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Abstract

In this paper, a novel method for continuous human movement recognition based on fuzzy vector quantization

(FVQ) and linear discriminant analysis (LDA) is proposed. We regard a movement as a unique combination of

basic movement patterns, the so-called dynemes. The proposed algorithm combines FVQ and LDA to discover the

most discriminative dynemes as well as represent and discriminate the different human movements in terms of these

dynemes. This method allows for simple Mahalanobis or cosine distance comparison of not aligned human movements,

taking into account implicitly time shifts and internal speed variations, and, thus, aiding the design of a real-time

continuous human movement recognition algorithm. The effectiveness and robustness of this method is shown by

experimental results on a standard dataset with videos captured under real conditions, and on a new video dataset

created using motion capture data.

Index Terms

Real-time continuous human movement recognition, fuzzy vector quantization, linear discriminant analysis.

I. I NTRODUCTION

The detection and analysis of events in video sequences is a very important task for a number of applications

in several areas, such as video annotation, surveillance, sports and car industry, due to the abundance of low-cost

video recording devices as well as the fact that this technology offers the only non-invasive solution for complex

event analysis tasks. In particular, human behavior understanding from video sources is currently at its infancy.

This task encompasses the recognition of several types of human motion, for instance, running and playing soccer

(which may include running, walking, kicking the ball, etc.). To formally describe human motion patterns, many

human motion taxonomies have been proposed, e.g., [1], [2]. Here we use a human motion taxonomy similar to
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the one proposed in [2], which is inspired from the granularity of the human language and relevant work in speech

recognition community. In the bottom of the hierarchy,dyneme, is defined as the smallest constructive unit of human

motion, while one level above,movement, is perceived as a sequence of dynemes with clearly defined temporal

boundaries and conceptual meaning, e.g., a period of walk constitutes the movement of walk. This paper deals with

the recognition of movements using the dynemes. In Figure 1 we show image sequences of the movements walk

and run, as well as the associated dynemes (which we describe in detail in section II).

Researchers in the field of human movement recognition exploit either thelocal or theglobal motion information

within a sequence of human (body) posture images in order to represent a movement. Local motion information

is derived by observing the spatial variation of the human body reference points over time. Reference point

correspondences are acquired explicitly by feature tracking [3] - [6], or implicitly by optical flow [7] - [9].

Global motion refers to the shape configurations that the human body receives through the course of a movement.

Consequently, a movement is represented by a sequence of posture images [10] - [14], without taking into account

any point correspondences. However, it should not be disregarded that human body reference points contain weak

human body shape information as well. Upon this observation recent tests in psychophysics [15], [16], have suggested

that global motion information is mostly responsible for the perception of motion by the human visual system, while

local motion has mainly supportive role, (e.g., for object segmentation and tracking). From a practical point of view,

reliable feature tracking and optical flow calculation require computationally demanding algorithms making their

use expensive for real time applications. On the other hand, the estimation/localization of a filled human silhouette

(also called posture mask, a human body posture contour filled with uniform color), for representing a human

posture, is, in general, a relatively easier task, particularly in cases of static/constant background. Motivated from

the above discussion, we represent a human posture image with the respective binary posture mask and, hence, a

human movement as a sequence of binary posture masks.

Human motion analysis is a broad topic consisting of several operational levels [17], [18]. In this paper we

are interested in human movement recognition alone and, therefore, we review related approaches on this field.

Following [19], we divide the existing work into three major categories: template matching, statistical classification

and neural networks.

1) Template matching:In [5], motion tracking information is used to represent each posture frame and the

optimal reconstruction coefficients after PCA analysis are used to represent a video in the feature space. Test videos

are classified with the nearest centroid classifier. Similarly, the optical flow is computed in [8] and PCA is used

to represent a movement video in the feature space. The optical flow is used as well in [7], to represent a human

movement and classification of movements at a distance is done using normalized spatiotemporal correlation. In

[20], vectors of shape context are clustered and based on these clusters, the feature vectors are quantized and

aggregated to represent a movement video. In [13], an SVM-based algorithm is used to classify a test video by

majority voting. In [14], the periodic content of periodic human movements is used to represent and classify them.

Recently, approaches that represent a movement with a sequence of human posture images and use space-time

template matching classifiers, are receiving increasing attention. In [10], the locality preserving projections (LPP)
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method is used to learn a low-dimensional manifold for human movement recognition and the Hausdorff distance or

the normalized spatiotemporal correlation is computed to classify a test video within a nearest neighbor framework.

Similarly, in [11], posture mask sequences are represented with space-time shape features by solving the Poisson

equation. In [21], space-time events are represented as spatiotemporal volumes and shape contours are extracted

using an unsupervised algorithm. A flow-based correlation metric and a novel shape matching metric are combined

to recognize an event in a cluttered or crowded environment.

2) Statistical approaches:In [2], [22], tracking information is exploited to form motion vectors for each video

frame, train the HMMs and recognize a variety of human movements. In [6], a codebook is produced for each body

part and used to represent body posture images. Then trained HMMs are used to recognize a test image sequence.

Affine invariant Fourier descriptors of the human posture contours are computed in [12] and SVMs are combined

with HMMs to recognize an unknown movement. In [1], a movement is expressed as a motion image energy and

history template and several moments are computed to represent a human movement in the feature space. The

motion information of major body parts is used in [3] to represent each frame, and a Mahalanobis-based majority

voting criterion is used to classify a test video. In [4], decomposable triangulated graphs and dynamic programming

are used to build movement prototypes and the maximum likelihood is applied to detect a learned movement.

3) Neural Networks:In [23], a three-layer feed forward neural network is employed to recognize among four

different movements, while in [24], the DFT of silhouette histograms is calculated to represent a posture image,

and a fuzzy neural network is trained to detect unknown static body postures.

The majority of the above methods model either the time sequential structure of the movements, e.g., by HMMs,

which is quite expensive in terms of computational resources, or use an exhaustive comparison metric to compare

variable length videos and account for internal speed variations. Moreover, most of the above methods require

videos depicting one person executing only one movement type, and thus, are not suitable for continuous human

movement recognition. On the other hand, recent studies in psychophysics, e.g., [16], have suggested that perception

of a walking figure from the human visual system may occur from the posture resulting from the integration of a

few consecutive postures of the movement, which is closely related with the dyneme described here. Additionally,

humans can frequently recognize a specific movement type from a few consecutive postures or equivalently one

dyneme, while for other movement types more dynemes are needed. This functionality suggests, that the human

brain may be using multimodal densities to model human movement types, where some modes are confused among

different movements and some modes are unique for a specific movement.

Motivated from the above studies, we consider each movement as a mixture density (called hereaftermovement

density), where the mixture components (called hereafterdyneme densities) are presented by their centers (i.e., the

dynemes). In order to illustrate the rational of the proposed approach we have used binary mask sequences, of the

movements walk and run, retrieved from the database described in [11]. Each binary mask was preprocessed and

vectorized according to the method described in section III-B, and principal component analysis (PCA) was used to

take an optimal (in terms of signal reconstruction) two dimensional representation of each vector. Then, the fuzzy

c-mean algorithm (FCM) was applied assuming two or three clusters. The clustering results are shown in Figure 2.
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Fig. 1. Movements of run (top) and walk (bottom) as well as the associated dynemes.

We can see that the movements clearly overlap, and modelling them as unimodal densities, as in Figure 2a, is not

an adequate representation. In contrast, using three dyneme densities as mixture components, as shown in Figure

2b, the movements are confused in dynemes2 and3, but dyneme1 contains only samples of the movement walk.

Moreover, the samples of dyneme density1 correspond always in a specific part of the movement walk as we show

in Figure 1, and, thus, these dyneme densities can be used to model and discriminate the two different movements.

Based on this observation, we devise an algorithm that first identifies the dyneme densities, and then uses them to

model and discriminate a number of different movements.

(a) (b)

Fig. 2. Clustering results of the movements walk and run using the FCM algorithm for(a) 2 clusters and(b) 3 clusters.

In the following we summarize the main contributions of this paper:

• A novel approach that combines FVQ and LDA for modelling a movement as a mixture density and discrim-

inating the different movements, is proposed. The robustness and recognition rates achieved with this method

on a publicly available database are at the same level with the best reported rates in the field. Yet, the proposed

technique is much faster than other state of the art approaches.

• The proposed algorithm can well recognize the dominant movement within an image sequence, and, thus, a

windowing function is used to extend the algorithm for continuous human movement recognition.

• An analysis of the confusion of the postures among the different movements using the proposed algorithm, is

presented.
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A detailed analysis of the various steps of the method is provided in section II, while several experimental results

are given in section III. Finally, conclusions regarding the proposed approach are drawn in section IV.

II. FUZZY MOVEMENT REPRESENTATION AND RECOGNITION

A real-world movement is a continuous sequence of postures. In video-based action recognition, a movement is

represented by a discrete temporal sequence of frames. Each frame in the sequence represents a specific posture of

the movement. At this point we assume that binary human body masks of the postures at each frame are provided,

possible from a tracking/segmentation subsystem. These posture masks are further preprocessed to create regions

of interest (ROIs), which have the same dimensions, contain as much foreground as possible and are centered with

respect to the centroid of the body posture. A posture mask ROI is scanned column-wise to produce the so-called

posture vectorx ∈ <F , whereF = W × H is equal to the ROI size (in pixels). Thus, a human movement is

represented in the input space<F with a spatiotemporal trajectory{xı}, which is calledmovement sequence.

Our target is to devise a fast algorithm that can learn and classifyR simple everyday life movements in terms

of dynemes, and in more specific fromC basic posture-like vectors, the so-calleddyneme vectorsvc ∈ <F ,

c = 1, . . . , C, which express the actual structure of the space of the particular movements. We compute the

dyneme vectors with the fuzzy c-mean (FCM) algorithm and then use fuzzy vector quantization (FVQ) to map a

posture vectorxı in a new space calleddyneme space, whose coordinates are the normalized distances of vector

xı to the dyneme vectors:

φ(xı) = [φ(xı|v1,m), . . . , φ(xı|vC ,m)]T or

φı = [φ1,ı, . . . , φC,ı]T , (1)

wherem is the fuzzification parameter andφı ∈ <C is the quantized posturexı. The basis functionφ(xı|vc,m)

is related with thec-th dyneme and denotes the ability of this dyneme to represent posture vectorxı.

The arithmetic mean of the postures of a movement sequence in the dyneme space, is calledmovement vector,

s ∈ <C , and is used as the movement representation. The amount of each dyneme in the movement sequence will

be encoded in the corresponding component ofs. Making the assumption that movements of the same type are

characterized uniquely from specific dynemes, (i.e., movements of different types differ in at least one dyneme),

movement vectors of different types will lay in a different subspace of<C . This assumption can be further relaxed

by allowing movements of different types to contain the same dynemes but in different quantities.

In order to discriminate the movements, LDA can be used for projecting the movement vectors to a discriminant

subspace. In this space, movement types can be modelled with their sample mean, and test movements can be

efficiently classified according to the Mahalanobis or cosine distance from the movement prototypes.

The above steps are encapsulated in a single algorithm, and the leave-one-out-cross-validation (LOOCV) approach,

combined with the global-to-local search strategy, [25]–[27], is used to identify the number of dynemesC and the

fuzzification parameterm. Each step of the algorithm is explained in detail in the following sections.
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A. Computation of dynemes by FCM

Given a set of unlabelled posture vectors{x1, . . . ,xN}, the number of dynemesC, and the fuzzification parameter

m, the dyneme vectors are identified using the FCM algorithm in the input space. FCM [28] is based on the

minimization of the following objective function:

JFCM (Φ,V) =
C∑

c=1

N∑
ı=1

(φc,ı)m(‖ xı − vc ‖2)2 , (2)

where,N , C, are the number of samples and centroids respectively,xı ∈ <F is the ı-th sample in the training data

set,V = [v,c] = [v1, . . . ,vC ] ∈ <F×C is the matrix of cluster prototypes,Φ = [φc,ı] ∈ <C×N is the partition

matrix with φc,ı ∈ [0, 1] being the degree that theı-th sample belongs to thec-th cluster,m > 1 is the fuzzification

parameter and‖ ‖p is the p-norm of a vector. The FCM criterion (2) is subjected on producing non-degenerate

fuzzy C-partitions of the training data, belonging to the set,{Φ ∈ <C×N |
∑C

c=1 φc,ı = 1, ∀ı; 0 <
∑N

ı=1 φc,ı <

N, ∀c; 0 ≤ φc,ı ≤ 1}. The computation of the cluster centers and partition matrix is carried out through iterative

optimization of (2), with the update of membership matrix and cluster centers at each step given by

φc,ı =
(‖ xı − vc ‖2)

2
1−m∑C

=1(‖ xı − v ‖2)
2

1−m

(3)

vc =
∑N

ı=1 φm
c,ıxı∑N

ı=1 φm
c,ı

(4)

The iteration is initialized with a random initial estimate of matrixV or Φ and terminates when the difference of

the estimated matrix between two iterations is smaller than a specified toleranceε.

B. Fuzzy vector quantization

Using the dyneme vectors identified with FCM above, and the respective fuzzification parameter, FVQ [29] is

used to map a posture vectorxı from the input space to the dyneme space. This transformation comprises two

steps, the fuzzification and the normalization step. In the fuzzification step, the membership vectoruı is computed

uı = [u1,ı, . . . , uC,ı]T ,

uc,ı = (‖ xı − vc ‖2)
2

1−m .

The membership vector is normalized to produce the final representation of the posture in the dyneme space

φı =
uı

‖ uı ‖1
. (5)
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C. Fuzzy movement representation

As discussed in the beginning of section II the movement vectors ∈ <C , i.e., the arithmetic mean of the

comprising postures of a movement in the dyneme space is an adequate representation of a movement

s =
1
L

L∑
ı=1

φı , (6)

s = [s1, . . . , sC ]T , whereφı, given in (1), is the representation of theı-th posture of the movement in the dyneme

space. Note that the sum of the components ofs is one. In the following an equivalent probabilistic model is given.

Let ω1, . . . , ωC , be theC dyneme classes, with the associated class-conditional component densitiesp(x|ωc,θc)

(also called dyneme densities), whereθc is the parameter vector of thec-th conditional density. We model each

movement typer as a mixture density of the dyneme densities

pr(x|θr) =
C∑

c=1

p(x|ωc,θc)Pr(ωc), r = 1, . . . , R ,

whereθr is the parameter vector of ther-th mixture density. In this model, we see that ther-th movement mixture

density differs from the other movement densities only in the mixing parametersPr(ωc), c = 1, . . . , C, which must

also satisfy

Pr(ωc) ≥ 0 ,
C∑

c=1

Pr(ωc) = 1 . (7)

Given a set ofL posture vectors of ther-rh movement type,X = {x1, . . . ,xL}, and assuming that they are drawn

independently, we can form the log-likelihood function of the observed posture vectors

ln p(X|θr) =
L∑

ı=1

ln{
C∑

c=1

p(xı|ωc,θc)Pr(ωc)} .

We can obtain an estimate of the mixing parameters by using the method of lagrange multipliers to maximize the

log-likelihood function subject to the constraints of (7) (e.g., similar to [30], p. 518). The lagrangian function is

` =
L∑

ı=1

ln{
C∑

c=1

p(xı|ωc,θc)Pr(ωc)}+ λ(
C∑

c=1

Pr(ωc)− 1).

Maximization of the lagrangian function in respect toPr(ω) gives

L∑
ı=1

p(xı|ω,θ)∑C
c=1 p(xı|ωc,θc)Pr(ωc)

+ λ = 0 .

Assuming thatP̂r(ω) 6= 0, and using the second constraint in (7) along with the posterior probability given by

Pr(ω|xı,θr) =
p(xı|ω,θ)Pr(ω)∑C

c=1 p(xı|ωc,θc)Pr(ωc)
,
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we obtain the maximum-likelihood (ML) estimate of the mixing parameters

P̂r(ω) =
1
L

L∑
ı=1

P̂r(ω|xı, θ̂r) ,

whereθ̂r is the ML estimate of the parameter vector of ther-th mixture vector, and̂Pr(ω|xı, θ̂r) is the respective

estimate for the posterior probability given by

P̂r(ω|xı, θ̂r) =
p(xı|ω, θ̂)P̂r(ω)∑C

c=1 p(xı|ωc, θ̂c)P̂r(ωc)
. (8)

In our approach we have assumed that the overlap between the dyneme densitiesp(x|ωc,θc) is small. In this case

(e.g., see [30], p. 548) the ML approach and the FCM procedure are expected to give similar results, and the ML

estimate of the posterior probabilities in (8) is equivalent to the membership degrees in (4), i.e.,φ
(r)
c,ı = P̂r(ωc|xı, θ̂r).

Then thec-th component of the movement vector in (6) is equal to the ML estimate of the prior probability of the

c-th dyneme in this movement type

s(r)
c =

1
L

L∑
ı=1

φ(r)
c,ı =

1
L

L∑
ı=1

P̂r(ωc|xi, θ̂r) = P̂r(ωc) .

Therefore, each component of the movement vector depicts the ”amount” of the respective dyneme in the movement.

Assuming that any two movement types differ in at least one dyneme, movement vectors resulting from different

movement types will exhibit a different pattern, while movement vectors of the same movement type will exhibit

a similar pattern, which will still not be exactly the same pattern as different people execute the same movement

with their own style. This randomness in style when people execute the same movement allows for perceiving

the movement vectors as random vectors and using them to model the different movement types as unimodal

multivariate distributions, which are separable by the scatter of their means.

D. Analysis of the confusion between different movements

Let U be database of movement sequences, where each sequence belongs to one ofR different movement classes.

Ignoring the sequential information, we represent then-th sequence of ther-th class with lengthLn as a set of

posture vectors{x(r)
n,1, . . . ,x(r)

n,Ln
}. If Nr is the number of sequences in ther-th class, then the total number of

movement sequences in the database isN =
∑R

r=1 Nr. Assuming that the dyneme vectors, and the fuzzification

parameter, have been identified, we can map the posture vectors in the dyneme space using (5) and we can get the

movement vectors in the dyneme space,{s(1)
1 , . . . , s(1)

N1
, . . . , s(R)

NR
} using (6). The arithmetic mean of the movement

vectors belonging to ther-th class can be directly used to represent a movement type in the dyneme space

µ(r) =
1

Nr

Nr∑
n=1

s(r)
n , (9)

µ(r) = [µ(r)
1 , . . . , µ

(r)
C ]T . This vector is also fuzzy in the sense that its components express membership degree and

sum to one (
∑C

c=1 µ
(r)
c = 1

Nr

∑Nr

n=1

∑C
c=1 s

(r)
c,n). The representation of each movement type with a fuzzy vector can
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be used to identify the dynemes that mostly represent each movement type. That is, large values forµ
(r)
c denote that

movementr is well represented by dynemec. Alternatively, one can use this interpretation to find the movements

that are mostly represented from a specific dynemec, and to reveal overlaps between different movement types.

This can be done by forming a matrixM ∈ <C×R whose columns are the fuzzy vectors

M = [µ(1), . . . , µ(R)] . (10)

Each component of thec-th row of M depicts the degree that the respective movement is expressed by thec-th

dyneme. This analysis can reveal which dynemes actually represent a movement class and which are confused

between different movement classes. For instance, let[µ(1)
c , . . . , µ

(R)
c ] be thec-th row of M. Then thec-th dyneme

mostly represents theρ-th movement class given by

ρ = argmax
r∈[1,... ,R]

(µ(r)
c ) . (11)

If µ
(ρ)
c is considerably larger than all other elements in thec-th row, then thec-th dyneme strongly expresses the

ρ-th movement. In contrary, if there are more than one elements with relatively high values, this dyneme reveals

the confusion of the respective movements. Such an analysis is carried out in section III-C2.

E. LDA projection

The number of the dynemesC is always larger than the number of the movement typesR, thus, the movement

vectorss ∈ <C can be further projected using a subspace method, e.g., linear discriminant analysis (LDA), [30],

[31]. Most LDA algorithms seek for the linear projectionΨopt ∈ <C×R−1, that maximizes the criterionJLDA(Ψ) =
|ΨT SbΨ|
|ΨT SwΨ| , i.e.,

Ψopt = argmax
Ψ

(JLDA(Ψ)) . (12)

The matrixΨ represents a linear transformation, andSw, Sb ∈ <C×C , are the within and between scatter matrices

respectively. The rank ofSw is at mostN−C, and thus, is invertible if the number of training videosN is adequately

larger than the number of the dynemesC. Then, the optimum matrix in (12) is formed by theR − 1 generalized

eigenvectors that correspond to the largest eigenvalues ofS−1
w Sb, and the projection of then-th movement vector

is given by

y(r)
n = ΨT

opts
(r)
n . (13)

As we have assumed that the movement vectors are derived from unimodal multivariate distributions, which are

separable by the scatter of their means, the criterion(S−1
w Sb), can well measure the movement type separability,

and, thus, conventional LDA can well separate the different movement types (e.g., see [31], p. 452). IfSw is not

invertible, i.e., whenN < C, an appropriate LDA variant can be used [25] - [34]. We should also note that before

applying LDA, the movement vectors are standardized using the mean and the standard deviation along the training
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set.

F. Classification

The r-th movement is modelled by the respective prototype

ζ(r) =
1

Nr

Nr∑
n=1

y(r)
n , r = 1, . . . , R . (14)

A test movement sequence{z(t)
1 , . . . , z(t)

Lt
} is represented in the dyneme space using (5), (6), standardized and

projected using (13), to give a single pointτ (t). The class labelt of the test sequence is given by

t = argmin
r∈[1,... ,R]

( gr(τ ) ) , (15)

wheregr(τ ), r = 1, . . . , R, are the discriminant functions. Throughout our experiments we have used discriminant

functions based on Mahalanobis or cosine distance [30].

G. Dyneme vectors and fuzzification parameter estimation

LOOCV procedure, e.g., [27], is utilized to determine the number of dynemeC and the fuzzification parameterm.

The database may contain more than one instances of the same person performing the same movement. Therefore,

at each validation cycle, the movement sequences of a person, e.g., persono, performing the movement type, e.g.,

movementα, are removed from the training set in order to form the test set, while the rest of the movement

sequences of persono (them that do not refer to the movementα) remain in the training set. Thus, a test movement

sequence would be classified correctly if it exhibits high similarity with the training movement sequences of other

persons performing the same movement typeα and not be confused with different movements performed by the

test person. To determine the optimum parameters, the LOOCV procedure is combined with the global-to-local

search strategy similar to [25], [26]. That is, after globally searching over a wide range of the parameter space,

we find a candidate interval where the optimal parameters might exist. Then we try to find the optimal parameters

within this interval. The algorithm is summarized in Figure 3.

H. Continuous human movement recognition

When a novel movement sequence is expressed in the dyneme space, most of its feature vectors components

will be close to zero, except of those that correspond to the dynemes of the movement type that the sequence

belongs to. This attribute allows the use of a windowing function for devising an algorithm for continuous human

movement recognition.

Continuous movement recognition is performed in a sliding window using the optimum parameters,C,m, and

the respective dyneme vectors and movement prototypes identified using the training set. Every new frame at time

κ is scanned and preprocessed to provide the respective posture vectorxκ. Then,xκ is mapped to the dyneme space
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Initialize: O = number of objects, A = number of movements.

LOOCV : SetC = C′, m = m′, Υc,m = 0.

for a = 1 to A; for o = 1 to O

Extract movement sequences of objecto performing

actiona to form the test set:{z(t)
1,1, . . . , z

(t)
Nz,LNz

} .

Training

1) Compute dyneme vectors by FCM (3), (4).
2) Compute movement vector for each training video (5), (6).
3) Standardize movement vectors and apply LDA (13).
4) Compute movement prototypes (14).

Testing

Compute test movement vectors (5), (6), (13){τ (t)
1 , . . . , τ

(t)
Nz

}.

for ı = 1 to Nz

Classify test movement vectorτ (t)
ı using (15).

if zı is classified correctlythen Υc,m + + end if

end for (ı)

end for (o); end for (a)

Perform the LOOCV procedure for different valuesC′, m′.

Get optimal parameters :(Copt, mopt) = argmax
c,m

Υc,m.

Fig. 3. Dyneme vectors and fuzzification parameter estimation.

using (5), givingφκ. The weighted average of the posture representations in the dyneme space within a sliding

window w is taken in order to provide the movement vector at frameκ

sκ =
`2∑

ı=−`1

wı φκ−ı , (16)

where the weightswκ, κ ∈ [−`1, `2], `1, `2 ≥ 0, are the coefficients of the sliding window, and`2, `1, determine

the number of the past and future frames respectively to account for the computation of the movement vector. When

`1 6= 0 , i.e. future frames are used in (16), a respective delay is introduced in the computation of the movement

vector. The movement vector is then projected to the discriminant subspace using (13) to yieldτκ, which is then

classified with (15), giving the resulting recognized movement class as output. The length of the window should

be appropriate in order to conveniently capture an appropriate number of dynemes for the current movement that

allows discrimination of the current movement from the other movements within the window.

III. E XPERIMENTAL RESULTS

In this section we present experimental results on two databases. The first, called ”Weizmann” database [11], is

one of the very few adequately sized, in terms of persons and actions, publicly available databases for view-based

human action recognition. The second database has been created using the motion capture CMU database [35].
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A. ”Weizmann” database description

The ”Weizmann” database contains 93 low-resolution videos (180 × 144 × 25 fps) of 9 persons performing 10

movements (3 persons perform the same movement 2 times), namely, walk (wk), run (rn), skip (sk), gallop sideways

(sd or side), jump jack (jk), jump (jp), jump in place (pj or pjump), bend (bd), wave with one hand (wo or wave1)

and wave with two hands (wt or wave2). In addition, contains 20 videos, showing one person walking under several

challenging conditions, which we describe in detail in section III-C3. The videos are captured under real conditions,

and, thus, the posture masks, produced from background substraction, are imperfect. A few masks from several

movements are depicted in Figure 4.

Fig. 4. Three binary body masks for nine human movements.

B. Preprocessing

In our computations, the binary masks provided in [11] are directly employed. For non-stationary movements,

the mask sequences are transformed to show persons moving in the same direction, either towards left or right.

This is done by first deciding the direction, and then mirroring the frames of the movement videos that show a

person moving to an opposite direction from the chosen one.

The binary masks are preprocessed according to the procedure described in section I. The resulted posture mask

ROIs are scaled to size64 × 48 pixels using bicubic interpolation (as in [10]) and then scanned column-wise to

form 3072-dimensional posture vectors.

C. Off-line analysis

Off-line analysis of a number of movement types using the proposed algorithm, includes the estimation of the

parameters,C,m, the assessment of the robustness and classification performance of the algorithm, and the analysis

of the confusion of the specific movement types.

1) Algorithm optimization: The classification dataset is used to optimize the proposed algorithm using the

procedure shown in Figure 3. This procedure assumes that each video contains only a single instance of a human

movement. However, some videos show a person executing several cycles of a periodic activity. We brake such

videos to their constituting single period movements, and, thus, we produce a database of230 movement videos

as shown in Table I. We see that the movement videos in the database have variable inter- and intra-class length,
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movement # av. len. min. max.
walk 42 13.5 12 15
jump 29 12.5 11 16
side 22 15 13 18
run 28 10 9 12
skip 29 12 11 14
jack 18 27 24 31
pjump 25 15.5 13 18
bend 9 62 57 66
wave1 14 28.5 24 33
wave2 14 28.5 24 33

TABLE I
The average, minimum and maximum length (in frames), of human movement videos.

therefore an algorithm should be able to compare variable length videos and account for internal speed variations

effectively.

The movement videos are preprocessed to provide a set of movement sequences, which are directly imported in

the procedure of Figure 3 in order to identify the optimal parametersCopt,mopt, for the ten movement types in

the database. The plot in Figure 5 depicts the recognition rate of the proposed algorithm, over different number of

Fig. 5. Human movement recognition rate vs the number of dynemes.

dynemesC, while the fuzzification parameter ismopt = 1.1385. The optimum recognition rate,96%, was attained

with Copt = 43 dynemes, where only nine movement sequences were misclassified. The respective confusion matrix

is given in Table II. For dynemesC > 20, the recognition rate is always above90%, although there is a decline in

performance when we start using too many dynemes.

2) Human movement analysis:The proposed algorithm can also be used as a qualitative analysis tool, i.e., to

identify the degree to which different dynemes express each movement type as well as to assess the confusion

between the different movement types. We do this using the optimal valuesC = 43,m = 1.1385 to compute the

matrix M , as described in section II-D.

For illustration, for each of nine movements we depict the three dynemes, mostly associated with a movement
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bd jk jp pj rn sd sp wk wo wt
bd 9
jk 18
jp 26 1 2
pj 1 24
rn 28
sd 1 21
sp 2 27
wk 42
wo 12 2
wt 14

TABLE II
Confusion matrix between ten human movements.

in Figure 6, as well as we plot the respective three rows ofM in the corresponding subplot of Figure 7. Intuitively,

we could say that some dynemes uniquely characterize the movement type they are assigned to, while others are

confused among different movement types. For instance, dyneme22, which is assigned to movement skip, is also

very similar to some postures of movement run. These intuitive conclusions can be formally drawn from the plots

in Figure 7, which explicitly depict an estimate of the percentage of the dyneme in the respective movement type,

for each of the dynemes in Figure 6. That is, for each movement (e.g. SKIP, RUN, ..., etc.) the three representative

dynemes (in terms of mixing strength) are plot along with the representation ability for other movements (e.g. wk,

jp, rn, ..., etc.). For example, we see that the percentage of dyneme22 in the movement SKIP is slightly larger than

its percentage to the movement of run (rn in x-axis). On the other hand, some dynemes are found only on specific

movement types. This is the case, e.g., for dynemes14, 6, 43, which are mostly found in the movement BEND.

Fig. 6. For each of nine movements three dynemes are depicted.

In general, we see that movements of skip, walk and run exhibit high degree of confusion with other movement

types. Among them, only walk bears some similarity with a non periodic movement, i.e., bend (bd). The latter

appears to be the most distinct among all movements. Finally, some small confusion exists between gallop sideways,

jump in place and jump movements as well as between the wave with two hands, wave with one hand and jack

movements.
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Fig. 7. Confusion between dynemes: Each plot shows the degree that ther-th movement (r = jp, sd, rn, sp, jk, pj, bd, wo, wt) belongs to the
c-th dyneme.

3) Robustness tests:The robustness of the algorithm was assessed using the ”robustness” database reported in [11]

containing videos of various lengths (e.g., the largest video has 106 frames, while the smallest only 42), depicting

a person walking under various scenarios. The videos can be roughly separated in two sets. The first set consists of

ten videos that describe a person walking along various directions (0◦− 90◦) with respect to the horizontal camera

axis. This set is suitable for testing the tolerance of the proposed algorithm against viewpoint changes. The other set

consists of videos depicting a person walking in side view under varying conditions, e.g., under partial occlusion

(passing behind a pole, walking next to a dog, walking while feet are occluded), wearing different clothing (wearing

skirt, wearing a pair of trousers), executing different types of walk (normal walk, moonwalk, limp walk, walking

with knees up), and, finally, walking while carrying an object (a bag or a briefcase).

The parameters (Copt = 43, mopt = 1.1385), the dyneme vectors, and the movement prototypes, identified in

section III-C1, are directly used to test the robustness of the algorithm. That is, we do not perform any additional

training, and all the robustness videos are used as test videos (even though, in reality, a test video consists of a

sequence of walk movements). Each of the20 ”robustness” videos is preprocessed as described in section III-B.

Afterwards, all the posture vectors of the video in the input space are mapped in the dyneme space using (5), the

movement vector for each video is computed using (6) and projected with LDA using (13). Then, the Mahalanobis

distance is taken over all movement prototypes in the projection space to produce a set of10 values, one for each

movement type. The movement of the ”robustness” video is recognized as the movement type which produced the

smallest value. Moreover, the set of the distance values is used to compute the median distance, i.e., the distance

values are perceived as realizations of a distribution and the median distance is taken as the value from which half

of the distances are above it and half of the distances are below it. The ratio of the smallest distance with the

median distance can be used as a measure of the confidence of the recognition.

The classification results for both ”robustness” video sets are shown in Table III. In Table IIIa we see that walk

videos captured under viewpoints smaller than45◦ are recognized correctly, with high confidence over the median

distance. For larger viewpoint angles, the walk movement is always recognized as the second best. Table IIIb on
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the same figure, depicts the classification results over the second ”robustness” video set, i.e., videos comprising

different walk scenarios. The proposed algorithm classified correctly seven out of the ten walk videos, with high

confidence over the median distance, while for the three misclassified videos, walk provided the second best match.

Video 1st best 2nd best Med.
walk 0◦ walk 0.24 side 13.8 15.6
walk 9◦ walk 0.33 side 11.7 14.5
walk 18◦ walk 1.15 side 8.8 15.4
walk 27◦ walk 1.53 side 7.3 14.5
walk 36◦ walk 2.34 side 6.1 15.2
walk 45◦ side 3.10 walk 5.1 15.1
walk 54◦ wave15.45 walk 7.4 13
walk 63◦ wave13.27 walk 12.1 14.7
walk 72◦ wave11.52 walk 14.9 18.1
walk 81◦ wave11.42 walk 15.2 18.3

(a)

Video 1st best 2nd best Med.
Occluded by pole walk 3.1 side 9.7 16.2
Walk with dog run 2 walk 8.3 17.9
Occluded feet walk 2.8 side 5.1 12.8
Walk in skirt walk 0.8 side 12.2 17.3
Normal walk walk 0.78 side 12.6 17.5
Moonwalk jack 7.3 walk 11.9 18.9
Limp Walk walk 0.7 side 9.6 12.3
Knees up side 3.6 walk 6.9 11.8
Carry bag walk 1.5 side 9 14.4
Carry briefcase walk 1.6 side 7.2 13.2

(b)

TABLE III
Experimental results of robustness tests. The leftmost column describe the movement performed in the test video, while the first and second

closest movement along with the corresponding distances, are shown in the second and third columns respectively. The median distance of the
test movement from all the class movements is shown in the rightmost column. Table(a) depicts results on videos presenting a person walking

on different directions, and Table(b) on videos showing a person walking in side view under varying conditions.

D. Continuous movement recognition

We use a variant of the LOOCV procedure to evaluate the continuous human movement recognition algorithm,

described in section II-H. The database contains videos of 9 persons performing 10 different movements. At each

LOOCV cycle we remove from the database all the videos of the test person and concatenate the frames of these

videos to form one test video. Thus, the test video depicts a person performing all the 10 movements, one after the

other, e.g., first walk, then jump and so on. The training set consists of all the other persons’ videos, i.e., videos

showing 8 persons performing the 10 different movements. We break the training set videos to their constituting

single period movements, as described in section III-C1, to produce the respective training movement videos.

These videos are used to compute the movement prototypes, using the equations, (5), (6), (13), (14), with values

mopt = 1.1385, Copt = 43.

At the test phase of each validation cycle we use equation (16), with`1 = `2 = 12, i.e., a window of size

25, and uniform weights,wκ = 0.7, κ = −12, . . . , 12, to recognize the 10 movement types within the test video.

At each frame instance the cosine similarity value between the resulting movement vectorτ (t) and each of theR

movement prototypes is computed, and all the values are normalized to yieldR similarity values,f1(τ ), . . . , fR(τ ).

The movement type at this frame is then recognized using,t = argmax
r∈[1,... ,R]

( fr(τ ) ). In our experiments, in order

to eliminate spurious detections and robustify the algorithm, we additionally used the following heuristic rules

before accepting a movement type detection. Letfr1(τ ) and fr2(τ ) be the largest and second largest cosine

similarity values respectively. The candidate labelr1 for the unknown movement at the current frame is accepted
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if gr1(τ ) > α1 andgr1(τ )− gr2(τ ) > α2. Moreover, the same movement type should be detected for more than

α3 frames continuously in order to consider the detection of this movement type as valid. The values used in our

experiments areα1 = 0.4, α2 = 0.15 andα3 = 6.

Fig. 8. Recognition results for one validation cycle of the real time algorithm. The test video contains several instances of ten different
movement types. The start and the end of each movement is not known, i.e., movements are not segmented a priori. The vertical lines through
the plot indicate the actual end of a particular sequence of movements (e.g. walk), and the begin of another sequence of movements (e.g. jump).
The horizontal bar at the bottom of the figure depicts the recognized movement type as computed by the proposed algorithm. The black color
indicates that a movement type is recognized in the particular frame, while the white color depicts that a movement has not been detected.

In total, the LOOCV procedure consists of 9 cycles, one for each person, where, at each cycle, the 10 movement

types within the test video should be recognized. With the above settings, 86 movements out of 90 were recognized

correctly, while the rest 4, namely, 2 skip movements, 1 gallop sideways and 1 wave with two hands, were considered

undetected due to the above heuristics. Thus, the attained recognition rate was 95,6%. We should note that the

estimate is performed with a delay of`1 = 12 frames, which corresponds to0.5 seconds. However, the proposed

window method can be also considered to use only past frames for the movement detection. In this case,`1 is set

to zero and the performance is slightly reduced.

In Figure 8 we show the results of one validation cycle, where all movements have been recognized correctly.

The test video contains409 frames and the movements appear with the following succession: walk, jump, gallop

sideways, run, skip, jack, jump in place, bend, wave with one hand and wave with two hands. We can see that

although the length of the movements varies considerable, from 9 frames to 66 frames, as shown in Table I, the

algorithm can still effectively recognize them utilizing a sliding window of constant length, without the need of

movement segmentation, time alignment, or identification of the start and the end frame of the movement. This is

possible because movement types are different not only as a whole, but also if seen partially, and this difference is
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captured effectively by the respective dynemes and exploited by the proposed algorithm.

E. Experiments on the CMU motion capture database

The CMU motion capture database [35] has been used by several researchers in the field of human movement

recognition, e.g., [36], [37]. However, we can not directly use this database as our method requires human movement

videos. Thus, in order to create a video database of everyday life movements we devised 10 different male/female

human figures casual dressed using Poser software [38], and then imported motion capture data, obtained from the

CMU database, from the category of ”locomotion”. In particular, 10 trials of walk, 10 trials of run, 9 trials of jump

and 8 trials of jump in place were used to finally generate 37 videos (490×500×25 fps). Each of the videos of run

and walk show a person executing several cycles of the movement, and therefore we further broke these videos to

produce a database of 92 movement videos and the respective binary mask sequences. The binary mask sequences

are further preprocessed as described in section III-B to finally produce movement sequences consisting of3072-

dimensional posture vectors. Using the procedure described in Figure 3, we identified the optimum parameters,

Copt = 8, mopt = 1.1385. For these parameters, only one movement sequence was wrongly classified, giving a

classification rate of98.9%. The misclassified sequence was a sequence of a person jogging very slowly and thus

perceived as a movement of walk.

F. Comparison with other methods

The ”Weizmann” database reported in [11], has been recently used to evaluate the algorithms of several other

state of the art methods, as shown in Table IV. The classification performance attained here is slightly lower than

the best reported on this database [10], [11]. However, these methods, such as the most of the methods currently

applied in human movement recognition, assume that the test video contains instances of only one movement

type, and, thus, are not directly applicable on videos that contain instances of different movement types. Moreover,

both the aforementioned methods during the on-line operation use nearest neighbor classification combined with

the Hausdorff distance comparison metric (given byDH = median
ı

(min


‖ xı − y ‖), where,{xı}, {y} are

movement sequences in some space) in order to align the sequences in time, and allow comparison of different

length movements. Therefore, the on-line computational complexity of the proposed algorithm, which uses simple

nearest centroid cosine distance, is lower. For instance, in [11], the reported processing time in Matlab (solving the

Method [39] [10] [20] [40]
CVPR ‘07 TIP ‘07 ICIP ‘07 MMC ‘07

Accuracy 72.8 % 100 % 88.9 % 82.6 %
Method [11] [41] Proposed

PAMI ‘07 WMVC ‘08
Accuracy 97.5 % 82.7 % 96 %

TABLE IV
Correct classification rates on the ”Weizmann” database.
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Poisson equation and computing moments of the space-time cubes), is around30 seconds, on a Pentium 4, 3.0 GHz,

for a pre-segmented video of size110×70×50. We used a video of the same dimensions to evaluate the efficiency

of our algorithm using an unoptimized Matlab implementation, on a Pentium 4, 1.6 GHz. The preprocessing time

(section III-B) was around 5 seconds, while FVQ and classification steps (test mode part of the algorithm depicted

in Figure 3) needed less than 1/2 second.

IV. CONCLUSIONS

In this paper, inspired by the way that humans recognize movements, movement types are modelled as mixture

densities. With the proposed method, a movement sequence of any length can be compactly expressed as a single

low dimensional vector. This principle, allows fast nearest-centroid classification, and an overall low computational

processing time. However, the major advantage of the method, as shown in the experimental results section, is

its applicability for continuous human movement recognition. The algorithm has been evaluated on two databases

providing good classification rates and exhibiting adequate robustness against partial occlusion, different styles of

movement execution, viewpoint changes, male/female silhouettes, clothing conditions and other challenging factors.
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