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Abstract

An integrated methodology for the detection and removal of cracks on digitized paintings is presented in this

paper. The cracks are detected by thresholding the output of the morphological top-hat transform. Afterwards, the

thin dark brush strokes which have been misidentified as cracks are removed using either a Median Radial Basis

Function (MRBF) neural network on hue and saturation data or a semi-automatic procedure based on region growing.

Finally, crack filling using order statistics filters or controlled anisotropic diffusion is performed. The methodology

has been shown to perform very well on digitized paintings suffering from cracks.

I. INTRODUCTION

Many paintings, especially old ones, suffer from breaks in the substrate, the paint, or the varnish. These patterns

are usually called cracks or craquelure and can be caused by aging, drying, and mechanical factors. Age cracks

can result from non-uniform contraction in the canvas or wood-panel support of the painting, which stresses the

layers of the painting. Drying cracks are usually caused by the evaporation of volatile paint components and the

consequent shrinkage of the paint. Finally, mechanical cracks result from painting deformations due to external

causes, e.g. vibrations and impacts.

The appearance of cracks on paintings deteriorates the perceived image quality. However, one can use digital

image processing techniques to detect and eliminate the cracks on digitized paintings. Such a ”virtual” restoration

can provide clues to art historians, museum curators and the general public on how the painting would look like in

its initial state, i.e., without the cracks. Furthermore, it can be used as a non-destructive tool for the planning of the

actual restoration. A system that is capable of tracking and interpolating cracks is presented in [1]. The user should

manually select a point on each crack to be restored. A method for the detection of cracks using multi-oriented
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Gabor filters is presented in [2]. Crack detection and removal bears certain similarities with methods proposed

for the detection and removal of scratches and other artifacts from motion picture films [3], [4], [5]. However,

such methods rely on information obtained over several adjacent frames for both artifact detection and filling and

thus are not directly applicable in the case of painting cracks. Other research areas that are closely related to

crack removal include image inpainting which deals with the reconstruction of missing or damaged image areas

by filling-in information from the neighboring areas, and disocclusion, i.e., recovery of object parts that are hidden

behind other objects within an image. Methods developed in these areas assume that the regions where information

has to be filled-in are known. Different approaches for interpolating information in structured [6], [7], [8], [9], [10]

and textured image areas [11] have been developed. The former are usually based on partial differential equations

(PDE) and on the calculus of variations whereas the latter rely on texture synthesis principles. A technique that

decomposes the image to textured and structured areas and uses appropriate interpolation techniques depending on

the area where the missing information lies has also been proposed [12]. The results obtained by these techniques

are very good. A methodology for the restoration of cracks on digitized paintings, which adapts and integrates a

number of image processing and analysis tools is proposed in this paper. The methodology is an extension of the

crack removal framework presented in [13]. The technique consists of the following stages:

• Crack detection.

• Separation of the thin dark brush strokes, which have been misidentified as cracks.

• Crack filling (interpolation).

A certain degree of user interaction, most notably in the crack detection stage, is required for optimal results.

User interaction is rather unavoidable since the large variations observed in the typology of cracks would lead any

fully automatic algorithm to failure. However, all processing steps can be executed in real time and thus the user

can instantly observe the effect of parameter tuning on the image under study and select in an intuitive way the

values that achieve the optimal visual result. Needless to say that only subjective optimality criteria can be used

in this case since no ground truth data are available. The opinion of restoration experts that inspected the virtually

restored images was very positive.

This paper is organized as follows. Section II describes the crack detection procedure. Two methods for the

separation of the brush strokes which have been falsely identified as cracks are presented in Section III. Methods

for filling the cracks with image content from neighboring pixels are proposed in Section IV. Conclusions and

discussion follow.

II. DETECTION OF CRACKS

Cracks usually have low luminance and thus can be considered as local intensity minima with rather elongated

structural characteristics. Therefore, a crack detector can be applied on the luminance component of an image and

should be able to identify such minima. A crack detection procedure based on the so-called top-hat transform [14]

is proposed in this paper. The top-hat transform is a grayscale morphological filter defined as follows:

y(x) = f(x)− fnB(x) (1)
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where fnB(x) is the opening of the function f(x) (in our case, the luminance component of the image under study)

with the structuring set nB, defined as:

nB = B ⊕B ⊕ · · · ⊕B (n times) (2)

In the previous equation ⊕ denotes the dilation operation. A square or a circle can be used as structuring element B

[15]. The final structuring set nB is evaluated only once using (2) and is used subsequently in the opening operation

of (1). The opening fnB of a function is a low-pass nonlinear filter that erases all peaks (local maxima) in which

the structuring element nB cannot fit. Thus, the image f − fnB contains only those peaks and no background at

all. Since cracks are local minima rather than local maxima the top-hat transform should be applied on the negated

luminance image. Alternatively, one can detect cracks by performing closing on the original image f(x) with the

structuring set nB and then subtracting f(x) from the result of closing fnB(x):

y(x) = fnB(x)− f(x) (3)

It can be easily shown that the result of (3) is identical to that of applying (1) on the negated image. Use of (3)

does not require negation of f(x) which grands it a small but not negligible computational advantage over (1).

In situations where the crack-like artifacts are of high luminance, as in the case of scratches on photographs,

negation of the luminance component prior to the crack detection is not required, i.e. the crack detection procedure

can be applied directly on the luminance image. The user can control the result of the crack detection procedure

by choosing appropriate values for the following parameters:

• The type of the structuring element B.

• The size of the structuring element B and the number n of dilations in (2).

These parameters affect the size of the ”final” structuring element nB and must be chosen according to the thickness

of the cracks to be detected. It should be noted however that these parameters are not very critical for the algorithm

performance due to the thresholding operation that will be described in the next paragraph and also due to the

existence of the brush stroke / crack separation procedure (section III), which is able to remove crack-like brush

strokes that have been erroneously identified as cracks. The fact that all the results presented in this paper have

been obtained with the same top-hat transform parameters comes as a clear indication that the above statement is

indeed true. These parameters were the following:

• Structuring element type: square

• Structuring element size: 3× 3

• Number n of dilations in (2): 2

The top-hat transform generates a grayscale output image t(k, l) where pixels with a large grey value are potential

crack or crack-like elements. Therefore, a thresholding operation on t(k, l) is required to separate cracks from the

rest of the image. The threshold T can be chosen by a trial and error procedure, i.e., by inspecting its effect on

the resulting crack map. The low computational complexity of the thresholding operation enables the user to view

the crack detection results in real time while changing the threshold value. e.g., by moving a slider. This fact
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makes interactive threshold selection very effective and intuitive. Alternatively, threshold selection can be done by

inspecting the histogram of t(k, l) for a lobe close to the maximum intensity value (which will most probably

correspond to crack or crack-like pixels), and assigning it a value that separates this lobe from the rest of the

intensities. The result of the thresholding is a binary image b(k, l) marking the possible crack locations. Instead

of this global thersholding technique, more complex thresholding schemes, which use a spatially varying threshold

can be used. Obviously, as the threshold value increases the number of image pixels that are identified as cracks

decreases. Thus, certain cracks, especially in dark image areas where the local minimum condition may not be

satisfied, can remain undetected. In principle, it is more preferable to select the threshold so that some cracks

remain undetected than to choose a threshold that would result in the detection of all cracks but will also falsely

identify as cracks, and subsequently modify, other image structures. The thresholded (binary) output of the top-hat

transform on the luminance component of an image containing cracks (Figure 1) can be seen in Figure 2. Additional

examples of cracks detected using this approach can be seen in Figures 10-12.

III. SEPARATION OF THE BRUSH STROKES FROM THE CRACKS

In some paintings, certain areas exist where brush strokes have almost the same thickness and luminance features

as cracks. The hair of a person in a portrait could be such an area. Therefore, the top-hat transform might misclassify

these dark brush strokes as cracks. Thus, in order to avoid any undesirable alterations to the original image, it is

very important to separate these brush strokes from the actual cracks, before the implementation of the crack filling

procedure. Two methods to achieve this goal are described in the following subsections.

A. Semi-automatic crack separation

A simple interactive approach for the separation of cracks from brush strokes is to apply a region growing

algorithm on the thresholded output of the top-hat transform, starting from pixels (seeds) on the actual cracks. The

pixels are chosen by the user in an interactive mode. At least one seed per connected crack element should be

chosen. Alternatively, the user can choose to apply the technique on the brush strokes, if this is more convenient.

The growth mechanism that was used implements the well-known grassfire algorithm that checks recursively for

unclassified pixels with value 1 in the 8-neighborhood of each crack pixel. At the end of this procedure, the pixels in

the binary image, which correspond to brush strokes that are not 8-connected to cracks will be removed. The above

procedure can be used either in a stand-alone mode or applied on the output of the MRBF separation procedure

described in the next section to eliminate any remaining brush strokes.

B. Discrimination on the basis of hue and saturation

Hue H is associated with the dominant wavelength in a mixture of light wavelengths and represents the dominant

color. In the HSV color model, hue is represented as the angle around the vertical axis, with red at 0◦, green at

120◦, and so on. Saturation S refers to the amount of white light mixed with a certain hue. Hue and saturation are
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defined similarly in other related color domains, e.g. in Hue Saturation Intensity (HSI) or Hue Lightness Saturation

(HLS).

By statistical analysis of 47 digitized paintings (24 portable religious icons from the Byzantine era and 23

paintings of various styles and ages), it has been concluded that the hue of the cracks usually ranges from 0◦ to

60◦. On the contrary, we observed that the hue of the dark brush strokes varies, as expected, in the entire gamut

[0◦, 360◦]. Furthermore, crack saturation usually ranges from 0.3 to 0.7, while brush stroke saturation ranges from

0 to 0.4. Thus, on the basis of these observations, a great portion of the dark brush strokes, falsely detected by

the top-hat transform, can be separated from the cracks. This separation can be achieved by classification using a

Median Radial Basis Function (MRBF) neural network, which is a robust, order statistics based, variation of Radial

Basis Function (RBF) networks [16].

RBFs are two-layer feedforward neural networks [17], that model a mapping between a set of input vectors and

a set of outputs. The network architecture is presented n Figure 3. RBFs incorporate an intermediate, hidden layer

where each hidden unit implements a kernel function, usually a Gaussian function:

φj(X) = exp[(µj −X)T S−1
j (µj −X)], j = 1, . . . , L (4)

where µj , Sj denote the mean vector and the covariance matrix for kernel j and L denotes the number of units

(kernels) in the hidden layer. Each output consists of a weighted sum of kernels. In typical situations that involve

pattern classification, the number of outputs equals to the number of classes. In such a setting, the current vector is

assigned to the class associated with the output unit exhibiting the maximum activation (winner takes all approach).

After the learning stage, the network implements the input-output mapping rule and can generalize it to input vectors

not being part of the training set.

The parameters to be estimated (learned) in a RBF network are the center (mean) vector µj and the covariance

matrix Sj for each Gaussian function and the weights wk,j corresponding to the connections between neurons in the

hidden layer and output nodes. A hybrid technique that has been frequently used for the training of such networks,

has been adopted for the learning stage. According to this technique, training is performed in two successive steps:

the hidden layer parameters are estimated using an unsupervised approach and, afterwards, the output layer weights

are updated in a supervised manner, using the (now fixed) hidden layer parameters evaluated in the previous step.

In the classical version of the adopted training technique, a variation of the Learning Vector Quantizer (LVQ)

algorithm is used for the unsupervised hidden layer parameter updating. Each input vector is assigned to the Gaussian

kernel whose center is closer (in terms of either the Euclidean or the Mahalanobis distance) to this vector:

if ‖ Xi − µj ‖= minL
k=1 ‖ Xi − µk ‖ then Xi ∈ Cj (5)

where ‖ ‖ denotes either Euclidean or Mahalanobis distance and Cj denotes the class of input vectors associated

with kernel φj . Subsequently, the algorithm updates the center and covariance matrix of the winner kernel using

running versions of the classical sample mean and sample covariance matrix formulas. On the other hand, the

MRBF algorithm which has been used in our case is based on robust estimation [16] of the hidden unit parameters.
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It employs the Marginal Median LVQ [18] that selects the winner kernel using (5) and utilizes the marginal median

of the input vectors currently assigned to this kernel for the update of the center vector (location parameter) µj of

the kernel:

µj = marginal median{X0,X1, . . . ,Xn−1}; (6)

where Xn−1 is the last vector assigned to kernel j. The update of the diagonal elements of the corresponding

covariance matrix is performed using the median of the absolute deviations (MAD) [19] of the inputs currently

assigned to this kernel:

σj =
marginal median{|X0 − µj | , . . . , |Xn−1 − µj |}

0.6745
(7)

In the previous expression, σj denotes the vector containing the diagonal elements of the covariance matrix and |X|
denotes the vector obtained by taking the absolute value of each component of X. The off-diagonal components of

the covariance matrix are also calculated based on robust statistics [16]. In order to avoid excessive computations

the above operations can be applied on a subset of data extracted through a moving window that contains only the

last W data samples assigned to the hidden unit j.

In the supervised part of the learning procedure, the weights of the output layer, which group the clusters found

by the hidden layer into classes, are updated. The update mechanism for these weights is described by the following

expression:

wk,j(t + 1) = wk,j(t) + nw(Fk(X)− Yk(X))Yk(X)(1− Yk(X))φj(X) (8)

for k = 1, . . . , M , j = 1, . . . , L , and a learning factor nw ∈ (0, 1]. In the previous formula Yk(X), Fk(X) denote

the actual and desired network output for input vector X. The latter is given by:

Fk(X) =





1 if X ∈ Ck

0 if X ∈/Ck

(9)

The update formula (8) corresponds to the backpropagation for the output weights of a RBF network with respect

to the mean square error cost function.

In our implementation, a MRBF network with two outputs was used. The first output represents the class of

cracks while the second one the class of brush strokes. Input vectors were two-dimensional and consisted of the

hue and saturation values of pixels identified as cracks by the top-hat transform. The number of clusters (hidden

units) chosen for each class depends on the overlap between the populations of cracks and brush strokes. If

there is a substantial overlap, the number should be increased, in order to reduce the classification error. In our

implementation three hidden units have been incorporated. Training was carried out by presenting the network with

hue and saturation values for pixels corresponding to cracks and crack-like brush strokes. Data from 24 digitized

portable religious icons from the Byzantine era were used for this purpose. The system trained using this specific

training set can be considered to be optimized for paintings of this style and its use on paintings of other style

might result in somewhat suboptimal results. However, appropriately selected training sets can be used to train the

system to separate cracks from brush strokes on paintings of different artistic styles or content. In order to select
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pixels corresponding to cracks and crack-like brush strokes the crack detection algorithm presented in section II was

applied on these images. Results were subsequently post-processed by an expert using the semi-automatic approach

presented in section III-A. The aim of this post-processing step was twofold: to remove pixels that are neither

cracks nor crack-like brush strokes and to separate cracks and crack-like brush strokes for the supervised step of

the training procedure. In this supervised training step, the network was presented with these labelled inputs, i.e.,

pairs of hue-saturation values that corresponded to image pixels that have been identified as belonging to cracks

and crack-like brush strokes.

After the training session, the MRBF neural network was able to classify pixels identified as cracks by the top

hat transform to cracks or brush strokes. The trained network has been tested on 12 images from the training set

and 15 images (of the same artistic style and era) that did not belong to the training set. Naturally, the performance

of the cracks / brush strokes separation procedure was judged only in a subjective manner (i.e. by visual inspection

of the results), as ground truth data (i.e. brush strokes-free crack images) are not available. For this reason two

restoration experts were asked to inspect several crack images before and after the application of the separation

system and concluded that in the processed crack images the great majority of the brush strokes has been removed.

A thresholded top-hat transform output containing many brush strokes e.g. hair is illustrated in Figure 5. A great

part of these brush strokes is separated by the MRBF, as can be seen in Figure 6. The original image can be seen

in Figure 4.

IV. CRACK FILLING METHODS

After identifying cracks and separating misclassified brush strokes, the final task is to restore the image using

local image information (i.e., information from neighboring pixels) to fill (interpolate) the cracks. Two classes

of techniques, utilizing order statistics filtering and anisotropic diffusion are proposed for this purpose. Both are

implemented on each RGB channel independently and affect only those pixels which belong to cracks. Therefore,

provided that the identified crack pixels are indeed crack pixels, the filling procedure does not affect the ”useful”

content of the image. Image inpainting techniques like the ones cited in Section I can also be used for crack filling.

The performance of the crack filling methods presented below was judged by visual inspection of the results.

Obviously, measuring the performance of these methods in an objective way is infeasible since ground truth data

(e.g. images depicting the paintings in perfect condition, i.e., without cracks) are not available. For the evaluation

of the results, two restoration experts were asked to inspect several images restored using the various methods and

comment, based on their experience, on the quality of the filling results, (i.e., whether cracks were sufficiently

filled), whether the color used for filling was the correct one, whether fine image details were retained, etc.

A. Crack filling based on order statistics filters

An effective way to interpolate the cracks is to apply median or other order statistics filters [15] in their

neighborhood. All filters are selectively applied on the cracks, i.e., the center of the filter window traverses only

the crack pixels. If the filter window is sufficiently large, the crack pixels within the window will be outliers and
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will be rejected. Thus, the crack pixel will be assigned the value of one of the neighboring non-crack pixels. The

following filters can be used for this purpose:

• Median filter:

yi = med(xi−ν , . . . , xi, . . . , xi+ν) (10)

• Recursive median filter:

yi = med(yi−ν , . . . , yi−1, xi, . . . , xi+ν) (11)

where the yi−ν , . . . , yi−1 are the already computed median output samples. For both the recursive median

and the median filter, the filter window (considering only rectangular windows) should be approximately 50%

wider than the widest (thickest) crack appearing on the image. This is necessary to guarantee that the filter

output is selected to be the value of a non-crack pixel. Smaller windows will result in cracks that will not be

sufficiently filled whereas windows that are much wider than the cracks will create large homogeneous areas,

thus distorting fine image details.

• Weighted median filter:

yi = med(w−ν♦xi−ν , . . . , wν♦xi+ν) (12)

where w♦x denotes duplication of x,w times. For this filter, smaller filter windows (e.g. windows that are

approximately 30% wider than the widest crack appearing on the image) can be used since the probability

that a color value corresponding to a crack is selected as the filter output (a fact that would result in the crack

pixel under investigation not being filled effectively by the filter) can be limited by using small weights (e.g.

1) for the pixels centrally located within the window (which are usually part of the crack) and bigger ones

(e.g. 2 or 3) for the other pixels.

• A variation of the modified trimmed mean (MTM) filter which excludes the samples xi+r,j+s in the filter

window, which are considerably smaller from the local median and averages the remaining pixels:

yij =
∑∑

A αrsxi+r,j+s∑ ∑
A αrs

(13)

The summations cover the entire filter window A. The filter coefficients are chosen as follows:

αrs =





0 if med{xij} − xi+r,j+s ≥ q

1 otherwise
(14)

The amount of trimming depends on the positive parameter q. Data of small value deviating strongly from the

local median (which correspond usually to cracks) are trimmed out. Windows used along with this variant of

the MTM filter can also be smaller than those used for the median and recursive median filters since a portion

of the crack pixels is expected to be rejected by the trimming procedure.

• Another variation of the MTM filter that performs averaging only on those pixels that are not part of the crack,

i.e., it utilizes information from the binary output image b(k, l) of the top hat transform. In this case, the filter
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coefficients in (13) are chosen as follows:

αrs =





1 if b(k, l) = 1

0 otherwise
(15)

The median operator can be used instead of the arithmetic mean in (13). For this variant of the MTM filter,

even smaller filter windows can be used, since crack pixels do not contribute to the filter output. Thus, it

suffices that the window is 1 pixel wider than the widest crack.

The result of the application of the second variation of the modified trimmed mean filter on the painting depicted

in Figure 1a is shown in Figure 7 (filter size 5×5). Another image restored by the same crack-filling approach can

be seen in Figure 8 (filter size 3× 3). Extensive experimentation proved that this filter gives the best results among

all filters presented above according to subjective evaluation by restoration experts. The superiority of this filter

can be attributed to the fact that only non-crack pixels contribute to its output. On the contrary, for all other filters

presented in this section the probability that crack pixels will contribute to the output is small but not negligible.

B. Controlled Anisotropic Diffusion

Anisotropic diffusion [20] is an image enhancement method that successfully combines smoothing of slowly

varying intensity regions and edge enhancement. Smoothing is modelled as a diffusion that is allowed along

homogeneous regions and inhibited by region boundaries. Anisotropic diffusion is described by the following

partial differential equation:

∂I(x, y, t)
∂t

= div(c(x, y, t)∇I(x, y, t)) = c(x, y, t)∆I(x, y, t) +∇c(x, y, t) · ∇I(x, y, t) (16)

where div denotes the divergence operator and ∇, ∆ the gradient and Laplacian operators with respect to the space

variables x, y. At each position and iteration, diffusion is controlled by the conduction (or diffusion) coefficients

c(x, y, t). Since diffusion should be inhibited across regions separated by discontinuities, the conduction coefficients

should obtain small values in pixels with large intensity gradient magnitude. A similar approach named Curvature

Driven Diffusion (CCD) has been proposed in [9] for image inpainting applications.

In order to obtain a numerical solution to the diffusion equation, discretization of the spatial and time coordinates

and approximation of the differential operators by finite difference operators should be performed in (16). We have

used the same discretizations as proposed in [20]. The iterative, discrete solution to (16) is governed by the following

equation:

It+1
i,j = It

i,j + λ[cN ·DNI + cS ·DSI + cE ·DEI + cW ·DW I]ti,j (17)

where 0 ≤ λ ≤ 1/4 for the scheme to be stable, N, S, E, W are the mnemonics for North, South, East, West and
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the symbol D indicates nearest-neighbor differences:

DNIi,j ≡ Ii−1,j − Ii,j

DSIi,j ≡ Ii+1,j − Ii,j

DEIi,j ≡ Ii,j+1 − Ii,j

DW Ii,j ≡ Ii,j−1 − Ii,j (18)

The conduction coefficients are evaluated at every iteration as a function g(·) of the magnitude of the intensity

gradient. In our implementation, the following approximation was used [20]:

ct
Ni,j

= g ( | DNIt
i,j | )

ct
Si,j

= g ( | DSIt
i,j | )

ct
Ei,j

= g ( | DEIt
i,j | )

ct
Wi,j

= g ( | DW It
i,j | ) (19)

The following function g(·), proposed in [20], has been used in our case:

g(∇I) =
1

1 + (‖∇I‖
K )2

(20)

The constant K was manually fixed. In order to fill the cracks, the anisotropic diffusion algorithm was applied

selectively, in neighborhoods centered on crack pixels. All pixels within these neighborhoods participate in the

diffusion process. However, only the values of the crack pixels are updated in the output image.

Further improvements were obtained by taking into account crack orientation, i.e., by applying the operation only

in a direction perpendicular to the crack direction. For example, if the crack is horizontal, one can use only the

North and the South neighbors, since the West and the East neighbors belong also to the crack. In order to find the

directions of the cracks, the Hough Transform was applied [21]. The restoration results of this filter can be seen

in Figures 9-12. The orientation-sensitive controlled anisotropic diffusion method gave the best results among all

crack-filling methods presented in this paper. The fact that this filter requires no window size selection grants it an

additional advantage over the order statistics filters presented in the previous section.

V. CONCLUSIONS AND DISCUSSION

In this paper, we have presented an integrated strategy for crack detection and filling in digitized paintings.

Cracks are detected by using top-hat transform, whereas the thin dark brush strokes, which are misidentified as

cracks, are separated either by an automatic technique (MRBF networks) or by a semi-automatic approach. Crack

interpolation is performed by appropriately modified order statistics filters or controlled anisotropic diffusion. The

methodology has been applied for the virtual restoration of images and was found very effective by restoration

experts. However, there are certain aspects of the proposed methodology that can be further improved. For example,
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the crack detection stage is not very efficient in detecting cracks located on very dark image areas, since in these

areas the intensity of crack pixels is very close to the intensity of the surrounding region. A possible solution to this

shortcoming would be to apply the crack detection algorithm locally on this area and select a low threshold value.

Another situation where the system (more particularly, the crack filling stage) does not perform as efficiently as

expected is in the case of cracks that cross the border between regions of different color. In such situations, it might

be the case that part of the crack in one area is filled with color from the other area, resulting in small spurs of

color in the border between the two regions. Such a situation is depicted in Figure 11. However this phenomenon is

rather seldom and, furthermore, the extent of these erroneously filled areas is very small (2-3 pixels maximum). A

possible solution would be to perform edge detection or segmentation on the image and confine the filling of cracks

that cross edges or region borders to pixels from the corresponding region. Use of image inpainting techniques [6],

[7], [8], [9], [10] could also improve results in that aspect. Another improvement of the crack filling stage could

aim at using properly adapted versions of nonlinear multichannel filters (e.g. variants of the vector median filter)

instead of processing each color channel independently. These improvements will be the topic of future work on

this subject.
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Fig. 1. Original painting.
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Fig. 2. Thresholded output of the top hat transform (threshold value: 23).

November 30, 2005 DRAFT



15

Fig. 3. Radial Basis Functions neural network architecture.
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Fig. 4. Original painting.
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Fig. 5. Thresholded output of the top-hat transform (threshold value: 19). A number of brush strokes (hair, number in the upper left corner)

have been misidentified as cracks.
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Fig. 6. The separated brush strokes after the application of the MRBF technique.
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Fig. 7. Crack filling by using the modified trimmed mean filter (filter size 5× 5).
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Fig. 8. (a) Original painting (detail). (b) Crack filling by using the modified trimmed mean filter (filter size 3× 3).
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Fig. 9. (a) Original image with cracks (detail), (b) crack filling using the orientation-sensitive controlled anisotropic diffusion technique.
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Fig. 10. (a) Original painting (detail), (b) crack image (threshold value: 17), (c) crack filling using the orientation-sensitive controlled anisotropic

diffusion technique.
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Fig. 11. (a) Original painting (detail), (b) crack image (threshold value: 21), (c) crack filling using the orientation-sensitive controlled anisotropic

diffusion technique.
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Fig. 12. (a) Original painting (detail), (b) crack image (threshold value: 23), (c) crack filling using the orientation-sensitive controlled anisotropic

diffusion technique.
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