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Abstract--In this paper a new variation of Hough Transform is proposed. It can be used to detect shapes or 
contours in an image, with better accuracy, especially in noisy images. The parameter space of Hough Transform 
is split into fuzzy cells which are defined as fuzzy numbers. This fuzzy split provides the advantage to use the 
uncertainty of the contour point location which is increased when noisy images are used. By using fuzzy cells, 
each contour point in the spatial domain contributes in more than one fuzzy cell in the parameter space. The 
array that is created after the fuzzy voting process is smoother than in the crisp case and the effect of noise is 
reduced. The curves can now be detected with better accuracy. The computation time that is slightly increased 
by this method, can be minimized in comparison with classical Hough Transform, by using recursively the fuzzy 
voting process in a roughly split parameter space, to create a multiresolution fuzzily split parameter space. 
© 1997 Pattern Recognition Society. Published by Elsevier Science Ltd. 
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1. INTRODUCTION 

In this paper, we propose a novel method called Fuzzy 
Cell Hough Transform, based on a fuzzy split of the 
Hough Transform parameter space. The Hough Trans- 
form (1) is of fundamental  importance for many applica- 
tions in image processing and computer vision. It can be 
used to detect any curve described by a number  of 
parameters. The main disadvantage of the conventional 
Hough Transform is its large storage and computational 
time requirements, depending on the number  of para- 
meters and the split of the parameter space. (2'3) Up to 
now, a lot of variations have been proposed in the 
literature, mainly regarding the reduction of its computa- 
tional complexity. (4-9) Most of them can be modified to 
incorporate the proposed use of fuzzy cells. 

Another problem of Hough Transform is its perfor- 
mance in noisy images. Frequently, an image is noisy due 
to acquisition noise and degradation. Thus, contour 
points may be moved far enough from the actual curve 
and they may not contribute to the right Hough Trans- 
form cell. Fuzzy Hough Transform ~1°) tries to use the 
uncertainty of the contour point location, by substituting 
the contour points with fuzzy contour points. Further- 
more, when an edge image is used as an input, cells are 
voted by edge points that do not correspond to specific 
curves and the corresponding values are often as large as 
the values of cells voted by actual curves. (11) In such 
cases Hough Transform leads to false detections. The use 
of fuzzy cells help us to reduce false detections and 
estimate the contours with better accuracy, especially 
when the images are corrupted by noise. Accuracy can be 
traded with computational time, i f  needed. 

* Author to whom correspondence should be addressed. Tel., 
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Fuzzy Cell Hough Transform uses a fuzzy split of the 
Hough Transform parameter space which leads to a fuzzy 
voting process. The parameter space is split into fuzzy 
cells, which are considered as fuzzy sets with member- 
ship functions #(al,a2, . . .  ,ap) of p parameters. The 
values of the membership functions are limited in the 
range [0,1]. The domain of definition of each member-  
ship function, which is called interval of confidence, can 
intersect with neighbouring domains. Each contour point 
(xj, yj) in the spatial domain, contributes to more than one 
fuzzy cells in the parameter space (accumulator array). 
Moreover, the contribution of each point is not constant, 
but depends on the value of the cell membership function 
at the specific transformed point (al, a 2 , . . . ,  ap). Then, 
the local maxima in the array are found and the corre- 
sponding contours are detected. 

Furthermore, we propose Select and Split Fuzzy Cell 
Hough Transform, a recursive method to use fuzzy cells. 
In this method, the parameter space is split in a small 
number  of fuzzy cells and Fuzzy Cell Hough Transform 
is applied. After the voting process, the local maxima of 
the accumulator array are detected. The fuzzy ceils that 
correspond to the maxima are split into a small number  of 
fuzzy cells. Fuzzy Cell Hough Transform is again applied 
only on the regions of the parameter space that corre- 
spond to the maxima. The regions of the parameter space 
which do not contain contours are rejected during the 
iterations. As a result the computation time is signifi- 
cantly decreased. 

In the following, the definitions of the fuzzy cells 
are introduced in Section 2. In Section 3, the fuzzy 
voting process of Fuzzy Cell Hough Transform is de- 
scribed. In Section 4, the Select and Split Fuzzy 
Cell Hough Transform is described and in Section 5 
experimental results of the use of the proposed methods 
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are presented and compared with classical Hough Trans- 
form and Fuzzy Hough Transform. Conclusions are 
drawn in Section 6. 

2. DEFINITIONS OF FUZZY CELLS 

2.1. Definitions of  fuzzy cells in a two-dimensional 
parameter space 

The polar parameter space of Hough Transform is 
commonly used to detect straight lines in an image. Two 
parameters are needed and the transform equation is 
given by 

p = x cos 0 + y sin 0, (1) 

where the parameter 0 c [0, Tr) is an angle, 
p C [ - v ~ N / 2 ,  v~N/2] is the algebraic distance to the 
origin and N x N is the image size. Then, the straight line 
given by equation (1) is transformed to a point (p, 0) in 
the parameter space. The parameters 0, p are split in No 
and Np sets (intervals) respectively, symbolized as Oi, Pi. 
The crisp cell C O where classical Hough Transform is 
applied, can now be defined as: 

Cij -- {(p, 0), p G Pi, 0 e Oj}. (2) 

Thus, a couple (p, 0) belongs to a cell C o if p G Pi and 
0eoj. 

In order to define fuzzy cells, we split each parameter 
in fuzzy, instead of crisp, sets. By using the same number 
of partitions for each parameter, the fuzzy sets in 0 
coordinate are defined by the following equation: 

= { ( 0 , ~ ( 0 ) ) ,  0 • R}. (3) 

where #e/(0) is a membership function. The interval of 
confidenc~e of each fuzzy set (9~j is assumed as the crisp 
set (IN, r~ ) .  This fuzzy split of the parameter 0 provides 
the abllity~to use overlapped sets with different member- 
ship values for every 0. Then by using this fuzzy split in 0 
coordinate, a fuzzy-0 cell can be defined as a fuzzy 
number with two variables: 

C°ij = {((p,O),Uco(p,O)), (p,O) •R2} ,  (4) 

where 

#co(p,O), = ( g ~ ( 0 )  elsewhere.if p C Pi, (5) 

The same technique can be used to split p coordinate and 
define a fuzzy-p cell C p. 

If the fuzzy split in two coordinates is combined then a 
fuzzy-p0 cell is defined as 

CO o = {((p,O),#c~O(p,O)) , (p,O) G R2}, (6) 

where 

= ~ min(#N(p), /z~(0))  if p C Pi and 0 e Oj, 

L 0 otherwise. 
(7) 

2.2. Definitions of  fuzzy cells in a three-dimensional 
parameter space 

Let us assume that a circle in a N x N image is to be 
detected by using the conventional Hough Transform. 
The parameters used are the coordinates of the circle 
centre a, b and the radius r. When Hough Transform is 
applied, the three-dimensional parameter space is split in 
Na x Nb X Nr cells. The crisp cell Cijk is defined by 

Cok= {(a,b,r) ,  a C Z i , b E B j ,  r E R k } ,  (8) 

where Ai, Bj and Rk are crisp sets. 
In order to define fuzzy cells, each point which 

belongs to the interval of confidence of the fuzzy cell, 
corresponds to a value in the range [0,1] through its 
membership function. The fuzzy sets in coordinate a can 
be defined as A f = { ( a, [Zaf ( a ) ), a E R }, where ]~A f (a) is 
a membership function. Tl~en, by using this fuzzy ;plit, a 
fuzzy-a cell C]jk can be defined as a fuzzy number with 
three variables: 

C~j k = {((a,b,r),pc~k(a,b,r)),  (a,b,r) CR3}, (9) 

where 

# q ~ ( a ' b ' r ) =  { lO ~(a)  elsewhere.ifbcBjandrcRk' (10) 

The same technique can be used to split b and r co- 
ordinate in fuzzy sets and define the corresponding 
fuzzy-b C~. k and fuzzy-r C~j k cells as fuzzy numbers with 
three variables. 

If the fuzzy split in two coordinates, for example a and 
b coordinates, are combined then a fuzzy-ab cell can be 
defined as the following fuzzy number: 

C~bk = {((a,b,r),#c~b(a,b,r)) , (a,b,r)  ER3}, (11) 

where 

#c~(a,b ,r)  = { on(#A~(a) '#~(b) )  if r C Rk, 
elsewhere. 

(12) 

Similarly fuzzy-ar and fuzzy-br cells can be defined. 
Finally, if the fuzzy split in three coordinates are 

combined, then a fuzzy-abr cell can be defined as the 
following fuzzy number: 

cabr ok = { ( ( a , b , r ) , ~ r ( a , b , r ) ) ,  (a,b,r) e R3}, (13) 

where 

tZc~.br(a,b,r) = min(#A{(a), #~(b) ,  /.t~(r)). (14) 

The concept of a fuzzy cell can be easily generalized to p 
dimensions. 

3. DESCRIPTION OF THE FUZZY VOTING PROCESSES 

3.1. Detection of  straight lines by using fuzzy cells 

Let us assume that a pixel x, y is a contour point in an 
image and that the parameter space is split into No x Np 
fuzzy-p cells C~r By following the same process as in 
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conventional Hough Transform, the centres Oi of the crisp 
sets E)i are used to compute the distances Pi by using the 
following equation: 

Pi = x cos Oi + y sin Oi. (15) 

Each couple (Oi, Pi) belongs to more than one fuzzy cells 
C~l. The corresponding elements of the accumulator 
array M(k,  l) are increased by the values 
Vkt(x, y) = #c~(Oi, Pl). Finally, the local maxima in the 
array M must be detected. The array that is created after 
the fuzzy voting process is smoother than in the crisp 
case. This means that local maxima which correspond to 
the effect of noise in an image disappear. The straight 
lines can now be detected with better accuracy. However, 
this method slightly increases the computation time. 

When fuzzy-p0 cells are used, the parameter 0 is also 
split into fuzzy sets ~ / a s  in equation (3). The parameter 
space is split into fuzzy-p0 cells C~ ° defined in equa- 
tions (6 and 7). The fuzzy numbers ~ /  are used to 
compute the fuzzy distances Pi by using the following 
fuzzy equation: 

Pi = x Cos ~/ - t -  y Sin ~/ ,  (16) 

where Cos, Sin are the fuzzy extensions of the crisp 
functions cos, sin and the addition and multiplications are 
supposed to be fuzzy operators. (t2-14~ Then the inclu- 
sions of each fuzzy couple (~/ ,  P~/) in every fuzzy cell 
C°z e have to be computed. Since O~/is equal to O~k, the 
inclusion of each fuzzy couple to a fuzzy cell is simpli- 
fied to the inclusion of the computed fuzzy number/~/ in  
the fuzzy set P~l given by the following equation: d4~ 

#r,(u)  = sup /zy~(p), u C [0, 1]. (17) 
p:,,=.~(.) 

The compatibilities Til of each fuzzy couple (~/ ,  P~/) in 
every fuzzy cell cote are computed and added to form the 
corresponding accumulator array Mf(k , l ) .  Note that, 
since the compatibilities are fuzzy numbers with inter- 
vals of confidence in [0,1], the array M f is a two- 
dimensional array of fuzzy numbers and the additions 
of compatibilities are additions of fuzzy numbers. When 

the voting process is completed, the fuzzy values are 
defuzzified and the local maxima are detected. 

3.2. Detection o f  circles by using fuzzy cells 

Let us assume that a pixel (x, y) is a contour point in an 
image and that the parameter space is split into fuzzy-r 
cells C~m n. By following a similar procedure to the two 
parameter case, the centres ai of the crisp sets Ai and the 
centres by of the crisp sets Bj are used to compute the 
distances riy by solving the equation: 

(x - ai) 2 + (y - by) z = r 2. (18) 

Each point (ai, by, rly) belongs to more than one fuzzy 
cells C~,~. The corresponding elements of the accumu- 
lator array M ( l , m , n )  are increased by the values 
Vzm, (x, y) = IZc~,~ (ai, by, rij). Finally, the local maxima 
in the array M have to be detected. The voting process is 
similar when fuzzy-a or fuzzy-b cells are used. By using 
fuzzy instead of crisp cells, the accumulator array is 
smoother and the number of local maxima is reduced. An 
example of the two coordinates a, r of an accumulator 
array that is created after a classical voting process is 
shown in Fig. l(a), and after a fuzzy voting process in 
Fig. l(b), when the methods are applied on an artificially 
generated image with one circle in it. 

When fuzzy-ab cells C~  n are used defined as in 
equations (11 and 12), the voting process is more com- 
plicated but still similar to the one used on fuzzy-p0 cells 
for the detection of straight lines. The fuzzy numbers B~j 
and the crisp centres r~ of the crisp sets Rk are used to 
compute the fuzzy distances AJk by solving the following 
fuzzy equation: 

(x - Aft) 2 + (y - B~j) 2 = rk 2, (19) 

where all the operators are the extended fuzzy operators, 
through the extension principle. The first root of equa- 
tion (19) is the fuzzy number Af.k which is symbolized as 

(,~) (~,)1 [0, 1], (20) A~j~=Uo~.[a & ,ajkr]  , o~ G 
O~ 
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(a) (b) 
Fig. 1. Two coordinates of a three-dimensional accumulator array after a classical voting process (a) and 

after a fuzzy voting process (b). 



2034 V. CHATZIS and I. PITAS 

and calculated by the equations: 2. Define fuzzy cells. 

-(~) V / 4  min((y-b}~r))2 ,  (y - (~) - - b)~ ) ( y - b } 9 ) , ( y  b}9)2), ~jkt = X (21) 

{ ~  r 2 (~) 2 (a) 2 - - ~ / k - - m a x ( ( y - - b ) r  ) , ( y - b ) , )  ) 
~(0~) r~, rllitX (~) 2 (a) 2 = __ k -  ( (Y--bi t ) '  (Y-b) t ) )  ~jkr 

~/~_min((Y_#r~))2, (y_bj(r~))(y_b)(/a)), (y_~?))2) 

if  r~ _> max((y - b}~)) 2, (y - b57))2), 

if  4 < max((y - b}~)) 2, (y - b } ; ) ) 2 ) .  (22) 

The second root can be calculated by similar equations. 
Then, the inclusions of each fuzzy triple (Aft,/~j, rk) in 
every fuzzy cell ab C]~ n have to be computed. They can be 
simplified to the inclusion of the computed fuzzy number 
Afx in the fuzzy setA f given by the following equation: (14) 

#rjk~(U) = sup #~k(a),  u E [0, 1]. (23) 
. . . .  ~g(a) 

The compatibilities Tjkt, which are fuzzy numbers, are 
added to form the corresponding accumulator array 
Mf(1, m, n) of fuzzy numbers. Fuzzy-abr  cells can also 
be used to insert fuzziness to the detection of the centres 
and the radius of the circles. The voting process is similar 
and equations similar to equations (21 and 22) can be 
used. 

4. SELECT AND SPLIT FUZZY C E L L  H O U G H  TRANSFORM 

4.1. Description o f  the algorithm 

In order to decrease storage and time requirements of 
Fuzzy Cell Hough Transform, we propose the Select and 
Split Fuzzy Cell Hough Transform. This algorithm is an 
iterative procedure that uses Fuzzy Cell Hough Trans- 
form in a progressively refined split of the parameter 
space. Let us first assume that only one contour is to be 
detected in an image. Each coordinate of the parameter 
space is split in a small number of fuzzy sets. Note that 
the selection of the number of partitions affects the 
storage requirements of the accumulator array and the 
computational complexity of the algorithm. Fuzzy Cell 
Hough Transform is performed by using this roughly 
fuzzily split parameter space. After the voting process, 
the maximum in the accumulator array is detected. This 
maximum corresponds to a fuzzy cell (the winner), which 
is a first estimation of the detected contour parameters. 
Then the winner fuzzy cell is split into fuzzy cells by 
using a relatively small number of partitions for each 
coordinate. The union of their intervals of confidence is 
chosen to be the interval of confidence of the winner celL 
Fuzzy Cell Hough Transform is again performed by 
using only the winner split in smaller fuzzy cells. After 
the voting process, a new winner is detected and the 
procedure continues until two successive detections are 
close enough. The algorithm can be summarized to the 
following steps: 

1. Select the number of partitions for each coordinate of 
the parameter space. 

3. Apply Fuzzy Cell Hough Transform. 
4. Detect the winner fuzzy cell. 
5. If  the winner cell parameters are close enough to the 

previous winner cell parameters, the algorithm ends. 
Else go to step 1 (to use new number of partitions) or 
step 2. 

By using this algorithm we succeed to minimize storage 
requirements since the accumulator array that is created 
after a voting process can be used again during next 
iteration. Moreover, domains of the parameter space, that 
do not correspond to contours, are rejected during the 
first iterations. As a result, the necessary computational 
time is significantly reduced. In a subsequent section, the 
reduction in computational complexity and storage 
requirements will be discussed. The main disadvantage 
of this method is that the winner cell may not contain the 
actual contour. This may happen when the location of the 
actual contour is such that contour points vote almost 
equally to neighbouring cells. When such a false detec- 
tion happens the algorithm cannot recover and detect the 
actual contour. False detections are more frequent when 
noisy images are used. 

When more than one contours have to be detected, the 
accumulator array that is created after the fuzzy voting 
process have to be normalized before the detection of the 
local maxima, by dividing each item by an estimation of 
the number of the contour points which could vote to this 
cell. For example, when circles are detected in an image, 
the cells that correspond to circles with large radius are 
voted by more contour points than cells that correspond 
to circles with small radius. In this case the accumulator 
array has to be normalized by dividing each item by, e.g. 
the perimeter of the corresponding circle. 

The parameter space can also be split to rough but crisp 
(not overlapped) cells. This variation known as Fast 
Hough Transform (y) can be considered as a special case 
of Select and Split Fuzzy Cell Hough Transform, since 
crisp sets can be considered as special cases of fuzzy sets. 
By using fuzzy instead of crisp cells, the accumulator 
array that is created after the voting process is smoother 
and the number of local maxima is reduced. Thus, the 
possibility of false detections during the iterations is 
reduced. 

4.2. Storage and computational time requirements 

Let us assume that in a N × N image one contour, 
described by p parameters al, a2 ~.. .  ap, is to be detected. 
Each parameter can be restricted to take values in a finite 
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interval (set) having size A 1 , A 2 , . . . A p .  Let us also 
assume that the detection is satisfactory when the esti- 
mation error for each parameter is less than el l2 ,  
i = 1 , 2 , . . . , p .  This means that conventional Hough 
Transform can guarantee such an accuracy when the 
edges of the crisp cell in each coordinate is less than 
el. Thus, the necessary numbers of partitions Ni for each 
coordinate is given by 

Ai 
N ~ = - - ,  i = l , 2 , . . . , p ,  (24) 

ei 

and the size of the accumulator array is greater than 
N1 x N2 x . . .  x Np. On the contrary, when Select and 
Split Fuzzy Cell Hough Transform algorithm is used, the 
parameter space is roughly split. The size of the array 
depends on the maximum number of partitions Mi for 
every coordinate i for all iterations and it is given by 
M1 x Me x . . .  x M e. When more than one contours are 
to be detected, the storage requirement is multiplied by 
the number of the local maxima which are detected in 
every iteration. Note that the storage requirement in the 
proposed algorithm does not depend on the necessary 
accuracy. Since Mi can be selected to be small enough it 
is obvious that storage requirements are much smaller 
when using Select and Split Fuzzy Cell Hough Transform 
in comparison to the conventional Hough Transform. 

The computational time requirements of conventional 
Hough Transform depend on the number of contour 
points K that belong to an image, and the number of 
partitions for every coordinate of the parameter space. 
During the voting process, the transform equation has to 
be solved for every contour point (x, y) and for every 
parameter al,  a2, • • •, ap-1, which values are equal to the 
interval centres, to determine parameter ap and vote in 
the corresponding cell. This means that the computa- 
tional complexity Th is proportional to the product: 

Th = K-  (N1 • N2 . . . . .  Np-1).  (25) 

If the same number of partitions N is selected for every 
coordinate, the above product is simplified to 

Th = K .  N p-1. (26) 

The computational time requirements of Select and Split 
Fuzzy Cell Hough Transform depend again on the num- 
ber of contour points K, the number of partitions for every 
coordinate of the parameter space, as well as on the 
number of iterations needed to reach the necessary 
accuracy. In order to compare the algorithms, let us first 
assume that the parameter space is split during the 
iterations in rough crisp cells and that the number of 
partitions n remains the same for all iterations. We can 
also assume, without loss of generality, that N = n m. This 
means that, the same accuracy that N partitions can 
guarantee, can also be reached in mth iteration by using 
n partitions in each iteration. The computational time Tc 
is now proportional to 

Tc = m.  K .  n p-1. (27) 

Since p > 2, n >_ 2 and m _> 1, it can be easily proven 

that Th >_ Tc since (n p 1)m ~ mnP-1 and equality holds 
only when m = 1 or m = n = p = 2. 

When the coordinate of the parameter space are fuzzily 
split, the fuzzy cells which are created, have overlapping 
intervals of confidence and are larger than the corre- 
sponding crisp ones. Thus, a fuzzy split of the parameter 
space cannot guarantee the accuracy of a crisp split with 
equal number of partitions. Let us assume that N is a 
factor that controls fuzziness for every coordinate of the 
parameter space i =  1 , 2 , . . . , p .  The length li of the 
interval of confidence for every fuzzy set that will be 
used during first iteration is given by 

l} 1) = 2j~ A i  (28) 
ni 

where A i is the interval to be split and ni is the number of 
partitions. After k iterations, by using the same number of 
partitions hi, the length of the interval of confidence will 
be given by 

1 } k ) = ( ~ i ) k A  i. (29) 

The accuracy of conventional Hough Transform is given 
by A i ] N  i. By using equation (29), it is proven that the 
proposed method can guarantee accuracy equal to the 
conventional Hough Transform after k iterations: 

k = max{ki}, i = 1 ,2 , . . .  ,p, (30) 

where 

logNi 
ki > logni - log(2j~) " (31) 

Note that in case that one coordinate is selected to be split 
in crisp sets the corresponding factor 3~ is equal to 0.5. 
The corresponding computational time Tf is now given 
by 

Tf = k . K . (nl " n2 . . . . .  np) (32) 

or 

Tf = k .  K . n p - l ,  (33) 

when equal number of partitions n is selected for every 
coordinate of the parameter space. It is obvious from 
equation (31) that3~ and ni should be selected such that 
ni > 2J5. In any other case, the intervals of confidence 
lengthen after each iteration and accuracy cannot be 
reached. The computational time increases in compar- 
ison to crisp case. However, the time saving is significant 
in comparison to the conventional Hough Transform and 
increases when more parameters are needed to describe 
the contour or when it has to be detected with better 
accuracy. 

5. EXPERIMENTAL RESULTS 

5.1. Detection o f  straight lines by using Fuzzy Cell 
Hough Transform 

We have performed extensive simulations to study the 
performance of the proposed approach. In order to 
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compare Fuzzy Cell Hough Transform (FCHT) with 
classical Hough Transform (HT) and Fuzzy Hough 
Transform (FHT) the number of correct detections of 
straight lines was used as a criterion. First, we assumed 
100 artificially generated 256 x 256 images with only 
one straight line in each image. The line parameters p, 0 
were randomly selected. The images were corrupted by 
uniform noise having range 4-d pixels added to the y-axis 
of a contour point (x, y). A detection was considered 
correct if the estimation error of each parameter was less 
than a certain error, depending on the interval where the 
parameters were restricted and the number of partitions. 
We used 30 partitions to split the intervals 0 C [0, 27r) and 
p C [10, 70] where the parameters were restricted. In the 
FCHT case, only the p parameter was fuzzily split. Fuzzy 
sets were chosen to have triangular slope. Their interval 
of confidence were controlled by a fuzziness factor f. 
W h e n f  = 1 the upper and lower limits were chosen to be 
in equal distances from the centre and equal to the 
distance of the centres of two neighbouring fuzzy sets. 
In the FHT case the fuzziness of contour points were 
supposed to have the same fuzziness as in FCHT case. 

The effect of fuzziness of the chosen triangular fuzzy sets 
was investigated as well. The intervals of confidence of 
the fuzzy sets were enlarged by using various values for 
the factor f The results are presented in Table 1 and 
shown graphically in Figs 2 and 4(a). The performance 
of FCHT is better than HT. An improvement of 7%-31% 
on the number of HT correct detections was succeeded 
for different values of noise range. The computational 
time needed for FCHT is about 2 times more than the 
time needed for HT. The performances of FCHT and FHT 
are more or less similar, but the computational time 
needed for FHT is about 5 times more than FCHT and 
10 times more than HT when f = 1 and it increases to 
about 70 times more than HT when f = 3. 

Then, we investigated the case of multiple detections. 
We assumed 100 artificially generated images with five 
straight lines at random places. The images were cor- 
rupted by uniform noise having range 4-d pixels as in the 
previous case. An example of such an image corrupted by 
uniform noise with range d = 4-10 pixels is shown in 
Fig. 5(a). Five straight lines were detected in each image. 
The detections were considered correct if the estimation 

Table 1. The number of successfully detected straight lines (out of 100) by using 100 images with one straight line at a random 
place, and the average time needed per image, by using HT, FlIT and FCHT for different values of fuzziness factor f and noise 

range d 

Method Fuzziness Detections Time (s) 

0') d=0 d--2 d=5 d--10 d=0 d=2 d--5 d--10 

HT 62 68 74 72 0.03 0.03 0.03 0.03 

FHT 1 64 71 75 75 0.26 0.25 0.25 0.25 
1.5 66 70 76 76 0.58 0.54 0.55 0.55 
2 69 74 77 76 0.95 0.90 0.94 0.92 
2.5 70 76 78 76 1.55 1.48 1.53 1.52 
3 75 75 78 74 2.17 2.05 2.11 2.11 

FCHT 1 68 69 73 81 0.05 0.05 0.05 0.05 
1.5 66 70 76 78 0.05 0.05 0.05 0.05 
2 68 75 76 77 0.05 0.05 0.05 0.05 
2.5 75 78 79 79 0.05 0.05 0.05 0.05 
3 81 82 79 82 0.05 0.05 0.05 0.05 
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Fig. 2. The number of successfully detected straight lines (out of 100) for different values of fuzziness 
factor, by using 100 images with 1 straight line at random place, not corrupted by noise d = 0 (a), corrupted 

by uniform noise with range d = 5 (b) and d = 10 pixels (c). 
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Table 2. The number of successfully detected straight lines (out of 500) by using 100 images with five straight lines at random 
places, and the average time needed per image, by using HT, FHT and FCHT for different values of fuzziness factor f and noise 

range d 

Method Fuzziness Detections Time (s) 

Q) d--0 d--2 d--5 d=10 d=0 d - 2  d=5 d--10 

HT 297 286 300 271 0.1 0.2 0.2 0.2 

FItT 1 310 309 308 284 1.4 2.7 3.3 3.6 
1.5 310 319 315 287 3.2 5.9 7.3 7.9 
2 322 311 314 296 5.3 9.9 12.3 13.3 
2.5 334 315 317 300 8.8 16.3 20.1 23.0 
3 337 312 309 307 12.3 22.7 28.1 30.8 

FCHT 1 311 300 310 278 0.2 0.4 0.5 0.6 
1.5 317 315 320 297 0.2 0.4 0.5 0.6 
2 331 313 319 311 0.2 0.4 0.5 0.6 
2.5 340 318 318 310 0.2 0.4 0.5 0.6 
3 338 314 323 319 0.2 0.4 0.5 0.6 
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Fig. 3. The number of successfully detected straight lines (out of 500) for different values of fuzziness 
factor, by using 100 images with 5 straight lines at random places, not corrupted by noise d = 0 (a), 

corrupted by uniform noise with range d = 5 (b) and d = 10 pixels (c). 
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Fig. 4. The average time in seconds, needed for the detection of one straight line (a) and five straight lines 
(b) in an image, for different values of fuzziness factor and noise range. 

error o f  each  pa rame te r  for  every  l ine was  less  than  a 

cer ta in  error def ined  as in the  p rev ious  case.  T he  effect  o f  
fuzz iness  was  also invest igated.  T he  resul ts  are p resen ted  

in Table 2 and  show n  graphica l ly  in F igs  3 and  4(b). By  

u s ing  F C H T  an  i m p r o v e m e n t  o f  8 % - 1 8 %  on  the n u m b e r  
o f  H T  correct  de tec t ions  was  succeeded  for different  
va lues  o f  noise  range.  The  pe r fo rmances  o f  F C H T  and 

F l I T  are more  or less  s imi lar  but  the  computa t iona l  t ime  
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Fig. 5. An example of an artificially generated 256 x 256 image with five straight lines, corrupted by 
uniform noise with range d = ±10 pixels (a), the detected lines by using classical HT (b) and FCHT with 

fuzziness factor f = 2.0 (c). 

Table 3. The number of successfully detected circles (out of 100) by using 100 images with one circle at a random place, and the 
average time needed per image, by using HT, FHT and FCHT for different values of fuzziness factor f and noise range d 

Method Fuzziness Demcfions ~me(s )  

d=0 d=2 d -5  d=10 d=0 d=2 d -5  d=10 

HT 61 65 64 54 1.2 2.2 2.5 2.7 

FHT 1 70 71 71 57 16 32 43 49 
1.5 75 77 76 61 36 71 95 109 
2 76 77 75 67 60 119 160 184 
2.5 77 78 75 73 99 197 264 304 
3 78 77 76 72 139 275 369 424 

FCHT 1 68 72 69 52 1.9 3.4 3.6 3.7 
1.5 76 75 76 60 1.9 3.4 3.6 3.7 
2 78 79 75 73 1.9 3.4 3.6 3.7 
2.5 76 78 75 72 1.9 3.4 3.6 3.7 
3 81 80 75 72 1.9 3.4 3.6 3.7 

needed for FHT increases from 7 to 60 times more than 
the time needed for FCHT as the fuzziness increases from 
1 to 3. Fig. 5(b) shows the straight lines that were 
detected by classical HT, when Fig. 5(a) was used as 
an input image. Fig. 5(c) shows the corresponding 
straight lines that were detected by FCHT with fuzziness 
factor f = 2.0. The proposed algorithm detects correct 
the four of the five straight lines whereas the classical HT 
detects only the two straight lines. 

5.2. Detection of circles by using Fuzzy Cell Hough 
Transform 

The performed simulations for the detection of circles 
were similar to the simulations for the detection of 
straight lines which were described in the previous 
section. First, we assumed 100 artificially generated 
256 x 256 images with only one circle at a random 
place. The images were corrupted by uniform noise 
having range + d  pixels added to the p-coordinate of a 
contour point (x, y). A detection was considered correct if 
the estimation error of each parameter was less than a 
certain error, depending on the interval where the para- 

meters were restricted and the number of partitions. We 
used 30 partitions to split the intervals a E [-128,128], 
b E [-128,128] and r C [10,70] where the parameters 
were restricted. In the FCHT case, only the r parameter 
was fuzzily split. Fuzzy sets were chosen to have trian- 
gular slope and their interval of confidence were con- 
trolled by the fuzziness factor f In the FHT case the 
fuzziness of contour points were supposed to have the 
same fuzziness as in FCHT case. The effect of fuzziness 
of the chosen triangular fuzzy sets was investigated as 
well. The results are presented in Table 3 and shown 
graphically in Figs 6 and 8(a). The performance of FCHT 
is always better than HT. An improvement of 19%-35% 
on the number of HT correct detections was succeeded 
for different values of noise range. The computational 
time needed is about 1.5 times more than the time needed 
for HT. The performances of FCHT and FHT are more or 
less similar, but the computational time needed for FHT 
is about 10 times more than FCHT and 15 times more 
than HT w h e n f  = 1 and it increases to about 115 times 
more than HT when f = 3. 

Then, we investigated the case of multiple detections. 
We assumed 100 artificially generated images with five 
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Fig. 6. The number of successfully detected circles (out of 100) for different values of fuzziness factor, by 
using 100 images with 1 circle at random place, not corrupted by noise d = 0 (a), corrupted by uniform noise 

with range d = 5 (b) and d = 10 pixels (c). 

Table 4. The number of successfully detected circles (out of 500) by using 100 images with five circles at random places, and the 
average time needed per image, by using HT, FlIT and FCHT for different values of fuzziness factor f and noise range d 

Method Fuzziness Detections ~ m e ( s )  

d--0 d--2 d--5 d=10 d--0 d=2 d--5 d=10 

HT 241 226 236 197 5.0 9.8 13.1 15.0 

FHT 1 259 234 234 205 66 131 175 202 
1.5 281 238 248 220 147 292 390 448 
2 294 244 248 234 249 491 658 758 
2.5 299 255 255 236 410 811 1088 1251 
3 311 260 253 239 572 1133 1521 1744 

FCHT 1 251 230 235 207 7.8 15.8 20.6 23.9 
1.5 287 234 249 224 7.8 15.8 20.6 23.9 
2 308 253 253 235 7.8 15.8 20.6 23.9 
2.5 313 261 258 245 7.8 15.8 20.6 23.9 
3 319 266 270 249 7.8 15.8 20.6 23.9 
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Fig. 7. The number of successfully detected circles (out of 500) for different values of fuzziness factor, by 
using 100 images with 5 circles at random places, not corrupted by noise d = 0 (a), corrupted by uniform 

noise with range d = 5 (b) and d = 10 pixels (c). 

circles at random places.  The images  were corrupted by 
uniform noise  having range ± d  pixels  as in the previous 
case. An  example  o f  such an image  corrupted by uniform 
noise  with range d = + 1 0  pixels  is shown in Fig. 9(a). 
Five circles were  detected in each image.  The detections 

were considered correct i f  the estimation error of  each 
parameter for every circle was  less than a certain error 
defined as in the previous case. The effect o f  fuzziness  
was  also investigated. The results are presented in 
Table 4 and shown graphically in Figs 7 and 8(b). By  
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Fig. 8. The average time in seconds, needed for the detection of one circle (a) and five circles (b) in an 

image, for different values of fuzziness factor and noise range. 
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(a) (b) 
Fig. 9. An example of an artificially generated 256 x 256 image with five circles, corrupted by uniform 
noise with range d = =M0 pixels (a), the detected lines by using classical HT (b) and FCHT with fuzziness 

factorf = 2.0 (c). 

using FCHT an improvement of 14%-32% on the num- 
ber of HT correct detections was succeeded for different 
values of noise range. The performances of FCHT and 
FHT are still more or less similar but the time needed for 
FHT is significantly more. Fig. 9(b) shows the circles 
that were detected by classical HT, when Fig. 9(a) was 
used as an input image. Fig. 9(c) shows the correspond- 
ing circles that were detected by FCHT with fuzziness 
factor f = 2.0. The proposed algorithm detects correct 
the four of the five circles whereas the classical HT 
detects only the two circles. 

5.3. Detection of circles by using Select and Split 
Fuzzy Cell Hough Transform 

We have performed simulations on artificially gener- 
ated 64 x 64 images that contain a circle to be detected. 
Parameters a, b, r were restricted in the range 
a E [-32,  32], b E [-32,32] and r E [1,21]. The image 
was corrupted by uniform noise in the range -t-d pixels 
added to the radial dimension of a contour point (x, y). 
First classical Hough Transform was used to detect the 
circle. The parameter space was split in 32 sets in each 
coordinate. By using this split the actual circle was 
detected with less than ell2 error in each parameter. 

The experiment was repeated for Nc = 10,571 different 
circles and four different values of noise range. Then HT 
was applied in a parameter space split in 16 sets in each 
parameter. Detections were supposed to be successful 
when the parameter estimation errors in each coordinate 
were less than or equal to the previously defined error 
threshold. 

The same circles were detected by using Select and 
Split Fuzzy Cell Hough Transform (SSFCHT). First, 
coordinates a, b and r were split in n = 4 crisp cells 
in each iteration. Then, coordinate r was split in n = 4 
fuzzy sets. Fuzzy sets were selected to have triangular 
membership function and the upper and lower limits 
were adjusted by the fuzziness factor f. When f = 1 
the upper and lower limits were selected in equal dis- 
tances from the centre and equal to the distance of the 
centres of two neighbouring fuzzy sets. The experiment 
was repeated for f = 1, 1.5 and 2. The detection was 
considered correct when the errors for every coordinate 
were less than or equal to the corresponding errors by 
using conventional HT. 

The results are presented in Tables 5-7 for three 
different values of noise range. The number of success- 
fully detected circles, the rate of success and the average 
time needed for the detection of one circle for every 
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Table 5. The number of successfully detected circles (out of 10,571), the rate of success and the average time needed by using HT 
(N = 32), HT (N = 16) and SSFCHT with crisp and fuzzy (f = 1.0, 1.5, 2.0) cells in an image not corrupted by noise 

Method Detected Rate of success % Average time (s) 

HT (N=32) 10571 100 1.12 
HT (N--16) 8358 79 0.46 
SSFCHT (crisp) 6116 58 0.06 
SSFCHT (/= 1.0) 8111 77 0.07 
SSFCHT (/------1.5) 10515 99 0.07 
SSFCHT (/=2.0) 48 0.5 0.60 

Table 6. The number of successfully detected circles (out of 10,571), the rate of success and the average time needed by using HT 
(N = 32), HT (N = 16) and SSFCHT with crisp and fuzzy (f -- 1.0, 1.5, 2.0) cells in an image corrupted by uniform noise in the 

range -4-2 pixels 

Method Detected Rate of success % Average time (s) 

HT (N=32) 10571 100 1.15 
HT (N=16) 8358 79 0.48 
SSFCHT (crisp) 5538 52 0.10 
SSFCHT (/= 1.0) 736 70 0.12 
SSFCHT (,6=--1.5) 10438 99 0.13 
SSFCHT (/=2.0) 178 2 0.65 

Table 7. The number of successfully detected circles (out of 10,571), the rate of success and the average time needed by using HT 
(N = 32), I-IT (N = 16) and SSFCHT with crisp and fuzzy ( / =  1.0, 1.5, 2.0) cells in an image corrupted by uniform noise in the 

range nk5 pixels 

Method Detected Rate of success % Average time (s) 

HT (N=32) 10571 100 1.49 
HT (N= 16) 3443 33 0.51 
SSFCHT (crisp) 3302 31 0.11 
SSFCHT (/--1.0) 4731 45 0.14 
SSFCHT (/=1.5) 9012 85 0.14 
SSFCHT (/=2.0) 3409 32 0.43 

me thod  are presented.  A success rate o f  99% is reached 
by  using a factor  f = 1.5 and the corresponding Fuzzy 
Cell  Hough Transform is 16 t imes faster over  the con- 
ventional  HT algorithm. Note  that accuracy cannot  be 
reached in case o f f  = 2 since n = 2f.  

6. CONCLUSIONS 

We int roduced the use o f  Fuzzy Cells in Hough  Trans- 
fo rm as a me thod  to detect  contours in an image. We 
proposed  a fuzzy split o f  the Hough Transform parameter  
space which  led  to a fuzzy voting algorithm. The array 
that was created after the fuzzy voting process  was 
smoother  than in classical case. Local  max ima  that 
cor respond to the effect  o f  noise or any kind o f  uncer-  
tainty were  disappeared.  The number  o f  correct  detec-  
tions of  curves was increased.  Moreover ,  they were 
detected  wi th  better  accuracy in compar ison to classical 
Hough  Transform and, in most  cases,  in compar ison to 
Fuzzy  Hough  Transform. We also proposed  Select  and 
Split Fuzzy Cell  Hough  Transform, the use o f  Fuzzy 
Cells in a recursively roughly split parameter  space. This 
me thod  decreases  significantly the storage requirements  

and the computat ional  t ime requirements  in compar ison 
to classical Hough Transform and does not  practically 
decrease the performance o f  Hough Transform. 
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