N. Nikolaidis, R. Yang, and M. Gabbouj

Abstract—In this correspondence, we propose a novel class of learning
vector quantizers (LVQ’s) based on multivariate data ordering principles.
A special case of the novel LVQ class is the median LVQ, which uses either
the marginal median or the vector median as a multivariate estimator of
location. The performance of the proposed marginal median LVQ in color
image quantization is demonstrated by experiments.

1. INTRODUCTION

Research in neural networks (NN) [1], [2] is a rapidly expanding
area that has attracted the attention of scientists and engineers
throughout the last decade. A large variety of artificial neural net-
works has been developed based on a multitude of learning techniques
and having different topologies [2]. One prominent example of
neural networks is the learning vector quantizer (LVQ). It is an
autoassociative nearest-neighbor classifier that classifies arbitrary
patterns into classes using an error correction encoding procedure
related to competitive learning [1]. In order to make a distinction
between the (standard) LVQ algorithm and the proposed variants that
are based on multivariate order statistics, the LVQ algorithm will be
called linear LVQ algorithm hereafter.

Let us assume a sequence of vector-valued observations z(n) =

(z1(n),---,2p(n))Y where n denotes discrete-time index and
p denotes the dimensionality of vector-valued observations. Let
{wi(n): i =1,2,--- K} be a set of variable p x 1 reference vectors

that are randomly initialized. Competitive learning tries to find the
best-matching reference vector w.(n) to x(n) (i.e., the winner)
where ¢ = argmin, ||z — w;|| with || - || denoting the Euclidean
distance between any two vectors. In the linear LVQ, the weight
vectors are updated as blocks concentrated around the winner using
the recursive relations [4] as follows:

wi(n+ 1) =wi(n) + a(n)[z(n) — wi(n)]
wi(n+ 1) =wi(n) VigN(n)

Vi € No(n)
ey

where a(n) is the adaptation step sequence and A (n) denotes a
neighborhood set around the winner. Equation (1) implements an
unsupervised learning procedure. In order to obtain optimal global
ordering, A%(n) has to be wide enough initially and to shrink
monotonically with time [1], [4]. Variants of LVQ implementing
supervised learning have also been proposed [4]. Several choices
of the adaptation step sequence a(n) (called schedules) are possible
[5]. The recall procedure of LVQ is used to determine the class C,
represented by W, with which the vector of input observations is
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most closely associated, i.e.
#(n) €C; it [lz —Wy|| = min{|lz — @)} @

where W; denotes the weight vector of the ith neuron after the
convergence of the learning procedure.

When the learning procedure reaches equilibrium, it results in a
partition of the domain of input vector-valued observations called
Voronoi tessellation [6]. This means that the input space is partitioned
into regions (called Voronoi neighborhoods) bordered by hyperplanes,
such that each region contains a reference vector that is the nearest
neighbor to any input vector within it. Furthermore, the reference
vector of a Voronoi neighborhood is the centroid, e.g., the sample
arithmetic mean of all input vectors belonging to that neighborhood.
From this point of view, LVQ can be classified as a method that
belongs to the class of K-means algorithms [7].

It can easily be seen that the reference vector for each class
i =1,---, K attime n+1 is a linear combination of the input vectors
z(j) j = 0,---,n that have been assigned to class i. Moreover, it
can be shown that only in the special case of one data class, which
has a multivariate Gaussian distribution and for the adaptation step
sequence a(n) = 1/(n + 1), the winner vector is the maximum-
likelihood estimator of location (i.e., the arithmetic mean of the
observations that have been assigned to the class). Neither in the
case of multiple classes that are normally distributed nor in the case
of non-Gaussian multivariate data distributions does the linear LVQ
yield the optimal estimator of the cluster means. In general, linear
LVQ and its variations suffer from the following drawbacks: 1) they
do not use optimal estimators for obtaining the reference vectors
w;,¢ = 1,---, K that match the maximum likelihood estimators of
location for the pdf f:(x) of each class i = 1,---, K; and 2) they do
not have robustness against the outliers that may exist in the vector
observations, since it is well known that linear estimators have poor
robustness properties [8].

In order to overcome these problems, we propose a novel class
of LVQ’s that are based on order statistics (e.g., the median) which
have very good robustness properties [8], [9]. In the case of LVQ’s,
we should rely on multivariate order statistics [10]. In this novel
class, each cluster is represented by its median, which is continuously
updated after each training pattern presentation.

Based on multivariate data ordering principles, we introduce the
marginal median LVQ (MMLVQ), the vector median LVQ (VMLVQ)

and the marginal weighted median (MWMLVQ) in Section II. The .

performance of the proposed MMLVQ in color image quantization is
studied in Section III. Conclusions are drawn in Section IV.

II. LEARNING VECTOR QUANTIZERS
BASED ON MULTIVARIATE DATA ORDERING

The notion of data ordering cannot be extended in a straightforward
way in the case of multivariate data. There is no unambiguous, uni-
versally agreeable total ordering of N p-variate samples 1, - -, zx,
where z; = (21:,22:,++,2p;)7,4 = 1,--+, N. The following so-
called subordering principles are discussed in [9] and [10]: marginal
ordering, reduced (aggregate) ordering, partial ordering, and condi-
tional (sequential) ordering. In marginal ordering, the multivariate
samples are ordered along each one of the p-dimensions as follows:

Ti) S Tiz) S S xiny J=Loep
i.e., the sorting is performed in each channel of the multichannel
signal independently. The ith marginal order statistic is the vector

1049

z(;) = (T1(s), Tai),***» Tp(sy) - Accordingly, the marginal median
is the vector &meq defined by

(1'1(p+1)7 ) xp(u+1))T
for N=2v+1
T1() + T1w41) Tp(w) + Tp(v+1) ) T 3

Lmed =

5 S 5
for N = 2v.

It can be used in the following way in order to define the marginal
median LVQ. Let us denote by X;(n) the set of the vector-valued
observations that have been assigned to class ¢,7 = 1,---, K until
time n— 1. We find at time » the winner vector w.(n) that minimizes
||z(n)—w;i(n)||,i =1,---, K. The marginal median LVQ (MMLVQ)
updates the winner reference vector as follows:

we(n + 1) = median {z(n) U X.(n)}. 4

The median operator is given by (3). Thus, all past class assignment
sets X;(n),i = 1,---, K are needed for MMLVQ. MMLVQ requires
the calculation of the median of data sets of ever increasing size,
as can be seen from (4). This may pose severe computational
problems for relatively large n. However, for integer-valued data,
a modification of the running median algorithm proposed by Huang
et al. [13] can be devised to facilitate greatly median calculations
by exploiting the fact that the marginal median of the already
assigned samples X;(n) is known. This algorithm leads to very
large computational savings. It must be noted that, although MMLVQ
employs the entire past data set for the calculation of the new weight
vectors, the algorithm does not require the storage of the past data
samples. Only the storage of the marginal histograms for each class is
needed. The asymptotic properties of MMLVQ have been studied in
[14]. It has been proven that MMLVQ outperforms the (linear) LVQ
with respect to the bias in estimating the true cluster means both for
a contaminated Gaussian data model as well as for a contaminated
Laplacian data model. As far as the mean squared estimation error is
concerned, it has been proven that MMLVQ outperforms the (linear)
LVQ in the case of a contaminated Laplacian data model.

Another definition of the multichannel median is based on R-
ordering principles. It is the so-called vector median proposed in
[12]. In R-ordering, the various data z; are ordered according to
their distances from a predefined point. That is, multivariate ordering
is reduced to 1-D ordering. The vector median is defined as the
VEeCtOr Trmeq that minimizes the L, error norm d(z;, Tmed) =
SX, |#i — Zmea| under the condition that it belongs to the set
{z;;i = 1,---, N}. In other words,

N

N
Yoz = Fmeal <D Jmi—z|  j=1,,N. (5
=1

i=1

The vector median IVQ (VMLVQ) uses the following formula to
update the winner vector w.(n) at step n:

w.(n + 1) = vector median {z(n) U X.(n)}. 6)

The vector median operator in the previous expression is the one
defined in (§). Other distance measures (e.g., Mahalanobis distance)
can be used in (5) instead of the L; norm as well.

Another possible extension results by employing the weighted me-
dian (WM) filter [11]. The marginal weighted median LVQ (MWM-
LVQ) can be defined as follows. Let us denote by w;(n) =
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Fig. 1. Application of linear LVQ and marginal median LVQ in color image quantization in the presence of mixed additive Gaussian and impulsive noise
(codebook size = 32). (a) Original image. (b) Noisy image used in the learning phase. (¢) Quantized image produced by the recall phase of the linear LVQ
on the original image. (d) Quantized image produced by the recall phase of the MMLVQ on the original image.

(wir(n), wiz(n),- -+, wip(n))T the winner vector, ie., ¢ = 4. In
MWMLVQ, the elements of the winner vector are updated as follows:

wi;(n + 1) = median{Cio ¢ z;(n), -+, Cin 0 z;(0)} 7

where (Cio, Ci1,- -, Cm)T is the vector of the duplication coeffi-
cients for the ith class. The duplication coefficients can be chosen
in such a way so that they weigh heavily the desired section of the
observation data (i.e., the new observations or the old ones). If a
weight C;; is zero, this means that the corresponding sample z(n —1)
has not been assigned to the sth class.

III. SIMULATIONS

In practice, 8 bits are used for representing each of the R, G,
B components in color images. That is, 24 bits are needed for

each pixel in total. Color image quantization aims at reducing the
number of RGB triplets (which are 2?4 at most) to a predefined
number (e.g., 16 up to 256) of codevectors so that the image can be
displayed in limited palette displays. Several algorithms have been
proposed recently [15]-[18]. In the following, we shall focus on the
performance of the marginal median LVQ. A set of experiments
have been conducted in order to assess its performance in color
image quantization and to compare it to one of the well-known
vector quantization (VQ) methods such as the Linde-Buzo-Gray
(LBG) algorithm [19], [20] and the linear LVQ. Moreover, we aim
at studying the robustness of the codebooks (i.e., color palettes)
determined by the above-mentioned VQ techniques. To this end,
we have also included noisy color images as inputs to the learning
phase.
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Fig. 2. Application of linear LVQ and marginal median LVQ in quantizing the 50th frame of color image sequence Trevor White in the presence of mixed
additive Gaussian and impulsive noise (codebook size = 32). (a) Noisy first frame of the image sequence used in the learning phase. (b) Quantized image
produced by the recall phase of the linear LVQ on the noise-free 50th frame of the image sequence. (c) Quantized image produced by the recall phase of the
MMLVQ on the the noise-free 50th frame of the image sequence. (d) Original (noise-free) frame 50 of the image sequence.

Let us first define when we declare that the learning procedure
in the VQ techniques included in our study has converged. During
the learning phase, each VQ algorithm is applied to the training set
several times. Each presentation of the training set is called training
session hereafter. At the end of each training session k, the mean
squared error (MSE) between the quantized and the original training
patterns (i.e., RGB triplets) is evaluated as follows:

1

D(k) = card(S)

Yo =) =260 ®)

x(i,5)ES

where S denotes the training set, card(S) stands for the cardinality of
the training set, z(i,j) = (zr(4,5), 2 (i, 5), 25(i,5))T represents
the original training pattern, and (¢, j) is the quantized pattern. The

training patterns can be obtained from the input color image, e.g., by
subsampling. We decide that the learning procedure has converged if
LIEDELDIPY )
where p is a small number, e.g., p = 10~*. In LBG or in linear LVQ
using the adaptation step sequence
1
n+1
D(k) is a monotonically decreasing function, so termination rule (9)
is well suited. This is not always the case with the MMLVQ or the
linear LVQ using the linear schedule

a(n) = /\(1 - %),

(10

a(n) =

0<A<1 (11)
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TABLE 1

(a) Learning phase

PERFORMANCE OF LBG, LINEAR LVQ AND MARGINAL MEDIAN LVQ ™ COLOR IMAGE QUANTIZATION, FOR SEVERAL CODEBOOK SIZES

Codebook LBG linear LVQ linear LVQ MMLVQ
Size adapt. step (10) | adapt. step (11)
Tter. MSE | Iter. MSE Iter. MSE Iter. MSE
16 13 | 297.005 | 16 296.116 20 298.55 10/11 | 297.52
32 18 159.78 | 24 163.03 54 161.84 8/9 | 167.73
64 29 96.147 21 94.55 52 96.53 8/13 | 104.29
128 18 59.138 37 58.52 36 59.06 8/14 63.28
256 17 35.40 19 34.98 48 34.69 11/14 | 39.79
(b) Recall phase
MSE
Codebook LBG linear LVQ linear LVQ MMLVQ
Size adapt. step (10) | adapt. step (11)
16 297.114 296.116 298.55 300.95
32 168.88 172.80 171.109 175.27
64 105.844 105.106 105.74 111.16
128 69.137 68.84 69.07 71.22
256 46.11 46.46 45.95 48.30

where M is an arbitrary large number. Consequently, in the latter
algorithms, the termination rule (9) should take the form |D(k —
1) = D(k)/D(k)| < p. In addition, the reference vectors determined
by these algorithms are the ones for which D(k) attains its minimum
value. In our comparative study, we have used as figures of merit (1)
the MSE between the quantized patterns and the original ones at the
end of the learning phase; (ii) the MSE at the end of the recall phase
that is our ultimate goal; and (iii) the number of training sessions
needed for convergence. The MSE at the end of the recall phase is
defined similarly to (8) i.e.,

1 N N
MSE = = > > lle(i. ) — 3G, )l (12)
i=1 j=1

where N is the number of image rows/columns.

Let us describe the selection of parameters in the different VQ
techniques. All learning procedures in our study are initialized by the
splitting technique used for initializing the LBG algorithm [19]. The
choice of the adaptation step sequence in the linear LVQ is the most
crucial for its performance. If LVQ is properly initialized and a right
choice for the adaptation step sequence is made, then the experimental
results indicate that LVQ will attain a performance similar to the
one of LBG. Both the adaptation step sequences (10) and (11) have
been considered. The adaptation step sequence (10) does not pose
any further problem. For the linear schedule (11) for small codebook
sizes, e.g., 16, 32, we set A = 0.003 and M = 10°. For codebook
sizes 64 up to 256 we have chosen 0.03 < A < 0.08 and M = 10%.
In the case of MMLVQ, we have to choose an adequate odd number
of samples to be assigned to each class in order to initialize the
median calculation. This number was usually given a small value
e.g., 5,9, etc. Its selection does not influence the performance of the
algorithm, which always converges in a similar way. That is, the MSE
achieved at the end of the learning phase or the number of the training
sessions is not significantly affected. Furthermore, in cases where
the running algorithm proposed by Huang et al. [13] is applicable
(e.g., in image processing), each training session of the MMLVQ
requires less computation time than the one of LBG/LVQ because the
learning procedure of MMLVQ does not involve any floating-point
arithmetic. This is not the case with LBG and linear LVQ that require

floating point operations. Having defined the parameters involved in
the VQ techniques under study, we proceed to the description of the
experiments.

Fig. 1(a) shows the original Pepper image of dimensions 256 x
256 with 24 b/pixel. A training set of 4096 RGB triplets has been
created by subsampling the original image by a factor of four both
horizontally and vertically. The performance of the LBG, the linear
LVQ with adaptation step sequences (10) and (11), and the marginal
median LVQ in the learning phase is listed in Table I(a). In the same
table, we have included the number of iterations required for the
convergence of the learning procedure of each VQ technique. For
MMLVQ, two numbers are given for each entry because the training
session for which the minimum is found does not coincide with the
last one. The first number denotes the training session where the
minimum is found and the second one the training session for which
the modified termination rule employing absolute values is satisfied.
The MSE at the end of the recall phase is tabulated in Table I(b).
From Table I(a) and (b) it is seen that all VQ techniques attain an
approximately identical performance with respect to the MSE at the
end of the learning and recall phase. However, it is worth noting
that MMLVQ vyields close to optimal reference vectors in fewer
iterations (~ 10) compared to other VQ techniques. For example,
when the learning phases of LVQ and MMLVQ algorithms with 256
output neurons (last row in Table I(a)) were running on a Silicon
Graphics Indy Workstation, the execution times were 37.95 s (LVQ
with adaptation step (10)), 91.22 s (LVQ using adaptation step (11))
and 28.47 s (MMLVQ), respectively.

Next, we have considered the case of a noisy training set. Fig. 1(b)
shows the original color image corrupted by adding mixed white zero-
mean Gaussian noise having standard deviation ¢ = 20 and impulsive
noise with probability of impulses (both positive and negative ones)
p = 5% independently to each R,G,B component. A fraining set
of 4096 noisy training patterns has been created by subsampling the
noisy image of Fig. 1(b) by a factor of four both in the horizontal and
vertical direction. The reference vectors determined by the learning
procedure of the LBG, the linear LVQ and the MMLVQ on the noisy
training set have been applied subsequently to the original image
of Fig. 1(a) in order to reduce the number of RGB triplets to a
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TABLE I
PERFORMANCE OF LBG, LINEAR LVQ AND MARGINAL MEDIAN LVQ IN
QUANTIZING A COLOR IMAGE WHEN THE LEARNING PROCEDURE Has BEEN
DoONE ON A NoISY TRAINING SET, FOR SEVERAL CODEBOOK SIZES

MSE

Codebook | LBG linear LVQ MMLVQ
Size adapt. step (11)
16 639.63 658.55 584.57
32 495.58 484.35 411.20
64 329.58 386.14 330.50
128 237.09 244.175 224.66
256 149.51 153.51 143.02

TABLE III

PERFORMANCE OF THE LBG, THE LINEAR LVQ AND MARGINAL
MEDIAN LVQ IN QUANTIZING SEVERAL FRAMES OF COLOR IMAGE
SEQUENCE “TREVOR WHITE” WHEN THE LEARNING PROCEDURE Has
BEEN APPLIED ON THE FIRST FRAME IN THE PRESENCE OF MIXED
ADDITIVE GAUSSIAN AND IMPULSIVE NOISE (CODEBOOK SIZE = 32)

Recall MSE
Frame | LBG Linear LVQ MMLVQ

no. adapt. step (11)

10 289.65 313.46 240.32
50 283.27 298.84 222.38
100 | 295.43 312.01 242.52
120 285.27 308.36 226.46
129 282.22 307.14 224.05

predefined number. The MSE achieved at the end of the recall phase
for several codebook sizes is listed in Table II. It is seen that MMLVQ
outperforms the LBG and the linear LVQ for a codebook size up to
128. The quantized images produced by linear LVQ and MMLVQ for
a codebook size of 32 are shown in Fig. 1(c) and (d), respectively. By
comparing the latter images, the superiority of the quantized output
of MMLVQ is easily deduced.

Moreover, we have considered the case of a codebook of size
32 RGB triplets that is learned from a training set of 4096 patterns
extracted from a noisy frame of the color image sequence Trevor
White and is applied to quantize several original frames of the same
color image sequence. Fig. 2(a) shows the first frame of Trevor White
corrupted by adding mixed white zero-mean Gaussian noise having
standard deviation 0 = 20 and impulsive noise with probability of
impulses p = 7% independently to each R,G,B component. The
reference vectors determined at the end of the learning procedure on
the training set have been applied to quantize the tenth, 50th, 100th,
120th, and 129th frame. The MSE achieved at the end of the recall
phase of both LVQ and MMLVQ is shown in Table IIL. It is seen that
the color palette determined by MMLVQ yields the smallest MSE
in all cases. The quantized images produced by the linear LVQ and
the MMLVQ when frame 50 is considered are shown in Fig. 2(b)
and (c). For comparison purposes, the original frame 50 is shown
in Fig. 2(d). Once more it is verified that the visual quality of the
quantized output of MMLVQ is higher than that of the linear LVQ.

IV. CONCLUSIONS

A mnovel class of learning vector quantizers has been introduced in
this correspondence. These vector quantizers make use of multivariate
data ordering so as to obtain multivariate estimators of location that
exhibit robustness against outlying observations and erroneous classi-
fication decisions. One example of this class of LVQ’s is the marginal
median LVQ. Various experiments were conducted in order to test
the effectiveness of the marginal median learning vector quantizer
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in color image quantization. The results demonstrate the superior
performance of MMLVQ in comparison with the performance of
classical LVQ and LBG, especially in the case of noisy data. This
fact, along with its smaller execution time, makes MMLVQ a good
competitor to the classical LVQ algorithm.
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