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Multichannel L Filters Based on Reduced Ordering

Nikos Nikolaidis, Student Member, IEEE, and loannis Pitas, Senior Member, IEEE

Abstract— Nonlinear multichannel signal processing is an
emerging research topic with numerous applications. In this
paper we use the so-called reduced ordering (R-ordering)
principle to introduce a new family of L filters for vector-valued
observations. The coefficients of the proposed filters can be
deduced so that the filters are optimal with respect to the output
mean squared error. Expressions for the unconstrained, unbiased
and location invariant optimal filter coefficients are derived.
The calculation of moments of the R-ordered vectors that are
involved in these expressions is also discussed. Experiments
with neisy two-channel vector fields and noisy color images
are presented in order to demonstrate the superiority of the
proposed filters over other multichannel filters.

'

I. INTRODUCTION

ULTICHANNEL signals appear in a variety of im-

portant signal processing applications. In multispectral
satellite imaging, multispectral scanners are used to record
carth surface reflectance at various spectral bands, providing
valuable data for military surveillance, mineral exploration,
archaeology, etc. Color images can be considered as multi-
channel signals where each pixel is represented by the triplet
of the three primary colors red, green, and blue. Motion
vector field processing is crucial for image sequence analysis
and compression. Multichannel signals are also involved in
multiple antenna transmission systems and AM continuous
wave (CW) laser range sensors.

Despite the broad range of applications, the field of mul-
tichannel signal processing has experienced a large growth
rather recently. Although in most cases the various chan-
nels exhibit some degree of correlation, the method that is
most commonly used to process multichannel signals is to
treat each channel independently, by means of one of the
various existing single-channel techniques. Obviously, this
approach is not the most appropriate because it does not
exploit at all the inter-channel correlation. Furthermore, as it
was pointed out in [1], the use of single-channel techniques
can lead to umnatural effects on the output signal. Finally,
the detection of possible outliers among input data is very
difficult in componentwise processing because these outliers
may not be clearly distinguishable in all components. The
Karhunen-Logve transform can be used alternatively in order

to decorrelate the channels prior to the application of the

single-channel techniques. However, multichannel techniques
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that take into account channel correlation seem to be the most
natural way to process multichannel signals [2].

Single-channel nonlinear filtering techniques based on data
ordering have been very successful, especially in the area
of digital image processing. This success is mainly due to
the fact that these techniques have excellent edge preserva-
tion properties and, at the same time, are robust to outliers.
The single-channel L filters [3], whose output is a linear
combination of the ordered input samples, constitute a very
important filter class that includes several other filters (e.g.,
median, o-trimmed mean, arithmetic mean) as special cases.
The most significant feature of L filters is the existence of
closed formulas that give the optimal (with respect to the
output MSE) filter coefficients for a specific additive noise
distribution. Unfortunately, L filters as well as other filters
that are based on data ordering cannot be readily extended
to the multichannel case due to the fact that no globally
agreeable ordering scheme exists for multichannel observa-
tions. Several subordering principles (marginal, conditional,
partial, reduced ordering) have been proposed in the literature
[4]-[6]. A number of efforts to utilize these ordering schemes
for the introduction of nonlinear multichannel filters have been
presented lately. The use of marginal ordering in multichannel
signal processing is discussed in [6]. Multichannel L filters
based on marginal ordering are proposed in [7]. Reduced
ordering has been used in [8] to introduce the Ry, Ry, filters.
The multichannel modified trimmed mean filter [9] and the
multichannel k-nearest neighbor (k-NN) filter [10] are also
based on the reduced ordering concept. The vector median
filter has been proposed in [1] as an extension of the median
in the multichannel case. In [11] the class of L7[ filters is
extended to handle multivariate data and an average gradient
adaptive technique is used to find the optimal filter coefficients.
Robust multichannel filters that are based on the minimum
covariance determinant (MCD) estimator [12] are presented
in [13]. Multichannel filters whose output is a weighted sum
of the input vectors using weights that depend either on the
distance between the sample vector and a reference vector or
on the sum of distances of the sample vector from all the other
vectors are presented in [14], [15]. Finally, the generalized
vector directional filter (GVDF) that ranks vectors according
to their direction is proposed in [16].

In this paper we present a new family of multichannel
L filters that are based on the reduced ordering scheme.
The coefficients of the proposed filters can be optimized
for a specific noise distribution with respect to the mean
squared error between the filter output and the desired, noise-
free signal, provided that the latter is constant within the
filter window. The structural constraints of unbiasedness and
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location invariance are also incorporated in the filter design,
giving rise to two filter variants, namely the unbiased and
location invariant multichannel L filters.

The structure of the paper is the following. The reduced
ordering principle is presented in Section II. The definition of
the L filters based on reduced- (R-) ordering and the derivation
of the optimal filter coefficients are given in Section IIL
Section IV deals with the calculation of the moments of the R-
ordered vectors that are involved in the evaluation of the filter
coefficients. Implementation issues are discussed in Section V.
Experiments involving noisy two-channel vector fields and
color images are presented in Section VI and conclusions are
drawn in Section VIL

II. REDUCED ORDERING

Reduced ordering, also known as R-ordering, orders
p-channel vector-valued observations zy,---,Zny, % =
[#:1,- -, Tip]T according to their distance d; from some
reference vector @ (Fig. 1). As a consequence, multivariate
ordering is reduced to one-dimensional ordering. Reduced
ordering -is rather easy to implement, it can provide clues
about outlying observations and is the ordering principle
that is the most “natural” for vector-valued observations.
The ith order statistic according to R-ordering will be
denoted z(; = [a:[i]l,~~,:c{,~]p]T and is the vector whose
distance from the reference vector is ranked ¢th among
distances di,---,dy. The distance measure d; can be the
Ly norm ((z; — @)7 (z; — @))'/?, the Mahalanobis distance
((z; —@)TI ! (z; —@))"/? (T being the covariance mairix of
the input data), or any other distance measure. It is obvious
that the choice of an appropriate reference vector is crucial
for the reduced ordering scheme. Ideally, the reference vector
should be the true value of the underlying vector that is to
be estimated. In practice, any suitable multivariate estimator
of location (e.g., the arithmetic mean, the marginal or vector
median) evaluated over a subset of the input data, can be used
as reference vector @. The choice of the appropriate estimator
depends on the data characteristics.

III. MULTICHANNEL L FILTERS BASED ON R-ORDERING

A p-channel L filter of length N that is based on R-ordering
is defined by the following input-output relation:

N
y(k) =Y Az (k) 6))
i=1
where A; are (p X p) coefficient matrices and z[;)(k) are the
R-ordered input vectors (k—v), - - -, z(k), - -, z(k+v), N
2v + 1. According to (1), each component Y5 (k) of the output
vector is a linear combination of all z;(k),7=1,---, N, I =
1,---,p. Let us'suppose that the input signal z(k) is a constant
vector-valued signal s = [s1,---,s,]7 corrupted by additive
zero-mean p-channel noise n(k) = [n1(k), -, n, (k)7

xz(k) = s +n(k). 2)

The noise components are distributed according to some joint
distribution function fr. Furthermore, the noise vectors at

Fig. 1. The reduced ordering principle.

different instants are assumed to be iid and uncorrelated to
the constant signal. The optimization procedure that will be
presented in the sequel is similar to the one used in [7] for
multichannel L filters that are based on marginal ordering. The
mean squared error (MSE) between the filter output and the
constant signal s can be expressed in.the following way:

- E[(y(k) — )" (y(k) — s)]

Z Zzh k) AT Ajz (k)
=1 j=1
N .
-25"F ZAzm[i](k)] +s7s. 3)
=1

The time index k can be dropped without loss of generality.
After some manipulation, the previous equation becomes

N N

=D tr(a, RNAT]—ZSTZAM +sfs @

=1 j=1 =1

where R;; is the (p x p) correlation matrix of the jth and ith
order statistics

Rji = E[zmzﬁﬂ, i,j=1,-+,N (5)

and p,i = 1,---, N denotes the (p X 1) mean vector of the

ith order statistic
Elzp). (6)

Let us now denote by a; the (Np x 1) vector that is made up
of the ith rows of matrices Aq,---, A, i€,

a; = [Ay; Az - An]T t=1,--,p @

where A;; denotes thé ith row of the matrix A;. It is obvious
that the following relation holds between the elements Ag;; of
matrices Ay and the elements a;, of vectors a;:

forn = (k—1)-p+ 7. ®

B =

Apij = Gin,
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Let us also define the (Np x Np) matrix Ry and the (Npx 1)

vector i in the following way:
[Ri1 Ry RN
. Ry1 Ry Ryn
By=1 . . | = EEE"] O
LRN1 Bpy2 RByn
22
=1 | =El (10)
LKy
where
S48y
i = : (11)
TN

" is the (Np x 1) vector of all the R-ordered input vectors.
After some manipulation and by using the previous notation,
the MSE (4) takes the following form:

p a'f

e = ZafRNa.i — 287 P + s's. (12)
i=1 al
p

A. Unconstrained Filter Coefficients

A multichannel L filter with no constraint imposed on its
coefficients is called an unconstrained L filter. The optimal
coefficients in this case can be found by differentiating (12)
with respect to a; and equating the result to zero. This
optimization problem has a unique solution provided that Ry
is nonsingular. From (9) it is obvious that Ry is the correlation
matrix of the random vector . Therefore Ry is positive
definite (and thus nonsingular), unless the random variables
that form % are linearly dependent. However, no such case
has been observed in the experiments presented in Sectlon VI
The resulting set of equations has the form
7= 13)
By solving these equations for a; we obtain the following
expression for the optimal unconstrained filter coefficients:

RN(J,Z‘ :SiEN, 1,---,p.

@ =s:Ry'fty, i=1,---p. (14)
The minimum MSE obtained using the above coefficients can

" be easily calculated by incorporating (14) in (12)

(15)

Tl
Emin = 87 s(1 — ﬁ;RN ./“EN)'

B. Unbiased Filter Coefficients

A multichannel L filter is said to be unbiased estimator of
location if the following constraint holds:
Ely(k)] = s. (16)

This is equivalent to
a7

T. .
a’iﬁN:SD 2:17'“7]7'

By incorporating the previous constraint into (12), we obtain
the following expression for the mean squared error:
P ~
e=> a]Rya;—s's. (18)
i=1 : )
The minimization of MSE (18) when coefficients satisfy (17)
is a constrained optimization problem and can be solved using

the method of Lagrange multipliers. The Lagrangian function
to be minimized is the following:

p P
¢ = Za,ffijva,p —sTs 4 Z Ai(s; — a;-TBN).
=1 i=1

Differentiating the previous equation with respect to the filter
coefficients and equating the result to zero we get

19)

RNUW,:EZENW 221)727 (20)
The Lagrange multipliers in these equations can be evaluated
by solving them for a; and substituting to the constraint

equations (17). By doing so, the following expression results:

281‘
~—1

Ai = .
RN MN

2D

Substituting this result back to (20) we get the optimal
unbiased filter coefficients
Si o1
~—1 RN luN
MN N MN

a; = t=1,-,p. (22)

By incorporating (22) in (18) we can calculate the minimum
MSE obtained by the optimal unbiased multichannel L filters

1
— T
Emin — 8 8§ -

RN MN

-1 (23)
C. Location Invariant Filter Coefficients

A multichannel - L filter is said to be location or translation
invariant if an input of the form z'(k) = z(k) + b produces
an output y'(k) such that

y'(k) = Tla' (k)] = y(k) + b

where y(k) = T[x(k)]. This property implies that the follow-
ing constraint holds for the filter coefficients:

N
S Ap=T1
k=1

where I is the (p x p) identity matrix. The set of equations
(25) can be rewritten in the equivalent form

@24

(25)

N

ZAkZZ:17 221,72)

k=1

N

D Ak =0, dj=1,,pi# ] (26)
k=1
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Using (25) the output error can be written in the following
form:

N N
yk)—s= ZAi(n[i](k) +s5)—-s= Z Ay (k). (27)
i=1

i=1

Therefore, the MSE in the case of the location invariant
multichannel L filters is given by

p
T
£ = E a; RNa.i.
i=1

The (Npx Np) matrix Ry has the same structure as the matrix
Ry. However, its submatrices R;; are the (p x p) correlation
matrices of the jth and sth order statistics of the noise vectors

Rji = Elngnfyl,  i,j=1,---,N. (29)

(28)

The constrained optimization problem can be solved using
Lagrange multipliers. The Lagrangian function that we have
to minimize is the following:

P B P N
o= Z(I,;-TRNG«L + z Aig (1 - Z Akii)
i=1 i=1 k=1

P P N
DD IR I &0
i=1j=1i#j k=1
The derivative of ® with respect to Ag;; is given by
9P
2a;; R, 27 I, =17"'77
o = B Z sl =Xty b P
k'_17 ’N7 nzl)"'va (31)

where R;; are the elements of Ry and Agi = ain (8). By
equating the derivatives to zero and writing the set of equations
in matrix notation we get

A
RNai:% . 1=1,--+,p (32)
A
where
A=t Al T (33)

In order to proceed, we have to eliminate the Lagrange
multipliers from (32). Let us denote by R, the matrix that
results from R;,l through the following rearrangement of its
elements:

[Rpln-(i—1) 5,3 (k—1)+1 = [BNNitp-(i=1), btp-(—1)

iak:]-v"'7p j,lzl,-“,N (34)

- - ) PO |
where [R,]; j,[Rx']i; denote the elements of R,, Ry , re-
spectively. R, can be partitioned in the following way:

Py Py Py,

. Py Py - Pop

R,=| . . . ) (35)
Ppl Pp? Ppp

where the submatrices P;; are of dimensions (N x N). By
solving (32) for a; and substituting the result in the constraint
equations (26), we get the following set of equations:

GAi:[07...727...70]T7 i=1,---,p (36)
where
eTPiie el Pise eTplpe
G=| : 37)
eTPple eTPyoe eTPppe
e=[1,---,1]7 (38)

and the nonzero element of the (p X 1) vector in the right
side of (36) is in the ith position. By solving (36) for A; and
substituting back to (32), we get the optimal location invariant
L filter coefficients

(5
=Ry i=1,---,p (39)
¢
where ¢; = [c14, -, Cpi]T is the ith column of G~ !. The

minimum MSE for the location invariant filter can be easily
evaluated to be

T
- p C; L C;
Emin = E

Ry
=1 e ci

(40)

IV. EVALUATION OF MOMENTS OF R-ORDERED DATA

~ From the previous analysis it is obvious that, in order to
proceed with the design of the unconstrained and unbiased
multichannel L filters, we have to evaluate the moments

Elzppaynl, Elzye] where zp;, denotes the kth element of
z(;). The joint pdf fo, ,a,, (u,v) as well as the pdf fo,, ()
must be evaluated for this purpose. In the following, we shall
derive formulas for these pdf’s when the squared Ly norm (i.e.,
the sum of the squared componentwise differences) is used as
a distance measure. In order to proceed in our analysis we shall
make the assumption that the reference vector is the constant
signal vector s, which we shall consider to be known. Under
this assumption the distances d; are given by

p p

. 2 2

di = (za— )’ = > nj,
k=1 k=1

where z;;,n; are the elements of x;,n;, respectively. From
the previous expression and the assumptions that we have
made about the noise, it is obvious that d; are iid random
variables. Note also that x;;, are independent from all d;, j # 4.
By ordering the distances d;

(41)

day < dgy < <dwy (42)

we impose the same ordering on their corresponding vectors
z;. The notation d; « d(;y will be used in the sequel to
denote that d; occupies the jth position in the ordered sequence
d@ay, -+, d(v)- The same meaning is given to the notation
z; > T)), for the R—ordered vectors.
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The following cases must be considered for the evaluation

of fz[i]kz[ﬂl(uvv)'

1) ¢ # j. In this case, the pdf under consideration is
the joint pdf of elements from the same (k = ) or
different (k¢ # 1) channels that belong to different
ordered vectors [y, T(;. The joint pdf can be shown
to have the following form:

Saguapy (4, 0)

_ /+o<> b fwmk,dm (u, wl) . fxnz,dn(v?MQ)
Jo o fa,. (w1) Ja, (we2)

“fagydgs, (Wi, w2) dwr dws, i1<j

(43)

where T, < T, Tn < T(;), dm < dgg), dn < dgjy.

2) i =7, i.e., when we deal with the joint pdf of elements
from the same ordered vector z[;). In this case, the joint
pdf has the form

+oco f
= ity (U U, W
fﬂf[ilkw[i]z(uw) /0 Zrk,Tnls ( s U, )

Jfa. (w)

< fag,y (w) dw, kE#1  (44)

where xz, — z;) and d, < dg.

Furthermore, the pdf f,, (u) can be proven to be
too f, (u, w)
Lk, dn 5

2 (W) = e d 45
frti = [ Jmtatp, ) aw @

where z,, < zi; and d, < d). The proof of these
formulas is given in Appendix A. The next step that we
have to undertake is to evaluate the pdf’s fq, (w), fa .4
(wl, w2)a fdi (’LU), fwzk,di ('U’> w)nv fwik,wu,di (u7 v, w) that are in-
volved in (43)-(45). We start by evaluating the joint pdf g
Of diyMi1, -+, Nim—1,Nim+1, - - -, Nip Which is given by (46),
shown at the bottom of the page. The previous formula holds
for d; > Ef:l# ;émn?l. In the opposite case, the joint pdf is
equal to zero. The proof for this formula is given in Appendix
B. The pdf f4, (w) can then be found by integrating (46) over

M1, Rim—1, Mim41, """ Nip
Dy Dy
fatw)= [ |
Ci Cip
(11, Mg 1, W, N1, Rip)

~dniy s A1 ANy - - A 47)

where [Cji, D;x] is the domain of the random variable n;p.
The joint pdf of d;, n; for all I # m can be found in a similar

manner by integrating (46) over all n;.,r # m,r # [. The
evaluation of the joint pdf of d;, n;,, can be done in the same
way. The only difference is that, instead of using the joint
pdf of d;, 1, , Tim—1, Mim+1, " -, Tip We must evaluate
the joint pdf of d;,m1,--- s Mih—1, Tiht1, " 5 Nip, h # m
which is given by a formula exactly analogous to (46). Having
calculated fr,, a,(u,w) and taking under consideration that

xil:‘?l—{—nila Zzlayp (48)
we can easily derive the joint pdf of d;,z;
fmz,di (u’ w) = fnu,di (u - Slaw)' (49

The joint pdf of d;, ni, nig,l # m, k # m can be evaluated
by integrating (46) over all ng.,r # m,r # I,r # k.
By combining this result with (48) we get the joint pdf of
di, T4, ik

fxikiﬂizdi (/U‘7 v, U)) = fm‘knudi (’U, — Sk, U — Sl7w)' (50)
Finally, fq (w), fag,.dg;, (w1, w2) are given by [17]
Nt .
fag, (w) = mFdi Hw)
! [1 . Fdi(w)]N_ifdi(w) (51

Jagydesy (w1, w2)
N! .

S GG iy g T efaten)
[P (w2) = Fa, ()l ™7 fa(wo)[L = Fa (w2)]¥ 7,
(52)

7j<j,w1 < Wso

where Fy, (w) denotes the cdf of d;. By substituting the derived
pdf’s in (43)—(45), we can calculate the elements of the matrix
R ~ and the vector I N and, therefore, proceed to the evaluation
of the unconstrained and unbiased filter coefficients.

In the case of location invariant filters we must evaluate
the moments E[nxn;yi], E[npx]. The corresponding pdf’s
Srrgungy (W V), fi g, () have the same form with (43)—-(45)
and can be deduced in a straightforward manner from these
equations by substituting Tk, T[sjr With nr, nj. The pdf’s
Frin,ds (U W), frip mads (4, v, w) that appear in the resulting
expressions have already been calculated as intermediate
stages in the evaluation of the moments E[zyxz (], Blz]-

g(nila oy Nime—1, dianim+la ) nip)
: }4 P :
. . . E 2 . . E 2
f’n, Mily 7y Ngm—1, dl_ T3 s im41, ", Tip +f'll N1y s Mim—1, — d’L_ TGy Mim+1, 0 Thip
I=1,l#m 1=1,l#m

<

(46)
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V. IMPLEMENTATION ISSUES

In real situations, the constant signal s as well as the pdf
fn of the noise vector are unknown. The signal s can be
estimated using a suitable multivariate estimator of location
acting upon all the vectors in the constant signal area. fpn can
also be estimated from the multivariate histogram of the input
data in homogeneous (constant) signal regions. In this case,
the equations that have been derived in the previous section
must be appropriately modified to handle discrete data, i.e.,
the integrals must be replaced by sums. Furthermore, in most
cases the integrals in (43)—(45) and (47) cannot be evaluated
analytically and thus, we have to resort to rather tedious
numerical integrations. The computational burden required for
these calculations depends on the vector dimension p (which
controls the size of Ry, /i, and the number of the nested
integrals e.g., in (47)) and on the filter size N (which controls
the size of Ry, EN). Even for moderate values of these
parameters (e.g., p = 3, N = 9) the computational complexity
is significantly large. Therefore, it is much more preferable to
estimate directly the moments E[xz], E[2je2))] from the
input data using the following unbiased estimators:

M
o 1
Elzpp] = 37 > zggr(m) (53)
m=1
. 1 X
Elze, oyl = o1 > apr(m)zyp(m)  (54)
m=1

where ) (m) are the elements of the R-ordered vectors
within a window that moves through the data (m being the
current window position). The evaluation of the coefficients
of all the unconstrained and unbiased multichannel L filters in
Section VI was done in this way. In the case of nonconstant
vector-valued signals, a segmentation of the signal must be
performed prior to the filtering procedure in order to obtain
areas with almost constant vectors. For each of these regions,
a different set of coefficients must be evaluated, using region-
specific estimates for s, E[2[iji], E[z i, 2]

Unlike the unbiased and unconstrained multichannel L
filters, the evaluation of optimal location invariant filter coef-
ficients does not require a priori knowledge of the noise-free
input signal but depends only on the noise statistics. Therefore,
the signal does not need to be segmented since a single
set of coefficients suffices for the entire signal, provided, of
course, that all parts of the signal are corrupted by the same
noise model. This noise model must be known in order to
evaluate the filter coefficients. A convenient way to evaluate
the moments E[ny;], E[n[ik, nyj)] in this case is to generate
M sets of N noise vectors, sort them according to R-ordering
and then use formulas analogous to (53), (54). If the noise
model is not known, one can estimate s in some homogeneous
region, calculate the noise vectors in the region by solving (2)
for n, sort them, and use estimates analogous to (53), (54).

It must be clarified here that, in the case where estimates are
used for the signal s and/or some or all of the statistics required
for the computation of the filter coefficients, the corresponding
filters are suboptimal. However, as will be seen in Section VI,

even in this case the proposed filters perform better than other
multichannel filters.

Since reduced ordering requires a reference vector a to be
evaluated on each filter position, the L filters can be considered
as a two-stage procedure. In the first stage, the signal is
filtered using an appropriate multichannel filter (multichannel
a-trimmed, marginal median, arithmetic mean filter, etc.) in
order to obtain an estimate for @. This estimate is used in the
second stage for the evaluation of distances d;. Alternatively,
the proposed filters can be considered as double-window
filters like the multichannel double-window modified trimmed
mean (DW-MTM) filter or the multichannel &£-NN filter [10].
Obviously, this two-stage/double-window procedure leads to
increased computational complexity. However, the enhanced
performance of the proposed filters makes them an attractive
alternative to other multichannel filters, especially in applica-
tions where execution time is not critical.

V1. EXPERIMENTAL RESULTS

In order to test the performance of the proposed filters we
conducted four sets of experiments involving noisy motion
fields and color images. The first two sets of experiments
dealt with the filtering of artificially generated two-channel
vector fields of dimensions 64 x 64. In both these exper-
iments the original, noise-free vector field was composed
of two constant signal regions (Fig. 2). The vectors corre-
sponding to the two regions were s; = [2,—5]7 (central
region) and sy = [1,2]T (surrounding area). In the first
experiment the original vector field was corrupted by ad-
ditive bivariate zero-mean noise whose components were
distributed according to the Laplacian—Morgenstern distribu-
tion [7] with equal standard deviations o; = +/2 on both
channels and correlation coefficient 7 = 9/32. In order to
apply the proposed filters, the observations in each region
were used to calculate the constant signal s and the moments
Elzpel, Elepw 2yl Elngel, Elnge, njp that are required
for the evaluation of the 3 x 3 filter coefficients for this region.
The optimal unconstrained and location invariant coefficient
matrices A; are listed in Fig. 3. Note however that the listed
coefficients are optimal only for the particular noise parameters
(variance, correlation coefficient) described above: Further-
more, as it was mentioned in Section ITI-A, the coefficients
of the unconstrained filter are signal-dependent and, therefore,
they are optimal only for filtering a specific constant vector,
ie, s = [1,2]T.

The quantitative criterion that was used to evaluate the
performance of the proposed filters was the noise reduction
index (NRI)

> (yk) — )T (y(k) — )

k f (55)
Z(Z(k) —s)T(z(k) — s)
k

NRI = 10 log

where y(k),z(k), and s are the filtered, noisy, and reference
(noiseless) vectors, respectively. The NRI obtained by the
three variants of the proposed filters can be found in Table I
along with the NRI obtained by other filters, i.e., the arith-
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'o.08534 0.20656‘ \0,03666 0.08398| |0.01591

0.04687
0.17696  0.41380 0.07345 0.16825

0.03187  0.09391

Ay Ay Ag
0.01013  0.03030 0.00757 0.01834 0.00527 0.01179
0.02030  0.06070 0.01517 0.03775 0.01057  0.02363

Ay As As
0.00400 0.00605 0.00204 0.00305 0.00065 0.060168
0.00801 0.01212 0.00409  0.00612 0.00131  0.00338

Aq As Ag

Unconstrained filter coefficients

0.48028 0.02182 0.20626  0.00031 0.11500 -0.00385
0.01581 0.49515 0.00330 0.20510 -0.00874  0.11620

Ay As Aj
0.07187 -0.00126 0.05104 -0.00691 0.03420  -0.00591
-0.00517  0.07472 -0.00262  0.04871 -0.00141  0.03121
A As As
0.02192  -0.00042 0.01355  -0.00247 - 0.00584  -0.00129
0.00051 0.01522 -0.00076  0.00878 -0.00091  0.00487
Az Asg Ag

Location invariant filter coefficients

Fig. 3. Optimal coefficient matrices A; for two-channel unconstrained and
location invariant L filters of window size 3 X 3 and for the noise model
(Laplacian noise) described in the first set of experiments in Section VI.

metic mean, marginal median, L; vector median, 'marginal
a-trimmed mean filter with trimming coefficient « = 0.33
(the coefficient that gave the best results among the others
that have been tested) and the multichannel k-NN filter [10]
using £ = (N + 1)/2, generalized distances, and the output
of a 5 x 5 marginal median filter as reference vector. The
window size for all filters was set to 3 x 3. The CPU time
required for the execution of the above filtering algorithms
implemented on the same machine (Silicon Graphics Indigo
Workstation having a 50 MHz MIPS R4000 CPU) is also
included in this table as well as in all the other tables in this
section. Note that two different entries are given for each of
the three variants of the multichannel L filters. Each entry

TABLE I
NRI OBTAINED BY VARIOUS 3 x 3 FILTERS
IN THE FILTERING OF A NoISY VECTOR FIELD

NRI (db) CPU

Filter Laplacian | Cont. Gaussian || time (sec)
Unconstrained L #1 -18.73 -17.86 0.20
Unconstrained L #2 -12.40 -11.65 0.57
Unbiased L #1 -18.71 -17.77 0.20
Unbiased L #2 -12.39 -11.62 0.57
Loc. Invariant L #1 -16.07 -15.52 0.20
Loc. Invariant L #2 -10.98 -9.66 0.57
Arith. Mean -7.04 -7.66 0.03
Marginal Median -9.70 -7.85 0.07
Ly Vect. Median -8.25 -6.99 0.29
a-trimmed, a=0.33 -10.05 -8.35 0.08
5 X 5 a-trimmed -10.91 -9.44 0.39
k-NN -10.32 -9.06 1.00

corresponds to a different method in the evaluation of the
reference vector. According to the first approach (entry marked
#1), a single estimate of @ was evaluated for each of the two
constant signal regions by taking the arithmetic mean of all
the observations belonging to this region. In the second, more
realistic approach (entry #2), the reference vector was chosen
to be the output of a 5 x 5 marginal a-trimmed mean filter
[6] with trimming coefficient o = 0.4, centered on the current
filter position. The degradation of the filter performance in the.
latter case demonstrates the importance of an appropriately
chosen reference vector for the proposed filters. However, even
in this case, the multichannel L filters are superior to the other
listed filters. The performance of a 5 x 5 marginal a-trimmed
mean filter like the one used for the evaluation of the L filter
reference vector is also listed in this table. This was done in
order to demonstrate the fact that the proposed multichannel
L filter, which can be considered to act as a post-processing
stage on the o-trimmed mean filter, improves the output of
this filter. Regarding computation time, it can be easily seen
that multichannel L filters are more computationally intensive
than the other filters. Only the multichannel k-NN filter takes
more CPU time to execute. By comparing the CPU time
for the two entries provided for each multichannel L filter
variant (precalculated @ and @ evaluated on each filter position
separately) one can see that most of the CPU time is consumed
for the evaluation of the reference vector.

In the second set of experiments, the same vector field was
corrupted by bivariate contaminated Gaussian noise of the
form

(1 =€) N(mi1,miz2,011,012,71)

+€- N(ma1,maz, 021,022,72) (56)
where my1 = mis = Mo = Moz = 0,011 = 1,010 =
2,091 = 2,099 = 4,7‘1 = 0.5,7"2 = 0.7,6 = 0.1. The
noisy vector field was filtered using 3 x 3 multichannel

L filters as well as other filters of the same window size.
The optimal unconstrained and location invariant coefficient
matrices A; for this noise distribution are listed in Fig. 4.
The unconstrained filter coefficients in this figure are opti-
mal for s = [1,2]T. The evaluation of moments that are
necessary for the calculation of the two sets of multichannel
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0.10589 0.18413 0.04943 0.07657 0.03070 0.04268
0.21051 0.36606 0.09826 0.15223 0.06104 0.08486

A As As

0.02287 0.02354
0.04546 0.04680

0.01634 0.01513
0.03248 0.03009

0.01208 0.00938
0.02402 0.01865

A4 A5 AG
0.01016 0.00501 0.00837 0.00233 0.00779  -0.00038
0.02020 0.00997 0.01665 0.00465 0.01549 -0.00076

Ar AS A9

Unconstrained filter coefficients

0.36195  0.03810
0.03004 0.48364

0.18070 0.00544
0.00627 0.20914

0.11968  0.00039
-0.00132  0.11859

Ay A, As
0.08890 -0.00798 0.07116 -0.00834 0.05948 -0.00885
-0.00125 0.07184 -0.00720 0.04860 -0.01049 0.03314
Ay As As
0.04901 -0.00619 0.03822 -0.00574 0.03085 -0.00683
-0.00827 0.01940 -0.00621 0.01140 -0.00153 0.00421
A7 A.g A9

Location invariant filter coefficients

Fig. 4. Optimal coefficient matrices A; for two-channel unconstrained and
location invariant L filters of window size 3 x 3 and for the noise model
(contaminated Gaussian noise) described in the second set of experiments in
Section VL.

L filter coefficients (one for every region) was done using
the observations on the corresponding region. The reference
vector was evaluated using the two approaches described in
the previous experiment. The trimming coefficient of the 5 x 5
a-trimmed filter that was used to estimate the reference vector
was experimentally chosen to be o = 0.32. The results, which
are tabulated in Table I, verify once more that the proposed
multichannel L filters outperform the other filters.

The performance of the proposed filters in the previous set
of experiments can be also seen in Figs. 5 and 6. Only the
upper-left quarter of the vector field in Fig. 2 is depicted in
these figures in order to have a more detailed visualization. The
corrupted vector field is depicted in Fig. 5(a). The output of
the 3 x 3 multichannel &£-NN filter (which gave the best results
among the filters that were used for comparison) can be seen
in Fig. 5(b). It must be noted that the vectors on the borders of
the vector field are noisy because they have not been filtered.
The result obtained by the 3 x 3 unconstrained multichannel L
filter which uses the arithmetic mean of all the vectors in each
region to estimate the reference vector (entry #1 in Table I) can
be seen in Fig. 6(a). The filtering results are almost perfect.
The effect of filtering with an unconstrained multichannel L
filter that uses the output of a 5 X 5 a-trimmed mean filter as
reference vector is presented in Fig. 6(b). It is obvious that,
although the filter performance is worse in this case, the results
are far better than those obtained by the multichannel £-NN
filter. )

The third set of experiments dealt with the filtering of noisy
motion vector fields. In order to obtain the motion field, a full
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Fig. 5. (a) Vector field corrupted by contaminated Gaussian noise. (b) Noisy
vector field filtered by a 3 x 3 multichannel £-NN filter.

search block-matching motion estimation algorithm [19] was
applied on the frames #1 [Fig. 7(a)] and #10 of the “Trevor
White” image sequence. This initial vector field was then
smoothed using a 3 x 3 marginal median filter. The smoothed
motion field [Fig. 7(b)] was used as the original, noise-free
vector field in this experiment. We have used this procedure
to create an uncorrupted motion field since its existence is
essential in assessing the filter performance by NRI. The
original motion field was corrupted by additive bivariate zero-
mean noise whose components were distributed according to
the Laplacian—-Morgenstern distribution with equal standard
deviations ¢; = o2 = 64/2 and correlation coefficient r =
9/32 [Fig. 8(a)]. The noisy field was filtered with a location
invariant multichannel L filter because, as it was pointed
out in the previous section, optimal location invariant filter
coefficients depend only on the noise characteristics, which
were assumed to be known. Hence, a single set of coefficients
suffices for the entire vector field. The method of generating
sets of NV noise vectors that has been described in Section V
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(a) First frame of “Trevor White” image sequence. (b) Smoothed

motion field obtained from frames #1 and #10.
(N+1)/2, reference vector: 5 X 5 marginal median

7 ! /
+e - N(mar, Mag, M2aB; 02R, 026,028, TRe TG By TRE)

The final set of experiments concerned the filtering of noisy
color images using location invariant multichannel L filters.

marginal o-trimmed mean (o = 0.33) and multichannel &k-NN
The color image “Pepper” [Fig. 9(a)] has been used in the

filter (k
summarized in Table II. The NRI obtained by these filters for

a smaller noise standard deviation i.e., oy
zero-mean additive multivariate contaminated Gaussian noise

- experiments. The above-mentioned image was corrupted by
in all three RGB channels [Fig. 9(b)]

invariant multichannel L filter outperforms the other listed
(1 =€) - N(mir,m16,M1B, 01k, 01G; O1B>TRG> TCB> TRB)

also presented in the same table. In both cases, the location
filters.

output, generalized distances) of the same window size, are

Fig. 7.
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TABLE 1L
NRI OBTAINED BY VARIOUS 3 X 3 FILTERS IN THE FILTERING OF

g

a=0.25

)

Filter
Loc. Invariant L
N

Vect. Median
k-

Arith. Mean

A MOTION VECTOR FIELD CORRUPTED BY LAPLACIAN NOISE
Marginal Median

a-trimmed

Ly

was used to evaluate the moments of the ordered noise vectors.
The output of the optimal 3 x 3 location invariant L filter that

mean filter (&« = 0.32) on a 5 x 5 window.

estimate the reference vector
performance of this filter along with the performance of the

L filter. (a) The reference vector is evaluated once for each of the two
marginal median, arithmetic mean, L; norm vector median,

homogeneous areas. (b) The reference vector is evaluated using an o

uses a 5 X 5 marginal o
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Fig. 8.

(a) Motion field corrupted by Laplacian noise. (b) Noisy motion field
filtered by a 3 x 3 location invariant multichannel L filter.

where mip = mig = mup = mer = Mag = mep = 0,
o1r = 016 = 018 = 20,09p = 02¢ = o2 = 40,7ra =
TGB =TRB = Thg = Tep = gy = 0.5 and € = 0.2. In or-
der to improve the accuracy of the comparisons, float numbers
were used for the representation of the pixel triplets throughout
this experiment. The reference vector for the location invariant
filter was chosen to be the output of a 5 x 5 a-trimmed filter
with @ = 0.2. The multichannel location invariant L filter
was compared to the arithmetic mean, marginal median, vector
median (using the L; norm), marginal o-trimmed mean (o =
0.11), multichannel k-NN filter (k = (N + 1)/2, reference
vector: 5 X 5 marginal median output, generalized distances)
and optimal single-channel location invariant L filter acting
separately on each channel. The performance of the various 3
x 3 filters was compared with respect to the NRI (Table III).
The proposed multichannel filter (marked #1 in Table IIT)
achieved the highest noise reduction among all the filters. A
further performance enhancement was achieved by combining
the multichannel L filter with a marginal o-trimmed mean

®

Fig. 9. (a) Original image “Pepper.” (b) Image “Pepper” corrupted by
contaminated Gaussian noise. ’ ’

filter. An edge map produced by applying an edge detector on
the intensity component of the color image was used to switch
between the multichannel L filter (homogeneous regions) and
the 3 x 3 a-trimmed mean filter (o« = 0.222) (edge areas). By
this simple technique the performance of the location invariant
filter was improved (entry marked #2 in Table III). The output
of the single-channel L filter and the two variants of the
multichannel L filter can be seen in Figs. 10 and 11. Note
that the multichannel L filter that uses no edge information
blurs the edges. However, the multichannel L and o-trimmed
filter combination can successfully overcome this drawback.

VII. CONCLUSION

A new class of multichannel L filters that are based on
the reduced ordering principle have been presented in this
paper. Expressions for the optimal coefficients (with respect
to the output MSE) in the case of a constant input signal
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Fig. 10. Noisy image “Pepper” smoothed by componentWise filtering using
3 % 3 single-channel optimal L filter. N

TABLE Il
NRI OBTAINED BY VARIOUS 3 X 3 FILTERS IN THE FILTERING OF COLOR
IMAGE “PEPPER” CORRUPTED BY CONTAMINATED GAUSSIAN NOISE

” NRI (db) ﬂ CPU time (sec) ]

| Filter -

Loc. Invariant L #1- -7.85 12.80
Loc. Invariant L #2 -8.14 12.96
Arith. Mean -7.28 0.80
Marginal Median -6.82 1.73
Ly Vect. Median -5.29 5.44
a-trimmed, @=0.11 -7.56 2.42
single-channel L -7.58 2.20
k-NN -7.03 26.21

corrupted by additive noise have been provided. Experiments
with artificially generated vector fields as well as motion vector
fields and color images have verified the superior performance
of the proposed filters in multichannel signal filtering.

APPENDIX A

O Evaluation of fu,, (u):

We start by evaluating the joint pdf fu . q,, (4, w) which
can be expressed in the following way:

fx[i]kd(i) (u,w) = fm[-i]k (uld) = w)fd(i) (w), w>0.
(A-1)
Since the input vectors %1, --,xn are independent random

vectors, the only dependence of z;, on the elements of the
other ordered vectors z(;),j # ¢, is through the ordered dis-
tance d(;). Therefore, for a fixed value of d(;), the distribution
of z[;; is the same as the distribution of the corresponding,
not ordered component. In other words, the conditional pdf of
Z[;r subject to the condition that d¢;y = w is identical to the
conditional pdf of x, subject to the condition d,, = w, where
Ty <z and dy, < dgy

fm[ﬂk(u[d(i) = ’U}) = fznk (u|dn = w) = m}ﬁdn;((,z’)m
)

®)

Fig. 11. (a) Noisy image “Pepper” filtered by a 3 x 3 location invariant
multichannel L filter without edge information. (b) Noisy image “Pepper”
filtered by a 3 X 3 location invariant multichannel L filter on homogeneous
areas and a 3 X 3 a-trimmed filter on edges.

By incorporating the previous relation in (A-1) we get

fﬂcnk dn (uv ’LU)

fa. (w)

The previous formula can be alternatively: obtained starting
from the definition of the joint pdf of two random variables

fw[t]kd(i) (u,w) = w>0. (A-3)

.fd@) (w)7

Jende (U, w) du dw = Prob(A) (A-4)
where A is the following event:
A= {u<x[i]k<u+du,w<d(i)<w+d@}, (A-5)

This event occurs if u <z, <u + du,w < d, <w + dw for
one of the random variables d,,, d,, < w for ¢ — 1 of the d,, and
dy, > w + dw for the rest N — ¢ of d,,. The number of ways in
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which this combined event can happen is N1/ (¢ — 1){(N —¢)!
and each way has a probability of occurrence

foned, (U, w) du dw Fj:l(w)[l — Fy, (w))V
Therefore

N!
(i — 1IN =)
« fend, (w,w) du dw F;:l(w)[l — Fy, (w)]N 7% (A-6)

fopgndgy (W w) du dw =

By eliminating du dw from both sides of (A-6) and taking
into account the expression (51) for the pdf of the ordered
distances d(;) we obtain (A-3). .

Having evaluated f, 4., (u,w) the pdf fy, (u) can be
easily obtained by integrating (A-3) over w. By doing so, (45)
results.

O Evaluation of fxmkw[j],‘(u, v),i < J:

The evaluation of this joint pdf will be done through
the evaluation of fo .\, z11dqd(; (4, U, w1, w2) which can be
expressed in the following way:

Fagnaimdesdg) (v v, w1, w2)
= fa:[,v]km[j]z(ua Uld(t) = w17d(j) = w2)

* fagydgy (w1, w2), 0 <wy <ws. (A-7)

However, the conditional joint pdf of z[, [ subject to
the condition that d(;y = wi,d(;) = wy is identical to the
conditional joint pdf of x,,x,2, subject to the condition
dm = w1,dn, = we, where T, & T, T < T, dn <

dgiy, dn  dg)

Sorquary (u, vld@y = w1, d(j) = w2)

= fmmkmnz(u1v|d7n =wi,dy = wz). (A-8)

Furthermore, since z; are independent from all d;, j # ¢, the
right part of (A-8) can be rewritten as follows:

S (udm = w1) fo,y (v]dn = wa)
_ Jempdn (0 01) fand, (v, w2) i
= T fatw) o &Y

Therefore

Feruaruddg) (4 v, w1, wa)
_ ficmkdm(uvwl) fwnld'n.(,v’w2)
 fa, (wr) fa, (w2) Jago g (v, 2),
0<w; <ws. (A—lO)

By integrating (A-10) over wy,wy equation (43) results.

O Evaluation of fuapy (v, v), k # I:
The joint pdf fm[i]kz[i]ld(i)(u’ v,w) can be expressed in the
following way:
fﬂ?[i]kx[i]zd(i) (u,v,w)
= fepnapy (W v]de) = w) fa, (w),w>0. (A-11)

The conditional joint pdf of x[;)x, zf;); subject to the condition
that d(;) = w is identical to the conditional joint pdf of

Tnk, Ty Subject to the condition d,, = w, where z, < zy;
and dn A d(i)
fw[i]kr[i]z(uﬂ 'Uld(i) = w)

Jenrznid, (4, v, w)
= fr .z ,old, = = dEnkTnl@n A 70 70 7S
f nk nl(u /U| ’LU) fdn(w)

(A-12)
Therefore
Ferpagedgsy (s v, w)
fa, (w)

Equation (44) can be easily deduced by integrating the previ-
ous expression over w.

fagy (W), w>0. (A-13)

APPENDIX B
In order to evaluate the joint pdf g of d;,n,---,
Tim—1, Nim+1, " - *» Nip We Will make use of p — 1 auxiliary
variables uj,- -, up—1 such that
Ul =Nty 5 Um—1 = Mim—1,

U = Nimt+1,°* 5 Up—1 = Mip- (B-1)

The joint pdf g’ of d;, u1,- - -, up—1 can be evaluated using the
well-known method for the evaluation of the pdf of functions
of random variables [18]. First of all, we solve the set of
equations (B-1), (41) for n;1,- -, nip

i1 = ULyt Mim—1 = Um—1,

=1

Nim+1 = Um,y "5 Tip = Up—1. (B-2)

The joint pdf of d;,u1,---,up—1 is given by the following
relation:

Fa(na, - Mim, - 1)
/di7u7"'7u— = P
g( ! P 1) |J(ni17"'7nim7"'7np)|
+ fn(nila' ) '7n2m7' : '7”17)
|J(ni17 T vn;mv T 7”1))‘
(B-3)
where n;1, - -+, np are given by (B-2) and J( ) is the following
Jacobian:
6u1 6u1
Ongy Onip 1 ... 0
oi; ad; :
¢ k = |2n; 2 | = 2Njm.
Bnﬂ anip . ! v Tim
(9114',_1 6114,-1 0 1
8ni1 Bnil,
(B-4)
By substituting (B-2), (B-4) in (B-3) and using
Til, "+ s Mim—1sNim+1s -, Nyp instead of their equivalent

variables w1, -- -, up—1, (46) results.
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