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Abstract

The self-organizing map algorithm has been used successfully in document organization. We now propose using the same algorithm for

document retrieval. Moreover, we test the performance of the self-organizing map by replacing the linear Least Mean Squares adaptation rule

with the marginal median. We present two implementations of the latter variant of the self-organizing map by either quantizing the real

valued feature vectors to integer valued ones or not. Experiments performed using both implementations demonstrate a superior performance

against the self-organizing map based method in terms of the number of training iterations needed so that the mean square error (i.e. the

average distortion) drops to the e21 ¼ 36:788% of its initial value. Furthermore, the performance of a document organization and retrieval

system employing the self-organizing map architecture and its variant is assessed using the average recall–precision curves evaluated on two

corpora; the first comprises of manually selected web pages over the Internet having touristic content and the second one is the Reuters-

21578, Distribution 1.0.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to their wide range of applications, artificial neural

networks (ANN) have been an active research area for the

past three decades (Haykin, 1999). A large variety of

learning algorithms (i.e. error-correction, memory-based,

Hebbian, Boltzmann machines, supervised or unsupervised)

have been evolved and being employed in ANNs. A further

categorization divides the network architectures into three

distinct categories: feedforward, feedbackward, and com-

petitive (Haykin, 1999).

The self-organizing maps (SOMs) or Kohonen’s feature

maps are feedforward, competitive ANN that employ a

layer of input neurons and a single computational layer

(Kohonen, 1990, 1997). The neurons on the computational

layer are fully connected to the input layer and are arranged

on a N-dimensional lattice. Low-dimensional grids, usually

two dimensional (2D) or 3D, have prominent visualization

properties, and therefore, are employed on the visualization

of high-dimensional data. In this paper, we shall use the

SOM algorithm to cluster contextually similar documents

into classes. Therefore, we shall focus on the 2D lattice in

order to visualize the resulting classes on the plane. For the

2D lattice, the computational layer can have either a

hexagonal or orthogonal topology. In hexagonal lattices,

each neuron has six equal-distant neighbors, whereas

orthogonal lattices can be either four- or eight-connected.

As for the competitive nature of the algorithm, this is

expressed by the fact that only the neuron which is ‘closer’

to the input feature vector with respect to a given metric as

well as its neighbors are updated every time a new feature is

presented to the ANN.

The SOMs are capable of forming a nonlinear trans-

formation or mapping from an arbitrary dimensional data

manifold, the so-called input space, onto the low-dimen-

sional lattice (Haykin, 1999; Kohonen, 1997). The algor-

ithm takes into consideration the relations between the input

feature vectors and computes a set of reference vectors in

the output space that provide an efficient vector quantization

of the input space. Moreover, the density of neurons, i.e. the

number of neurons in a small volume of the input space
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matches the probability density function (pdf) of the feature

vectors. Generally, the approximation error is measured by

the Mean Square Error (MSE). In doing so, the algorithm

employs a linear Least Mean Square adaptation rule for

updating the reference vector of each neuron. When the

training procedure is led to equilibrium it results to a

partition of the domain of the vector-valued observations

called Voronoi tessellation (Kohonen, 1997; Ritter &

Schulten, 1988). The convergence properties of SOMs are

studied in Erwin, Obermayer, and Schulten (1992) and

Ritter and Schulten (1988).

A complete and thorough investigation regarding the

available variants of the SOM algorithm can be found in

Kangas, Kohonen, and Laaksonen (1990) and Kohonen

(1997). One such frequently used variant is the batch-map.

The batch-map estimates the sample mean of the feature

vectors that are assigned to each reference vector and

subsequently smooths the sample mean to yield an updated

reference vector. A trade off is made between the speed and

degradation of the clustering accuracy (Fort, Letremy, &

Cottrell, 2002). The batch-map is faster than the on-line

SOM algorithm. However, it produces unbalanced classes

of inferior quality than those produced by on-line SOM

algorithm. In the experiments reported in Section 5, the

precision rate of the batch SOM algorithm is always less

than that of the on-line SOM for all recall rates.

The ability of the SOM algorithm to produce spatially

organized representations of the input space can be utilized

in document organization, where organization refers to the

representation and storage of the available data. In this

paper, we exploit this algorithm also for document retrieval.

Retrieval refers to the exploration of the organized

document repository through specific user-defined queries

(Yates & Neto, 1999).

Prior to the document indexing, due to the nature of the

SOM algorithm the available textual data have to be

transcribed into a numerical form. Among the three widely

accepted encoding models that are used by the information

retrieval (IR) community (Yates & Neto, 1999), namely the

boolean, the probabilistic, and the vector space model, the

latter model is the most appropriate for the SOM algorithm.

In the vector space model, the documents and the queries

used in the training and the retrieval phase are represented

by high-dimensional vectors. Each vector component

corresponds to a different word type (i.e. a distinct word

appearance) in the document collection (also called corpus).

Subsequently, the documents can be easily clustered into

contextually related collections by using any distance

metric, such as the Euclidean, the Mahalanobis, the city-

block, etc. Such a clustering is based on the assumption that

the contextual correlation between the documents continues

to exist in their vectorial representation. The degree of

similarity between a given query and the documents is

measured using the same distance metric and the documents

marked as being relevant to the query can be ranked in

a decreasing order of similarity according to this distance

metric (Yates & Neto, 1999).

An architecture based on the SOM algorithm that is

capable of clustering documents according to their semantic

similarities is the so-called WEBSOM architecture (Koho-

nen, 1998; Kohonen et al., 1999, 2000). The WEBSOM

consists of two distinct layers where the SOM algorithm is

applied. The first layer is used to cluster the words found in

the available training documents into semantically related

collections. The second layer, which is activated after the

completion of the first layer, clusters the available

documents into classes that with high probability contain

relevant documents with respect to their semantic content

(i.e. context). Due to that, the WEBSOM architecture is

regarded as a prominent candidate for document organiz-

ation and retrieval.

In this paper, we test the performance of the

SOM algorithm by replacing the linear Least Mean Squares

adaptation rule with the marginal median for document

organization and retrieval. The proposed algorithm has

similarities with the batch-map because both of them use the

Voronoi sets, that is, the set of feature vectors that have been

assigned to each neuron, in order to update the reference

vector of the neuron. Its difference lies in the replacement of

the averaging procedure employed in the batch-map by the

marginal median operator in the proposed variant. However,

the proposed algorithm remains an on-line algorithm.

The outline of the paper is as follows: Section 2 provides

a brief description of the basic SOM algorithm, its

mathematical foundations as well as a brief summary of

the algorithm’s native drawbacks. Section 3 describes the

proposed variant with respect to the updating procedure of

the reference vectors, which is based on marginal data

ordering. It also contains a description of the two distinct

implementations of the proposed algorithm. Section 4 is

divided into three subsections: Section 4.1 covers the

formation of the two corpora employed in our study and the

preprocessing steps taken in order to remove any unwanted

information from them. Section 4.2 describes the language

model employed to encode the textual data into numerical

vectors and Section 4.3 is devoted to word and document

clustering. In Section 5, we assess the experimental results

by using the MSE curves during the training phase of the

proposed algorithm and the basic SOM method and

the average recall–precision curves obtained by querying

the information organization obtained in the training phase

of both systems.

2. Self-organizing maps

Let us denote by X the set of vector-valued observations,

X ¼ {xj [ RNw lxj ¼ ðx1j; x2j;…; xNwjÞ
T; j ¼ 1; 2;…;N};

where Nw corresponds to the dimensionality of the

vectors that encode the N available observations. Let also

W denote the set of reference vectors of the neurons, that is,
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W ¼ {wlðkÞ [ RNw ; l ¼ 1; 2;…;L}; where the parameter k

denotes discrete time and L is the number of neurons on the

lattice. Finally, let wlð0Þ be located on a regular lattice that

lies on the hyperplane which is determined by the two

eigenvectors that correspond to the largest eigenvalues of

the covariance matrix of xj [ X (linear initialization)

(Kohonen, 1997).

There are two kinds of vector-valued observations that

we are interested in: the word vectors and the document

vectors. A detailed description of the formation of these

vectors can be found in Section 4.2.

Due to its competitive nature, the SOM algorithm

identifies the best-matching, winning reference vector

wsðkÞ (or winner for short), to a specific feature vector xj

with respect to a certain distance metric. The index s of the

winning reference vector is given by:

s ¼ arg min
L

l¼1
kxj 2 wlðkÞk; ð1Þ

where k·k denotes the Euclidean distance.

The reference vector of the winner as well as the

reference vectors of the neurons in its neighborhood are

modified toward xj using:

wiðk þ 1Þ ¼
wiðkÞ þ aðkÞ½xj 2 wiðkÞ� ;i [ Ns

wiðkÞ ;i � Ns

(
; ð2Þ

where aðkÞ is the learning rate and Ns denotes the

neighborhood of the winner. A neighborhood updating,

especially in the early iterations, is performed in order to

achieve a global ordering of the input space onto the lattice,

which is crucial for the good resolution of the map

(Kohonen, 1997). The term basic SOM will henceforth

denote the on-line algorithm proposed by Kohonen (1997)

without any modifications or speed-up techniques.

Eq. (2) can be rewritten as follows:

wiðk þ 1Þ ¼ wiðkÞ þ aðkÞcijðkÞ½xj 2 wiðkÞ�; ð3Þ

where cijðkÞ ¼ 1 if the jth feature vector is assigned to the ith

neuron during the kth iteration, otherwise cijðkÞ ¼ 0:The

reference vector of any neuron at the end of the ðk þ 1Þth

iteration of the training phase is a linear combination of the

input vectors assigned to it during all the previous iterations:

wiðkþ1Þ¼wið0Þ
Ykþ1

n¼1

½12aðnÞcijðnÞ�
N þ

Xk

v¼1

Yk

n¼v

½12aðnþ1Þcij

�ðnþ1Þ�N aðNÞ
XN
b¼1

½12aðvÞcijðvÞ�
N2bcibðvÞxb

" #

þaðkþ1Þ
XN
b¼1

½12aðkþ1Þcijðkþ1Þ�N2b

�cibðkþ1Þxb: ð4Þ

Eq. (4) is proven in Appendix A.

Let us denote by fiðxÞ; i ¼ 1; 2;…;L; the pdfs of the

various data classes. If sample data from these classes are

mixed to form the sample set with a priori probabilities 1i;

i ¼ 1; 2;…;L; such that
PL

i¼1 1i ¼ 1; the sample set

distribution has the form

f ðxÞ ¼
XL

i¼1

1ifiðxÞ: ð5Þ

For the sake of the discussion simplicity, let us assume a

mixture of two 1D Gaussian pdfs, fiðxÞ: An important goal is

to decompose such a mixture (Eq. (5)) into two Gaussian-

like distributions. Nearest mean reclassification algorithms,

such as the K-means may have a serious shortcoming,

particularly when a mixture distribution consists of several

overlapping distributions (Fukunaga, 1990). An important

goal is to decompose a mixture into several Gaussian-like

distributions. However, the clustering procedures decom-

pose the mixture by using a properly defined threshold. As a

result, the distribution of class 1 includes the tail of the

distribution of class 2 and does not include the tail of the

distribution of class 1. Accordingly, the estimated mean

values from the ‘truncated’ distributions could be signifi-

cantly different from the true ones. The same applies for the

SOM whose threshold is simply the midpoint between the

stationary weight vectors given by the conditional means

(Ritter & Schulten, 1988):

�wi ¼

ð
Xið �WÞ

xf ðxÞdxð
Xið �WÞ

f ðxÞdx

;

i ¼ 1; 2;…;L; �W ¼ ð �wT
1 l· · ·l �wT

LÞ
T
;

ð6Þ

where Xið �WÞ is the Voronoi neighborhood of the ith neuron.

Obviously, the samples from the tail of the distribution of

class 2 are outliers, when the reference vector for class 1 is

computed. Despite the nonlinear weights cijðkÞ; SOM

employs a linear estimation of location. Accordingly, its

robustness properties are poor in the presence of outliers

(Huber, 1981; Lehmann, 1983). To overcome these

problems and to enhance the performance of the basic

SOM method, a variant of the SOM algorithm is studied that

employs multivariate order statistics (Barnett, 1976). The

inherited robustness properties of the order statistics allow

this variant to treat efficiently the presence of outliers in the

data set, as has been demonstrated in (Pitas, Kotropoulos,

Nikolaidis, Yang, & Gabbouj, 1996).

3. Marginal median SOM

Order statistics have played an important role in the

statistical data analysis and especially in the robust analysis

of data contaminated with outlying observations (Pitas &

Venetasanopoulos, 1990). The lack of any obvious and

unambiguous extension of ordering multivariate obser-

vations has led to several sub-ordering methods such as
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marginal ordering, reduced (aggregate) ordering, partial

ordering and conditional (sequential) ordering. A discus-

sion on these principles can be found in Barnett (1976).

The SOM variant used in this paper relies on the concept

of marginal ordering. The marginal ordering of N feature

vectors, x1;…; xN ; where xj ¼ ðx1j; x2j;…; xNwjÞ [ RNw ; is

performed by ordering the vector components indepen-

dently along each of the Nw-dimensions:

xqð1Þ # xqð2Þ # · · · # xqðNÞ; q ¼ 1; 2;…;Nw; ð7Þ

with q denoting the index of a component inside the feature

vector. In Eq. (7) xqðjÞ is the so-called jth order statistic. The

component-wise ordering is depicted in Fig. 1. Then, the

marginal median, xmed; of N feature vectors is defined by

xmed¼marginal_median{x1;x2;…;xN}W

¼

ðx1ðnþ1Þ;x2ðnþ1Þ;…;xNwðnþ1ÞÞ
T forN¼2nþ1

x1ðnÞþx1ðnþ1Þ

2
;…;

xNwðnÞ
þxNwðnþ1Þ

2

� 	T

forN¼2n

8><
>: :

ð8Þ

The concept of the marginal median is applied to the basic

SOM algorithm in the following way. Let Xiðk21Þ denote

the ith Voronoi set, i¼1;2;…;L; until the ðk21Þth iteration.

That is,

Xiðk21Þ¼{xj[Xlkxj2wiðk21Þk,kxj2wlðk21Þk;

l¼1;2;…;i21;iþ1;…;L}<Xiðk22Þ;

ð9Þ

under the condition Xið0Þ¼B:

At the kth iteration, the winning reference neuron, wsðkÞ;

corresponding to a given feature vector xj is identified by

using Eq. (1). The winner is then updated by

wsðk þ 1Þ ¼ marginal_median{xj < Xsðk 2 1Þ}; ð10Þ

where the marginal median operator is given by Eq. (8).

Thus all the previously assigned feature vectors to the

winner neuron as well as the current feature vector xj

are used in the computation of the marginal median.

Accordingly, all past class assignment sets XiðkÞ; i ¼

1; 2;…;L; are needed.

The neighboring neurons, i [ NsðkÞ; are updated using

wiðk þ 1Þ ¼ marginal_median{aðkÞxj < Xiðk 2 1Þ}; ð11Þ

in order to achieve global ordering. The parameter aðkÞ in

Eq. (11) admits a value in ð0; 1Þ and has the following effect:

at the beginning of the training phase the parameter is

significantly larger than zero and allows to the feature vector

xj to participate in the updating of the neighboring neurons.

In the lapse of time, aðkÞ tends toward zero and aðkÞxj no

longer affects the reference vector of the neighboring

classes. Table 1 summarizes the proposed Marginal Median

SOM (MMSOM) variant.

For relatively large data collections, a drawback of the

MMSOM is the computational complexity with respect to

the identification of the marginal median vector in Eq. (8)

and the updating of both the winner neuron and its

neighbors. To overcome this problem, two alternative

shortcuts are proposed. In the first shortcut, the real-valued

data are being quantized into 256 quantization levels.

Subsequently, a modification of the running median

algorithm is employed (Hung et al., 1979; Pitas et al.,

1996). The algorithm uses the histogram of past feature

vector assignment to each neuron for each data dimension.

The histograms are being constantly updated as new feature

vectors are assigned to each neuron. The main advantage of

this approach is the computational savings at the cost of

Fig. 1. The components of the feature vectors are column-wise sorted (each dimension independently). To the left, the vector components are not-ordered. To

the right, the vector components are ordered along each of the Nw-dimensions.

Table 1

Overview of the marginal median SOM

Linear initialization of the reference vectors wið0Þ; i ¼ 1; 2;…;L

Initialize the Voronoi set of each reference vector, that is, Xið0Þ ¼ B

For each iteration, k ¼ 1; 2;…

For each feature vector xj :

Find the winning reference vector according to Eq. (1)

Update the winning reference vector according to Eq. (9)

Update the winning reference vector using Eq. (10)

Update also the reference vectors of the neighboring neurons, i [

NsðkÞ; according to Eq. (11)

A. Georgakis et al. / Neural Networks 17 (2004) 365–377368



quantization errors. This variant shall be referred to as the

Marginal Median Quantized SOM (MMQ-SOM).

The second shortcut avoids any quantization. Each

neuron is equipped with a dynamically expanding matrix

that stores the feature vectors assigned to it. In this matrix,

the number of rows equals the dimensionality of the input

patterns and the number of its columns equals the number of

feature vectors assigned to the neuron since the beginning of

the training phase. Each row (dimension) is sorted into

ascending order. When a new feature vector is assigned to a

particular class, for each vector component, the ‘correct’

position inside the row is located using binary search

according to Eq. (7), and the component is inserted at this

particular position. The sole drawback of this approach is

the memory required to store all the available training

‘history’ for each neuron. The aforementioned shortcut will

be termed as the Marginal Median Without Quantization

SOM (MMWQ-SOM). Fig. 2 briefly depicts the just

described procedure.

4. Marginal median SOM application to document

retrieval

The performance evaluation of the proposed variant

against the basic SOM method is described here for

document retrieval. The training has been performed on

two corpora, namely the Hypergeo corpus (described

subsequently) and the Reuters-21578 corpus (Lewis,

1997). The objective is to divide the corpora into

contextually related document classes and then query

these classes using sample query-documents, to find the

closest document class. The major advantage of the SOM

approach is that it can handle both keyword- as well as

document-based queries since both of them can be

represented by a vector that has to be assigned to a class

formed during the training phase. In Section 4.1 we briefly

describe the corpora and quote some statistics related to

them. In Section 4.2 the vector space model encoding of the

word stems into feature vectors is presented. These vectors

are clustered using both the basic SOM and the proposed

variant to construct classes of semantically related words.

Finally, in Section 4.3 the resulted word classes are

exploited in order to encode the documents with numerical

vectors and both algorithms are used to cluster them into

contextually related classes.

4.1. Corpus description and preprocessing steps

The Hypergeo corpus comprises 606 HTML files

manually collected over the Internet. These files are web

pages of touristic content mostly from Greece, Spain,

Germany, and France. They were collected during the

European Union funded project HYPERGEO. The selected

files are annotated by dividing them into 18 categories related

to tourism, such as accommodation, history, geography, etc.,

so that a ground truth is incorporated into the files.

The second corpus, is the Distribution 1.0 of the Reuters-

21578 text categorization collection compiled by Lewis

(1997). It consists of 21578 documents which appeared on

the Reuters newswire in 1987. The documents are marked

up using SGML tags and are manually annotated according

to their content into 135 topic categories. Fig. 3 depicts

Fig. 2. For each component of an ‘unseen’ feature vector xi the correct position is identified using binary search and the component is inserted to the appropriate

position.

Fig. 3. The frequencies of the topics in the Reuters-21578.
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the topic frequencies, with the topics being arranged into

lexicographical order.

Due to the nature of the SOM algorithm, a series of actions

are taken in order to encode the words into numerical vectors.

During the first step, the HTML and SGML tags and entities

are removed. Subsequently, plain text cleaning is performed.

Text cleaning refers to the removal of URLs, email

addresses, numbers, and punctuation marks. The sole

punctuation mark left intact is the full stop which is preserved

in order to provide a sentence delimiter. This is done because

the context for a given word is confined by the limits of the

sentence. Furthermore, the collocations (i.e. expressions

consisting of two or more words) are meaningful only within

the limits of a sentence (Manning & Schüte, 1999). Stopping

is also performed so that some common English words such

as articles, determiners, prepositions, pronouns, conjunc-

tions, complementizers, abbreviations and some frequent

non-English terms are removed.

Subsequently, stemming is performed. Stemming refers to

the elimination of word suffixes, to shrink the vocabulary

without significantly altering the context. It can be

considered as an elementary clustering technique, with the

word roots (stems) forming distinct classes. The underlying

assumption for the successful usage of a stemming program,

called stemmer, is that the morphological variants of words

are semantically related (Frakes & Baeza-Yates, 1992). The

commonly used Porter stemmer was applied to both corpora

(Porter, 1980).

Finally, prior to encoding the word stems into vectors, the

stems, whose frequency was below a certain threshold were

eliminated. For both corpora the threshold was set to 20.

Table 2 depicts their statistics. The third column of Table 2

contains the number of documents that were used after the

completion of all the aforementioned preprocessing steps. It

must be noted that the number of retained documents in the

Reuters-21578 corpus is nearly 12% lower than its initial

value. This is due to the fact that some documents did not

contain textual information to start with or lost all their textual

information due to the preprocessing and the thresholding

steps. Furthermore, the resulting Reuters-21578 corpus was

partitioned into two distinct sets, a training set and a test set,

according to the recommended Modified Apte split of the

collection (Lewis, 1997). The first set was used for document

clustering during the training phase of the algorithms, whereas

the second one was used to assess the quality of document

clustering through retrieval experiments that employ its

documents as query-documents during the test phase.

4.2. Feature vector construction

When encoding the textual data into numerical vectors

one must take into account for every encoded word its

preceding and the following words. This is the well known

n-gram modeling, where the notion n denotes the number of

preceding and succeeding words taken into consideration

when encoding a specific word. When this model is used,

the contextual statistics for every word stem in the corpus

must be computed. For this purpose, the second version of

the CMU-Cambridge Statistical Language Modeling

Toolkit was used (Clarkson & Rosenfeld, 1997). In a first

attempt, the following maximum likelihood estimates of

conditional probabilities can be used to encode the jth word

stem in the vocabulary:

xjl ¼
njl

Nj

; l ¼ 1; 2;…;N; ð12Þ

where njl is the number of times the pair (jth word stem, lth

word stem) occurred in the corpus, Nj is the number of times

the jth word stem occurred in the corpus, and N is the

number of word stems in the vocabulary. Let ej denote the

ðN £ 1Þ unit vector having one in the jth position and zero

elsewhere. By using Eq. (12), the following word vectors,

~xj; can be computed:

~xj ¼
1

Nj

X
l¼1
l–j

N

nljel

bej

X
m¼1
m–j

N

njmem

2
6666666666664

3
7777777777775
: ð13Þ

The upper vector part in Eq. (13) encodes the ‘average’

context prior to the ith word (history), whereas the lower

vector part encodes the ‘average’ context after the jth word.

Furthermore, b is a small scaling factor ðb . 0:2Þ:

Due to the high-dimensional nature of the textual data,

the vectors derived from Eq. (13) have exceptionally high

dimensionality (3N 2 2 dimensions). This problem must be

tackled by dimensionality reduction to Nw ðNw p 3N 2 2Þ;

which can be achieved by the linear projection xj ¼ F~xj:

Kaski et al. suggested a suboptimal approach to the previous

problem using a random matrix F that has the following

properties (Kaski, 1998):

Table 2

Corpora statistics

Corpus Number of original documents Number of retained documents Word tokens Stem types

Before thresholding After thresholding

Hypergeo 606 606 290,973 16,397 1524

Reuters-21578 21,578 19,043 2,642,893 28,670 4671
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1. The components in each column are chosen to be

independent, identically distributed Gaussian variables

with zero mean and unit variance.

2. Each column is normalized to unit norm.

4.3. Clustering

After the preprocessing phase and the construction of the

word feature vectors, xj; we perform training for both the

basic SOM method and the two proposed implementations

of the MMSOM variant. In each case, the feature vectors are

presented iteratively an adequate number of times to the

neural networks which perform clustering in an effort to

build word classes containing semantically related words.

This is based on empirical and theoretical observations that

semantically related words have more or less the same

preceding and succeeding words.

The above process yields the so-called word categories

map (WCM) (Kohonen, 1998). The WCMs computed using

MMWQ-SOM can be seen in Fig. 4 for the Hypergeo corpus

and in Fig. 5 for the Reuters-21578 corpus. Each hexagon on

these maps corresponds to one word class. The grey levels

on the maps correspond to different word densities.

Hexagons with grey levels near 255 (white color) imply

that fewer word stems have been assigned to these neurons,

whereas, grey levels near 0 (black color) imply larger

densities. The word categories of some characteristic nodes

can also be seen on the maps. For instance, classes

containing words related to ‘accommodation’ and ‘sightsee-

ing’ are highlighted in Fig. 4. In Fig. 5, the highlighted

nodes correspond to classes related to ‘finance’, ‘oil’, and

‘energy’.

Subsequently, for each document in the corpus, a

histogram of word classes is computed to form the so-

called document vector aj: The histogram is calculated as

follows. For each word stem in a document, the WCM

neuron is found where it was classified to. The histogram

value is increased by one for this word class. An example is

shown in Fig. 6.

After the computation of the document vectors the basic

SOM method as well as its MMSOM variants are used to

cluster them. The document vectors substitute the feature

vectors in both algorithms, i.e. xj ¼ aj:

Fig. 4. Word categories map using the MMWQ-SOM for the Hypergeo corpus on a 11 £ 11 neural network. The highlighted neurons correspond to word

categories related to ‘accommodation’ (left) and ‘sightseeing’ (middle and right).
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It is expected that the constructed document classes

contain contextually similar documents. The resulting map

is called document map (DM) (Kohonen, 1998). The DM

computed by the MMWQ-SOM for the Reuters-21578

corpus is depicted in Fig. 7 and the corresponding one for

the Hypergeo corpus can be seen in Fig. 8. The

highlighted nodes in the Reuters’ DM correspond to

classes containing documents related to ‘debts’ and

‘economic revenues’. In the DM corresponding to the

Hypergeo corpus, the highlighted neurons associated to

clusters of web pages related to ‘sightseeing in Dresden’

and ‘mountains’.

The computed DM is the output of the training phase. An

important advantage regarding such a system is the inherent

ability for handling document-based queries. During the

recall phase document-based queries are tested. That is,

instead of using keywords as input to the retrieval system

one can use full-text documents. The sample document used

in a query undergoes all the preprocessing steps and then,

with the help of the WCM computed during the training

phase, the corresponding document vector aj is computed.

The document vector corresponds to the feature vector in

Eq. (1). The neuron whose reference vector minimizes Eq.

(1) represents with high probability the class which contains

the most relevant documents to the query document in the

corpus.

5. Experimental results

The performance of the MMSOM against the basic SOM

method is measured using the MSE between the reference

vectors and the document vectors assigned to each neuron in

the training phase. Furthermore, the recall–precision

performance is measured using query-documents from the

test set during the recall phase is used as an indirect measure

of the quality of document organization provided by both

algorithms. Fig. 9 depicts the MSE curves during the

formation of the WCM using the basic SOM architecture

and the marginal median variant without quantization for

the Hypergeo corpus. Similar MSE curves are plotted in

Fig. 10 that correspond to the training phase of both

Fig. 5. Word categories map using the MMWQ-SOM for the Reuters-21578 corpus on a 15 £ 15 neural network. The highlighted neurons correspond to word

classes related to ‘finance’ (top left), ‘oil’ and ‘energy’ (bottom right).
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algorithm when the Reuters-21578 corpus is used. Both

algorithms were initialized in the same way. It must be

noted that even from the beginning of the training phase, the

marginal median SOM outperforms the basic SOM

algorithm. This can be explained by the presence of many

outliers in the early iterations of the training procedure. The

outlier rejection of the marginal median operator reduces

quickly the initial MSE which is the same for both

algorithms. During the formation of the WCM, the number

of training iterations needed by the basic SOM so that the

MSE drops to the e21 of its initial value was nearly 15%

higher than the MMWQ-SOM. Regarding the execution

time for the completion of the training phase, the basic

SOM completed the process nearly 22% faster than the

proposed variant due to the computational cost of the

marginal median operator.

Aiming at assessing the retrieval performance of the

MMWQ-SOM against that of the basic SOM two retrieval

systems were trained using the available corpora. For

comparison purposes, we also trained a system using

the batch SOM algorithm (Kohonen, 1997). Afterwards,

the systems were queried using the same query-documents

for each corpus. For each document-based query, the system

retrieves those training documents that are represented by

the best matching neuron of the DM. Subsequently, the

training documents retrieved are ranked according to their

Euclidean distance from the test document. Finally, the

retrieved documents are classified as being either relevant or

not to the query-document with respect to the annotation

category they bear. Table 3 is the 2 £ 2 contingency table

which shows how the collection of retrieved documents is

divided (Korfhage, 1997). In Table 3, n1 denotes the total

number of relevant documents in the training corpus, n2 is

the number of retrieved training documents, and r

corresponds to the number of relevant documents that are

retrieved.

To measure the effectiveness of a retrieval system two

widely used ratios are employed: the precision and the

recall (Korfhage, 1997). Precision is defined as the

proportion of retrieved documents that are relevant:

P ¼
r

n2

; ð14Þ

Fig. 6. The three distinct steps in the formation of the document vector aj: From the raw textual data (top left) to the stemmed document (bottom left) and the

histogram of the word categories (middle right).
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Recall is the proportion of relevant documents that are

retrieved:

R ¼
r

n1

: ð15Þ

As the volume of retrieved documents increases the

above ratios are expected to change. The sequence of

ðrecall; precisionÞ pairs obtained yields the so-called

recall–precision curve. Each query-document in the test

set produces one recall–precision curve. An average over

all the curves corresponding to query documents of the

same topic obtained from the test set produces the

average recall–precision curve (Korfhage, 1997). If

the recall level does not equal one we proceed with the

second best winner neuron and repeat the same

procedure and so on. The comparison of the effectiveness

between the retrieval system utilizes the above-mentioned

curve. Fig. 11a and b depicts the average recall –

precision curves for the basic SOM, the batch SOM,

and the MMWQ-SOM architecture for ‘Mergers and

Acquisitions (ACQ)’ and ‘Earnings and Earnings Fore-

casts (EARN)’ topics from Reuters corpus. It can be seen

that the marginal median variant performs better than

the basic and batch SOM for a wide range of recall

volumes. More specifically, the performance of the

marginal median is superior to the basic SOM as well

as the batch SOM in small recall volumes ðR , 0:2Þ;

which is extremely important given the fact that an

average user is interested in high precisions ratios even

from the beginning of the list of returned relevant

documents.

Fig. 12 depicts the recall–precision curves for the

Hypergeo corpus of the basic SOM, the batch SOM

as well as the MMSOM without quantization variant

(MMWQ-SOM). The MMWQ-SOM architecture is

found again to be superior to the other two

SOM architectures with respect to recall–precision

curves.

Moreover, we have compared the average precision of

the MMSOM to that of the SOM document map imple-

mentation reported for the CISI collection in (Lagus, 2002)

Fig. 7. The document map constructed for the Reuters-21578 corpus for a 9 £ 9 neural network using the MMWQ-SOM. The document titles are listed for each

document class.
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under the same experimental set-up. A 1.4% higher

average precision was achieved by the document map of

the MMSOM compared to that of the SOM document

map in Langus (2002) for 50 retrieved documents.

The corresponding improvements in the average precision

against Salton’s vector space model and the latent semantic

indexing were 1.6 and 3.2%, respectively, for 50 retrieved

documents.

Fig. 9. The mean squared error curves for the basic SOM and the MMWQ-

SOM variant in a 11 £ 11 neural network using the Hypergeo corpus.

Fig. 8. The document map constructed for the Hypergeo corpus for a 7 £ 7 neural network using the MMWQ-SOM. The document titles as well as their

respective URL addresses are listed for each class.

Fig. 10. The mean squared error curves for the basic SOM and the MMWQ-

SOM variant using a 15 £ 15 neural network for the Reuters-21578 corpus.
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6. Conclusions

The inherent drawbacks of the SOM algorithm with

respect to the treatment of data outliers in the input space

and the suboptimal estimation of the class means has given

impetus to the development of a SOM variant that utilizes

the marginal median and is capable to handle these

drawbacks. Two implementations of the SOM variant that

employ the multivariate median operator in order to update

the reference vectors of the neurons have been discussed.

A superior performance of the proposed variant with

respect to the MSE curve related to the training phase of

the algorithm, and the average recall–precision curve

related to the retrieval effectiveness during the test phase

has been demonstrated, when the basic SOM algorithm is

replaced by the proposed MMSOM for document organiz-

ation and retrieval.
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Appendix A

In proving Eq. (4) some modifications are made in the

definition and the notation of the reference vector. That is,

Table 3

Contingency table for evaluating retrieval

Retrieved Not retrieved

Relevant r x n1 ¼ r þ x

Not relevant y z

n2 ¼ r þ y

Fig. 11. (a) The average recall–precision curves for the basic SOM, the batch SOM and the MMWQ-SOM variant for the ‘Mergers and Acquisitions (ACQ)’

category of the Reuters-21578 corpus, respectively. (b) The average recall–precision curves for each one of the architectures for the ‘Earnings and Earnings

Forecasts (EARN)’ category of the Reuters-21578 corpus.

Fig. 12. The average recall–precision curves for each technique for the

Hypergeo corpus. The sample test document was classified into the

‘history’ category.
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during the kth iteration of the algorithm, and for the jth

feature vector, the reference vector wiðkÞ is updated using

the following equation:

wijðkÞ ¼ wi;j21ðkÞ þ aðkÞcijðkÞ½xj 2 wi;j21ðkÞ�

¼ wi;j21ðkÞmðkÞ þ aðkÞcijðkÞxj; ðA:1Þ

where mðkÞ ¼ ½1 2 aðkÞcijðkÞ�: The additional index in the

definition of the reference vector is used to denote the last

feature vector used to update the ith reference vector. For

simplicity reasons we introduce the notation:

BNðkÞ ¼ aðkÞ
XN
b¼1

mN2bðkÞcibðkÞxb: ðA:2Þ

Induction is used to prove Eq. (4). For k ¼ 1 and

j ¼ 1 : wi1ð1Þ ¼ wi0ð1Þmð1Þ þ að1Þci1ð1Þx1 ðA:3Þ

j ¼ 2 :

wi2ð1Þ ¼ wi1ð1Þmð1Þ þ að1Þci2ð1Þx2

¼ wi0ð1Þm
2ð1Þ þ að1Þmð1Þci1ð1Þx1 þ að1Þci2ð1Þx2

¼ wi0ð1Þm
2ð1Þ þ B2ð1Þ ðA:4Þ

..

.

j ¼ N : wiNð1Þ ¼ wi0ð1Þm
Nð1Þ þ BNð1Þ: ðA:5Þ

In the transition phase of kth iteration to the ðk þ 1Þth

the following boundary condition is applied: wi0ðk þ 1Þ ¼

wiNðkÞ: Furthermore, wi0ð1Þ ¼ wið0Þ: For k þ 1 ¼ 2 and

j ¼ 1 we have

wi1ð2Þ ¼ wi0ð2Þmð2Þ þ B1ð2Þ ¼ wiNð1Þmð2Þ þ B1ð2Þ

¼ ðwi0ð1Þm
Nð1Þ þ BNð1ÞÞmð2Þ þ B1ð2Þ

¼ wi0ð1Þm
Nð1Þmð2Þ þ BNð1Þmð2Þ þ B1ð2Þ; ðA:6Þ

and finally

wiNð2Þ¼wi0ð1Þm
Nð1ÞmNð2ÞþBNð1Þm

Nð2ÞþBNð2Þ: ðA:7Þ

At the end of the ðkþ1Þth iteration we get

wiNðkþ1Þ¼wi0ð1Þ
Ykþ1

n¼1

mNðnÞþ
Xk

v¼1

Yk

n¼v

mNðnþ1ÞBNðvÞ

þBNðkþ1Þ: ðA:8Þ

By substituting mðkÞ and BNð·Þ into Eq. (A.8) we obtain

Eq. (4).
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