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Abstract

In this paper, we deal with video shot-cut detection in digital videos using singular

value decomposition (SVD). SVD is performed on a matrix, whose columns are the 3D

frame color histograms. We have used SVD for its capabilities to derive a refined low

dimensional feature space from the high dimensional raw feature space, where similar

video patterns are placed together and can be easily clustered. After performing SVD,

a two-phase process is employed to detect the shots. In the first phase, a dynamic

clustering method is used to create the frame clusters. In the second phase, every two

consecutive clusters, obtained by the clustering procedure, are tested for a possible

merging in order to reduce false shot cut detections. In the merging phase, statistical

hypothesis testing is used. The detection technique was applied to several TRECVID

video test sets that exhibit different types of shots and contain significant object and

camera motion inside the shots. It is demonstrated that the method detects cuts and

gradual transitions, such as dissolves and fades, with a high accuracy.

Keywords: shot boundary detection, singular value decomposition, Mises-Fisher distribu-

tion
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1 Introduction

The indexing and retrieval of digital video is an active research area. Video segmentation

is a fundamental step in analyzing the content of video sequences and accessing, retrieving,

and browsing large video databases efficiently [1].

The video shot is a basic structural building block of video sequences. Its boundaries

need to be determined possibly automatically to allow for content-based video manipulation.

A video shot can be defined as a sequence of frames captured by one camera in a single

continuous action in time and space [2]. It should be a group of frames that have consistent

visual (including color, texture, and motion) characteristics.

A video shot cut (abrupt cut) is an instantaneous content transition from one shot to

the next one. It is obtained by simply joining two different shots without the insertion of

any other photographic effect. The shot cut boundaries show an abrupt change in image

intensity or color. Cuts between shots with little content difference or small camera motion

and constant illumination conditions can be easily detected by looking for sharp changes

in brightness. However, in the presence of either continuous fast object motion or camera

movements or illumination changes, it is difficult to distinguish if the changes in brightness

are due to the aforementioned reasons or the transition from one shot to the next one [1].

Fading is either the progressive darkening of a shot until the last frame becomes black

(fade-out) or the gradual transition from a black frame to a fully illuminated one (fade-in).

An example of fade-out is given in Figure 1a, while a fade-in can be seen in Figure 1b. Fades

spread the boundary between two shots across a number of consecutive video frames. They

possess start and end frames that identify the transition sequence. A dissolve is a gradual

transition from the content of one shot to the content of the next shot. An example of
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dissolve is shown in Figure 1c. Transitions between shots are widely used in TV and their

appearance generally signals a shot change. Video transitions, such as fades and dissolves

can be mathematically modeled as luminance scaling operations. Let x and t denote pixel

coordinates and time, respectively. If G(x, t) is a grey scale video sequence and T is the

length of the transition sequence, a grey level scaling of G(x, t) is modeled as [1]:

E1(x, t) = G(x, t) · (1 − t

T
) (1)

for t ∈ [0, T ]. It is not difficult to realize that (1) models a fade out. Similarly, a fade-in is

modeled by:

E2(x, t) = G(x, t) ·
( t

T

)
. (2)

A dissolve sequence E3(x, t) is defined as a mixture of fade-out E1(x, t) and fade-in E2(x, t)

with weights w1 and w2 [3]:

E3(x, t) = w1 · E1(x, t) + w2 · E2(x, t) t ∈ [0, T ] . (3)

For t ∈ [0, T ], the most common dissolve types are cross-dissolves with:

w1 =
T − t

T
, w2 =

t

T
, (4)

and additive dissolves with

w1 =


1 if t < c1

T−t
T−c1

otherwise

w2 =


t
c2

if t < c2

1 otherwise,

(5)

where c1 and c2 are constants in the range [0, T ]. Although Eqs (1)-(5) do not take into

account the fact that optical cross dissolves are usually not linear, they can be treated as

simplified linear approximations of the actual models. They can be extended to color images

by applying them separately to each RGB color component.
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The detection of shot boundaries provides a basis for nearly all video abstraction and

high-level video summarization approaches. Therefore, solving the problem of shot-boundary

detection is one of the major prerequisites for revealing the high-level video content structure.

Moreover, other research areas can profit considerably from a successful automation of the

shot-boundary detection process. Most of the first works on shot boundary detection were

mainly focused on abrupt cut detection. In these approaches, a cut is detected when a

certain difference measure between consecutive frames exceeds a threshold. The difference

measure is computed either at a pixel level or at a block level. Noticing the weakness

of pixel differencing methods, many researchers suggested the use of measures based on

global information, such as intensity histograms or color histograms. The standard color

histogram-based algorithm and its variations are widely used for detecting cuts [4–7]. Abrupt

cut detection algorithms determine the changes between shots by comparing the differences

between intensity histograms in consecutive video frames. A comparison of such abrupt

cut detection algorithms is presented in [4, 8, 9]. However, the histograms are incapable

to differentiate between smooth camera operations and gradual shot transitions, because

they do not explicitly model the image difference caused by camera movements. In [10–12],

entropy measures were used for detecting abrupt cuts and fades in gray-scale or color images.

More complex features, such as image edges or motion vectors [13], improve the situation

and alleviate, but do not solve completely, this problem.

Gradual transitions, such as dissolves, fade-ins, fade-outs, and wipes are examined in

[3, 14–17]. These transitions are generally more difficult to be detected, due to camera and

object motions within a shot. Therefore, their detection is a very powerful tool for shot seg-

mentation and story summarization. Existing techniques in the literature for fade detection

rely on twin thresholding [1] or the standard deviation of pixel intensities [8]. Lienhart [8]
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proposed first to locate all monochromatic frames in the video as potential start/end points

of fades. Monochromatic frames are defined as frames with standard deviation of pixel color

values close to zero. Fades were then detected by starting to search in both directions for

a linear increase in the standard deviation of pixel intensity/color. An average hit rate of

0.87 was reported at a false alarm rate of 0.30. An alternative approach, also based on

the variance of pixel intensities, was proposed by Alattar [18]. Fades were detected first by

recording all negative spikes in the time series of the second order derivative of the pixel

intensity variance, and then by ensuring that the first order derivative of the mean of the

video sequence was relatively constant next to the negative spike. A combination of both

approaches is described in Truong et al. [19]. A conceptual solution to the shot-boundary de-

tection problem presents Hanjalic in [20]. This solution is provided in the form of a statistical

detector that is based on the minimization of the average detection-error probability.

Porter et al. [21] developed an algorithm for dissolve detection, which combines the

advantages of object tracking and feature-based methods. It avoids the sensitivity of object

detection but provides a measure of the temporal evolution of the video. Experimental

results on commercial motion picture trailers gave 0.87 recall rate at 0.77 precision rate.

Lienhart [3] proposed to detect dissolves by a learning classifier (e.g. a neural network). The

classifier detects possible dissolves at multiple temporal scales and merges the results using a

winner-take all strategy. The interesting part is that the classifier is trained using a dissolve

synthesizer which creates artificial dissolves from any available set of video sequences.

The methods for dimensionality reduction such as principal components analysis (PCA)

and latent semantic indexing (LSI), which are both using the singular value decomposition

(SVD) have been used in several works. This paper extends previously reported results

in [22]. Besides using SVD for color histogram dimensionality reduction it builds on the
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distributional properties of angular statistics to refine ad-hoc clustering methods applied to

cosine similarity measures by employing hypothesis testing. The closely related to SVD,

PCA, was first proposed for scene change detection in order to find the transition between

video scenes by Sahouria and Zakhor in [23]. They applied PCA to the covariance matrix

of feature vectors that represent the motion in a frame and demonstrated its success in two

applications. The first application accomplishes a high-level scene description without shot

detection and key frame selection, while the second one uses the time sequences of motion

data from every frame to classify sports sequences. Similarly, PCA was applied to the

covariance matrix of color triplets in RGB color space for shot change detection by Yilmaz

and Shah in [24]. To detect the shots from a video stream, they use a “cluster seeking”

approach. Liu and Chen in [25] propose to model temporal statistics of the video stream

using PCA or the eigenspace method. A shot boundary is detected if the new feature, the

histogram of a frame, does not fit well to an existing model. Gong and Liu [26] proposed

a technique for video shot segmentation and visual content-based shot classification based

on the SVD followed by a clustering method. SVD was applied to the quantized RGB

histograms of 3 × 3 blocks to which a frame was divided. For clustering, they used a

twin thresholding technique and the weighted Euclidean distance calculated between two

consecutive frames. Although, [26] is somehow close to our work (i.e., both use SVD), it

is different to our method. We do not divide the frames into blocks. We work on angular

vectors and use suitable distribution, e.g. the von Mises-Fisher one [27, 28], furthermore,

the clustering algorithm employed here is completely different. LSI was also tested for video

shot detection in [29] using frame quantized histograms of hue and saturation. In [29], it

was showed how LSI, together with color anglogram, can expose the semantic correlation

between video frames. LSI was also applied for video content modeling and analysis in [30].
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As can be seen from the cited references the predecessor of this work, [22], was appeared

parallel to [29] and [30].

As successive frames in the same shot change only slightly, it can be reasonably expected

that they will cluster well. Clustering can be performed using a range of video features

including region shape, color, and texture [31]. Ren et al. [32] showed how gray-scale global

texture based frame clustering can be used to obtain a good estimate of the number of shots

present and thus detecting appropriate shot changes. They used autocorrelation texture

features for describing each frame. The features are next clustered using fuzzy c-means. A

temporal validity index is introduced to calculate whether frames that cluster together have

some temporal relationship. Color texture features were used in [33].

In order to obtain good results for shot cut detection, it is important to choose and

combine properly the method for reducing dimensionality with a suitable clustering method.

In the present paper, we develop a novel method that builds on SVD and clustering of

features vectors extracted from consecutive (in time) frames. More specifically, the method

relies on performing SVD on a matrix created by the 3D color histograms of single frames.

In contrary to the previous methods which are using as input to SVD the covariance matrix

of feature vectors, we calculate the SVD of an affinity matrix. We have used SVD for its

capabilities to derive a refined low dimensional feature space from a high dimensional raw

feature space, where pattern similarity can easily be detected. We have been motivated by

the success of SVD in document clustering and retrieval, where very good results have been

reported [34, 35]. In order to detect video shots, the feature vectors after applying SVD

are processed using a dynamic clustering method. As a measure of similarity we use the

cosine measure. To avoid false detections, every two consecutive clusters, obtained by the

just mentioned clustering procedure, are tested for a possible merging in a second phase.
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Merging is performed in two steps applied consecutively. The first step uses the average

cosine similarity measure of the clusters. In order to derive theoretically grounded thresholds,

we perform the second merging step, which is based on statistical hypothesis testing and

contributes to the novelty of our approach. It uses the von Mises-Fisher distribution [27,28],

which can be considered as the equivalent of the Gaussian distribution for directional data.

By using SVD and statistical tests, we are able to detect transitions between video shots

with a high accuracy.

The outline of the paper is as follows: In Section 2, a brief description of SVD is pre-

sented. The application of SVD to shot boundary detection is addressed in Section 3. After

performing SVD on the histograms we can apply the method described in Section 4 for fade

detection. Experimental results are presented and discussed in Section 5 and conclusions are

drawn in Section 6.

2 Singular value decomposition

SVD is a powerful technique in linear algebra. The SVD exposes the geometric structure

of a matrix, which is an important aspect in many matrix calculations. A matrix can be

seen as defining a transformation from one vector space to another one. The components of

SVD quantify the resulting change between the underlying geometry of these vector spaces.

SVD is employed in a variety of applications, from least-squares problems to solving systems

of linear equations. Each of these applications exploits the key properties of SVD, i.e., its

relation to the rank of a matrix and its ability to approximate matrices of a given rank. Many

fundamental aspects of linear algebra rely on determining the rank of a matrix, making SVD

an important and widely-used technique.
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The SVD of an M × N matrix A is any factorization of the form A = UΣVT , where

U is an M × R column-orthogonal matrix, V is an N × R column orthogonal matrix, and

Σ = diag(σ1, ..., σR) is a diagonal matrix with non-negative elements, σ1 ≥ ... ≥ σR ≥ 0 for

R = min(M, N). The diagonal elements σi are called singular values. They are the square

roots of the largest R eigenvalues of AAT or ATA. The R columns of V and U are called the

right singular vectors and the left singular vectors, respectively. The right singular vectors

are the eigenvectors of ATA, whereas the left singular vectors are the eigenvectors of AAT .

Only r = rank(A) singular values are non-zero. Accordingly

AM×N =
[

U1︸︷︷︸
r

U2︸︷︷︸
R−r

]  Σ1 0

0 0


[ N︷ ︸︸ ︷

VT
1

VT
2

] }r

}R−r

= U1Σ1V
T
1

(6)

where Σ1 = diag[σ1, ..., σr] is nonsingular.

3 Shot cut detection using SVD and clustering

Let ai denote an M-dimensional feature vector that is used to represent the i-th video frame,

i = 1, 2, . . . , N . The feature vector is obtained by calculating the color histogram of each

frame as follows. The three-dimensional normalized histogram in the RGB color space with

16 bins for each of the R, G, B color components is derived. Accordingly, the dimensionality

of feature vectors is M = 163 = 4096. Next we create the M × N affinity matrix

A = [a1|a2|...|aN ]

whose columns are the M-dimensional feature vectors of all the frames. The feature vectors

are normalized, so that ‖ai‖ = 1, i = 1, 2, . . . , N . Each feature (i.e. color) is associated with

a row vector of A having dimensions 1× N . Each frame is described by a column vector of
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A having dimensions M × 1. Typically, A is a sparse matrix, a fact that is exploited by the

numerical analysis algorithms for the computation of SVD.

The column vectors of A, that is, the frame color histograms, are projected onto the

orthonormal basis formed by the column vectors of the left singular matrix U. The frame

coordinates in this space are given by the columns of ΣVT . The row vectors of A (i.e., the

colors) are projected onto the orthonormal basis formed by the column vectors of the right

singular matrix V or, equivalently, the row vectors of VT . The color representation, in terms

of their coordinates in this projection, is given by the rows of UΣ.

3.1 Reduced space representation

In our application M < N . Typically, M = 4096 and N = 10000. If we preserve the

K largest singular values of Σ, where K < r << M , the resulting matrix is denoted by

ΣK . If we project the original feature vector ai from the M-dimensional feature space to

the K-dimensional feature space, then the projected frame histogram is the row vector of

dimensions (1 × K):

ṽT
i = vT

i ΣK , i = 1, 2, . . . , N (7)

where vT
i is the i-th row vector of V1 in (6). Therefore, each column vector ai in A is

mapped to a row vector ṽT
i .

The truncated feature space removes the noise or the trivial variations in the video se-

quence. Thus, the frames with similar color distribution patterns are expected to be mapped

close to each other. In analogy with the SVD-based document clustering and retrieval [34,35],

the clustering of visually similar frames in the reduced feature space will certainly yield better

results than in the raw feature space.
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A commonly used frame similarity measure is the cosine measure Φ(fi, fj) between two

frames fi and fj [30, 36], that is the cosine of the angle between the vectors ṽi and ṽj

Φ(fi, fj) = cos(ṽi, ṽj) =
(ṽT

i · ṽj)

‖ṽi‖‖ṽj‖ . (8)

The cosine measure (8) is simply the inner product between the normalized projected frame

histograms

˜̃vi =
ṽi

‖ṽi‖ , ˜̃vj =
ṽj

‖ṽj‖ . (9)

Using the similarity measure (8) we obtain values in the range [0, 1], where 1 stands for

the identical frames. The more different the vectors are, the smaller cosine measure value

is obtained. The cosine measure and the Euclidean distance between ṽi and ṽj give the

same results, if and only if ṽi and ṽj have unit norm, which is not the case here. The

Euclidean distance and the angular measures represent two distinct approaches to judge

similarity. Euclidean distance measures are intrinsic, based solely on the group of frames

under study [37]. In this case, all directions are considered equal from a given point in the

frame feature space and frame similarity depends only on the Euclidean distance. On the

contrary, angular measures are extrinsic, representing a view of the frame feature space from

its origin. An angular measure does not consider the distance of each frame feature vector

from the origin, but only its direction. The cosine measure projects the entire frame space

onto a K-dimensional sphere of fixed radius around the origin.

To detect video shot cuts we are using a two-phase process. In the first phase, a dynamic

clustering method is used to create frame clusters (Section 3.2). In the second phase, every

two consecutive frame clusters are tested for a possible merging by applying sequentially the

techniques described in Sections 3.3 and 3.4.
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3.2 Frame Clustering

In the first phase, feature vectors are assigned into clusters. We deal with clusters because

the feature vectors that correspond to frames within the same shot are grouped together.

Within each cluster, we have a typical density of feature vectors which is considerably higher

than that within transition areas. Clustering method based on the notion of cluster density,

which is designed to discover clusters of arbitrary shape, was proposed in [38]. This algorithm

is not applicable here due to another characteristic of our data, the time-ordering of frames

and consequently the extracted feature vectors. Since we wish to cluster the sequence into

shots with a natural time ordering, for every frame (feature vector) we should decide if it

belongs to the last cluster created or it is a seed for a new cluster. By doing so, we avoid

having to specify a priori the number of clusters, as for example, we have to, in the widely

used k-means clustering.

We propose a novel clustering method, which takes into account both aspects namely,

the density and the time ordering of the feature vectors. The feature vectors are clustered

into L frame clusters, {Ci}L
i=1, by comparing the similarity measure (8) to an appropriately

chosen threshold δ. The clustering algorithm works as follows.

Initialization:

• It refers to the first two frames f1 and f2 represented by their feature vectors ṽ1 and

ṽ2. They form the cluster C1 by definition. The cluster mean is simply

m1 =
1

2
{ṽ1 + ṽ2}. (10)

Recursion:

• The next frame f3 is tested whether it can be appended to C1 or it becomes a seed for
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a new cluster by comparing the cosine measure between m1 and ṽ3 to δ

cos(m1, ṽ3) < δ. (11)

If the inequality (11) is fulfilled, then we create a new cluster with mean

m2 = ṽ3. (12)

Otherwise, we include f3 into C1 and update m1 as follows:

m
′
1 = m1 +

1

n1 + 1
d (13)

where d = ṽ3 − m1 and n1 is the number of elements in the cluster C1.

• When the frame fl is to be processed, we are interested in testing if fl is to be included

into the last cluster formed chronologically up to the time instant l. Let us denote this

cluster by Cj . Then cos(mj , ṽl) is compared to δ similarly to (11). If it is less than

δ, we create a new cluster, Cj+1, that is represented by mj+1 = ṽl. Otherwise, mj is

updated after the inclusion of ṽl, as in (13).

The low cardinality clusters (i.e., those having few frames) usually correspond to shot

transitions like dissolve, fade or wipe. Accordingly, only the clusters having a large cardi-

nality (i.e., those having been assigned many frames) are retained and associated to shots.

We summarize the algorithm as follows [22]:

1. Calculate the color histograms for each frame with 16 bins for each R, G and B com-

ponent.

2. Create matrix using the histograms as columns.

3. Perform SVD on A: A = UΣVT .
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4. Apply the previously described dynamic frame feature clustering method.

5. Choose clusters that contain at least 5 frames as candidates of video shots. A discussion

related to the empirically derived sufficient number of 5 frames is made in Section 5.

3.3 Frame cluster merging

Due to the fixed threshold δ used in frame clustering, it may happen that some shots are

split into different clusters. To avoid false shot transition detection, the clusters obtained

by the procedure described in Section 3.2 are tested for a possible shot merging. Merging

is performed in two steps applied sequentially. Since we take into account the time order of

frames in every step, we are testing only two consecutive clusters for merging.

The first step is based on the fact that, if a frame cluster was erroneously split in two

clusters (e.g. Ck and Ck+1), the cosine similarity measure between the last frame in cluster

Ck and the first frame in cluster Ck+1 is comparable to the average cosine similarity measures

calculated within the clusters Ck and Ck+1. Let us denote by f i
j the j-th frame of the i-th

cluster and by ṽi
j the projected frame feature vector f i

j . We calculate the average cosine

measure φk over the series of cosine measures between any two consecutive frames fk
i , fk

i+1

assigned to cluster Ck

φk =
1

nk − 1

nk−1∑
i=1

cos(ṽk
i , ṽ

k
i+1) (14)

where nk is the number of frames assigned to Ck. Then we compare the mean cosine measures

φk and φk+1 of two consecutive clusters Ck and Ck+1 to the cosine measure between the last

frame fk
nk

in cluster Ck and the first frame fk+1
1 in cluster Ck+1 using the inequalities

cos(ṽk
nk

, ṽk+1
1 ) < β · φk AND cos(ṽk

nk
, ṽk+1

1 ) < β · φk+1 (15)

where β is a constant, which is chosen experimentally. Obviously, the constant β admits
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values less than 1. If (15) is fulfilled, the clusters Ck and Ck+1 are preserved as separated

clusters and the frame cluster Ck+1 is tested next for a possible merging with Ck+2. Otherwise,

Ck and Ck+1 are merged together.

3.4 Frame cluster merging based on statistical hypothesis

In this section, we describe the second step of frame cluster merging. In order to determine

the necessary thresholds theoretically, we use statistical hypothesis testing. An all-purpose

probability model for unit-norm random angular vectors that are distributed unimodally

with rotational symmetry is the Von Mises-Fisher distribution [27, 28] (to be defined sub-

sequently). It is the equivalent to the classical normal distribution used in “linear” data.

A clustering on the unit hypersphere using Von Mises-Fisher distribution is also described

in [39].

Let us denote a random direction in K dimensions by the unit norm vector l. l can be

expressed in terms of spherical polar coordinates by applying a proper transformation [27,28].

Let us consider random samples on a K-dimensional sphere of unit radius around the origin

that are simply the normalized projected frame histograms that belong to cluster Ck

lk1 = ˜̃vk

1, l
k
2 = ˜̃vk

2, . . . , l
k
nk

= ˜̃vk

nk
. (16)

The sample mean vector is defined by [27, 28]

l̄k =
1

nk

nk∑
i=1

lk
i (17)

and its direction is given by

¯̄lk =
l̄k∥∥l̄k

∥∥ . (18)

¯̄lk can be regarded as the mean direction of the samples. Let R̄k =
∥∥l̄k

∥∥ =

√
l̄
T
k l̄k. The

parameter R̄k is closely related to the notion of the spherical variance. A value of R̄k close
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to 0 implies that the points lk1, l
k
2, . . . , l

k
nk

are uniformly distributed, whereas a value of R̄k

close to 1 implies that the points are heavily concentrated near ¯̄lk. Another two terms of

interest in our analysis are: (i) the quantity

Rk = nkR̄k (19)

called the resultant length and (ii) the vector

rk = nk l̄k =

nk∑
i=1

lk
i (20)

known as the resultant vector [27, 28].

Let l be a random unit norm vector that obeys a K-variate Von Mises-Fisher distribution

having rotational symmetry about the unit norm direction µ with concentration parameter

κ. Then, the probability that the random unit-norm vector l is contained in the differential

surface element on the unit radius hypersphere in K dimensions, dSK , is given by

h(l)dSK = cK(κ) exp{κµT l} κ ≥ 0, µT µ = 1 (21)

where cK(κ) is a normalizing constant given by

cK(κ) =
κ(K−1)/2

(2π)K/2IK−1
2

(κ)
(22)

with Ir(κ) denoting the modified Bessel function of the first kind and order r. Let us

assume that the projected frame histograms (16) assigned to cluster Ck follow a K-variate

von Mises-Fisher distribution with mean direction µ and concentration parameter κ, (21).

We propose merging two consecutive clusters of shot feature vectors Ck and Ck+1 by

comparing their sample mean directions ¯̄lk and ¯̄lk+1, with the mean direction of the tentative

cluster formed after a hypothesized merging cluster Ck and Ck+1, µ0, and by deciding that

the merging is valid if neither of ¯̄lk and ¯̄lk+1 is significantly different from µ0.
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Let rk be the resultant vector for the normalized projected frame histograms in Ck and

rk+1 be the resultant vector for the normalized projected frame histograms in Ck+1. Let µ0

be the mean direction after a tentative merging of the aforementioned clusters

µ0 =
µ̄0

‖µ̄0‖
(23)

where

µ̄0 =
rk + rk+1

nk + nk+1

(24)

We consider the following hypothesis testing problem for cluster Ck:

H0 : µ = µ0

H1 : µ �= µ0. (25)

Let θk be the angle between rk and µ0, then

rT
k µ0 = Rk cos θk (26)

where Rk is the resultant length of the k-th resultant vector rk that corresponds to Ck. The

null hypothesis is accepted if [27, 28]

cos θk ≥ 1 − (nk − Rk)FK−1,(nk−1)(K−1);α

(nk − 1)Rk
. (27)

where FK−1,(nk−1)(K−1);α is the upper α percentage point of the F -distribution with degrees

of freedom K − 1 and (nk − 1)(K − 1). A similar hypothesis testing for Ck+1 yields that the

null hypothesis is accepted if

cos θk+1 =
1

Rk+1
rT

k+1µ0 ≥ 1 − (nk+1 − Rk+1)FK−1,(nk+1−1)(K−1);α

(nk+1 − 1)Rk+1
. (28)

Merging is performed only if the null hypothesis is accepted for both Ck and Ck+1 i.e. if

(27) and (28) hold simultaneously.
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We have obtained the frame clusters which correspond to the shots. The frames between

two frame clusters correspond to the gradual shot transitions like dissolve, fade or wipe. An

example of dissolve is shown on Figure 2.

4 Fade detection

In order to efficiently distinguish between fades and other types of transitions, after per-

forming SVD on the histograms in Section 3.1 we can apply the following method to detect

fades. We use a reference black frame fBK . After performing SVD, fBK is represented by

ṽBK . We can easily detect the frames which are black or very dark as the ones having a

large cosine similarity to ṽBK . We put them in the set

T = {ṽi, i = 1, . . . , n| cos(ṽi, ṽBK) > δf} (29)

where δf is a predefined threshold. The time instant, where the distance between ṽi ∈ T

and the reference frame ṽBK is at a local minimum is detected and is characterized as the

end-time instant te of the fade-out. Typically the time is measured by the number of video

frames. The next step consists in searching for the fade-out starting point ts in the preceding

frames using the criterion

cos(ṽi, ṽBK) ≥ cos(ṽi−1, ṽBK) + εf (30)

where εf is another predefined threshold. When the first violation of (30) occurs, the frame

ṽi is identified as the starting point of the fade-out ts. A similar procedure is also applied

for fade-in detection with ts being detected first. Finally, since a fade is a gradual transition

and has a boundary spread across a number of frames, the video segment is considered as a

fade if te − ts ≥ 2 (i.e., the spread contains at least 2 video frames). Otherwise, it is labeled
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as a shot cut. An example of fade-out and fade-in is shown in Figure 3. It can be clearly

seen that a fade-out is a transition from a shot to the reference black frame and the following

fade-in is a transition from the reference black frame to another shot.

5 Experimental results and discussion

To enable future comparison with other boundary detection techniques, the proposed method

was tested on newscasts from the reference video test set TRECVID 2003 [40], containing

video sequences of duration longer than 6 hours that have been digitized with a frame rate

of 29.97 frames per second (fps) at a resolution of 352 × 264 pixels. 6 video sequence of

duration longer than 2 hours from TRECVID 2006 [41] were also added to the testing set

to show performance of the method on the most recent content. The TREVID 2006 videos

sequences have been digitized with a frame rate of 29.97 fps at a resolution of 352 × 264

pixels as well. We used downsampled frames with resolution 176 × 132 pixels to speed up

the calculations in our experiments. The TRECVID 2003 and TRECVID 2006 ground truth

was used as well (see Table 1).

In order to evaluate the performance of the shot cut detection method presented in

Section 3, the recall and precision measures, were used [37, 42]. Let GT denote the ground

truth set for the detection task under study, Det the detected (correctly or falsely) set using

our methods. The Recall measure, also known as the true positive function or sensitivity,

corresponds to the ratio of correct experimental detections over the number of all true

detections:

Recall =
|Det

⋂
GT |

|GT | , (31)

where |GT | denotes the cardinality of set GT . The Precision measure corresponds to the
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accuracy of the method considering false detections and it is defined as the number of correct

experimental detections over the number of all experimental detections:

Precision =
|Det

⋂
GT |

|Det| . (32)

For performance assessment we have also used a combination of recall and precision, the

so-called F1 measure, defined as

F1 =
2

1
Recall

+ 1
Precision

. (33)

At first, we have tested whether the obtained data exhibit a clustering tendency or they

are uniformly distributed on the hypersphere after projecting the histograms to the refined

feature space using SVD with K = 10. The motivation for such test is the fact that uniformly

distributed data cannot be clustered. This is not the case for our data. We have found that all

the frame histograms after projection are located in the AOB cone, as can be seen in Figure

4. For visualization purposes we have used K = 3 in Figure 4. We have tested the method

with several choices of the number of singular values retained K ∈ {3, 5, 10, 20, 50, 100}. For

small values of K, it is found that information useful for clustering is lost. Based on our

experiments, it is found that the best choice is K = 10. For this value, the shot clusters are

separated well. A further increase of K does not improve clustering.

In the clustering step, we set threshold δ so that we get an over-segmentation with

the fewest possible miss detections. The false detections are further reduced by applying

successively the merging steps of Sections 3.3 and 3.4. By varying threshold δ in rule (11)

within the range [0.80, 0.99] we have obtained the recall-precision curves shown in Figure 5.

One can see, that the best results are obtained by applying the cluster merging procedure

of Section 3.3 followed by the statistical tests for validating cluster merging described in

Section 3.4. The procedure described in Section 3.3 alone does not produce always the best
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results. In our experiments, we found that a good compromise between recall and precision

corresponds to the choice δ = 0.98. The corresponding F1 curves for both cluster merging

approaches are drawn in Figure 6. One can see that for δ ∈ [0.9, 0.99] we obtain consistently

a higher F1 measure by applying sequentially the cluster merging procedures of Sections 3.3

and 3.4 on the TRECVID 2003 test set.

For the cluster merging step of Section 3.3 we used a threshold β in (15) less than 1 to

guarantee that two consecutive clusters are well separated. Four recall-precision curves ob-

tained for δ ∈ {0.993, 0.99, 0.98, 0.97} by varying the threshold β within the range [0.962, 0.998]

are shown in Figure 7. One can see that the recall-precision curve obtained for δ = 0.98

outperforms the others. In Figure 8, the corresponding F1 curves are plotted. By fixing δ

to the most favorable value (δ = 0.98) we can select β so that we optimize F1. The best

operating point was found to be for β = 0.98. However, one can see that there is not only

a single value of β that yields F1 greater than 0.8 but a whole range of values. Therefore,

choosing β is not a difficult task.

In any case, we can set the thresholds experimentally by the leave-one-out method. We

performed the leave-one-out method on 6 video sequences so that in every run we left out

one video sequence for testing. We obtained for every run one F1 curve by varying parameter

β in range [0.971, 0.999] while threshold δ is fixed to 0.98. In Figure 9 the mean F1 curve is

plotted. The interval of ± one standard deviation of the F1 measure is indicated with bars

overlaid. Then, we performed the tests on one unseen video sequence of the same category,

namely TV news. The corresponding F1 curve is plotted in Figure 9. One can see that the

F1 curve on the unseen video sequence having fixed δ to 0.98 follows the general trends of the

mean F1 curve determined by leave on out method. All the thresholds used in our method

are independent to frame rates and image resolution.
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Table 2 summarizes the recall and precision measures for cuts, fades, and others gradual

transitions (i.e., dissolves and wipes) using δ = 0.98, β = 0.98, and K = 10. By applying

a similar approach to that used for determining the most suitable values of δ and β, we

found that δf in (29) and εf in (30) used for fade detection, should be chosen 0.999 and 0.97,

respectively. The large majority of transitions were correctly detected.

We compared our results for abrupt cuts to the ones obtained by a technique proposed

in [7]. This approach combines two standard shot boundary detection schemes based on

color frame differences and color vector histogram differences between successive frames.

The method operates in the HLS color space and ignores the luminance information in order

to overcome the possible drawback of histogram sensitivity to shot illumination changes. In

order to detect cuts an adaptive thresholding method was employed. The recall-precision

curve obtained by varying the threshold of the method in [7] is shown in Figure 10. The

results of this algorithm applied to the same video sequences are summarized in Table 3.

The abrupt cut detection rate of this approach is inferior to that of the proposed method

(Table 2). However, the method proposed in [7] fails to detect gradual transitions.

Using only histogram differences of successive frames we are not able to detect the gradual

transitions between the shots, because in this case, the changes are small. Camera and

object motion can introduce a larger variation than a gradual transition. Using SVD and

projecting the histograms to the refined feature space gives us the opportunity to distinguish

between motion and transition and to avoid the false alarms, even without using any motion

information or motion compensation. In our approach, after projecting the histograms to

the reduced feature space, the shots with small camera motion and object movements inside

the shot form a cluster having small dispersion, while the shots with some action inside form

clusters with a large dispersion as can be seen in Figure 11. The transition between two
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shots is shown as a path between the two dense clusters. An example of a dissolve pattern

in the projected space is shown in Figure 2. Therefore, we can easily detect and distinguish

between transitions and shots. Using the fade detection method described in Section 4 we

can successfully detect and distinguish between fades and other types of gradual transitions.

This increases the precision of shot transition detection.

To support that SVD is essential, we have performed the clustering and merging steps

directly on the full length vectors (histograms) of dimensions 4096 × 1. In Figure 12, one

can see that at precision rate 0.80 the recall rate improved by more than 5% when SVD

is used due to its noise reduction capabilities. To calculated SVD for matrix 4096 × 10000

takes 79.53 seconds. In any case, one could limit SVD to a subset of singular values (i.e.

those of interest) and the corresponding singular vectors. The elapsed time for one video

sequence having 50253 frames was 326 seconds for performing SVD and another 15 seconds

to perform the clustering and merging steps. Whereas, clustering and merging directly on

the full length vectors of the same video sequence took 693 seconds. Therefore, SVD speeds

up shot boundary detection two times. Thus, by using SVD, we gain time and obtain a

higher performance than when we process raw color histograms.

The results obtained for abrupt cut detection are within the best three results reported

for TRECVID 2003. The best results obtained by Amir at IBM group were 0.94 and 0.95

for recall and precision, respectively. The corresponding F1 = 0.945. The features used in

the work of Amir are 3D RGB color histograms, 3D localized edges direction histogram,

gray-level thumbnails, average frame luminance, black and monochrome detector. Differ-

ences with a number of previous frames and an adaptive threshold based on the average

value in a 61 frame window are computed. All these features are then fused by a completely

heuristic finite-state machine. Second and third best results were reported by the the Uni-
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versity of Iowa and CLIPS-IMAG. The group from University of Iowa used basic methods

as comparison of adjacent frames based on 512-bin global color histogram, frame color dis-

tance similarity, Sobel filtering, and detected edge differences. Then boolean predicate and

arithmetic product of the basic methods were employed. They obtained 0.89 and 0.98 for

recall and precision, respectively. The corresponding F1 = 0.933. The method of CLIPS

group is based on image differences with motion compensation which uses optical flow as

a pre-process and direct detection of dissolves. It also includes direct detection of camera

flashes. They obtained 0.90 and 0.92 for recall and precision, respectively. The corresponding

F1 = 0.909. The F1 obtained by our method for abrupt cut detection is 0.914. The results

of the groups obtained for the abrupt cuts are summarized in Table 4. An improvement

of the results reported for our method can be obtained by fusing different features, as we

did in [43]. The results for gradual transitions obtained by our method are comparable to

the best results published in the TRECVID 2003 competition [40], which were obtained by

Amir at IBM Research [44]. In the case of gradual transitions, for a recall fixed to 0.84, the

corresponding precision is found to be 0.76 (F1 = 0.798), whereas our method produces a

precision of 0.80 at the same recall rate (F1 = 0.819). The results of the groups obtained

for the gradual transition (including dissolves, fades and wipes) are summarized in Table

5. The results from TRECVID2003 were not overcome in the competition TRECVID2004

where similar video sequence (CNN and ABC news from year 1998) were used. It should be

noted that the TRECVID competition places greater importance on the quality and stability

of the results than the originality and the theoretical foundation of the methods.

We have performed tests on 6 video sequences used in the latest TRECVID 2006 to assess

the performance of the method on the most recent content without further tuning the several

thresholds employed in our method. This test set contains news video sequences from CNN
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and NBC, and contrary to the TRECVID 2003, chinese and arabic news videos are added.

The obtained results for abrupt cuts and the gradual transitions (including fades, dissolves

and wipes) are shown in Table 6. In this Table the 2 best results reported on TRECVID

2006 are also included. One can see that our results are not far behind the best ones.

However, the presented method is sensitive to camera flashes because a matrix con-

structed from the color histograms of frames is used an input matrix for SVD. Color frame

histograms are affected by the flashes and SVD cannot smooth them efficiently. Figure 13

shows a camera flash inside the shot. We can see that the frames after the flash belong to

the same cluster as the ones before. We decided to retain only the frame clusters having

more than 5 frames in order to avoid false positives which appear due to camera flashes. In

the merging phase, these two clusters, which were initially separated by the flash frames, are

merged together since they have similar mean directions.

The proposed method inherits the weaknesses of the histogram-based algorithms. This

fact can induce false transition rejections. In some cases, such missed transitions appear in

commercials containing artistic camera edits. Similarly, consecutive dissolves between shots

of short duration that have a similar color distribution were not detected correctly in our

experiments.

6 Conclusions

A new technique for automated shot transition detection using Singular Value Decomposition

and clustering was presented. The detection technique was tested on TRECVID video

sequences having various types of shots and significant object and camera motion inside the

shots. The experiments demonstrated that, by using the projected feature space we can
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efficiently differentiate between gradual transitions and cuts, pans, object or camera motion,

while most of the methods based on histograms fail to characterize these types of video

transitions. Several variations of the proposed method can be developed. For example the

feature vector can be constructed from different features describing the video context or their

combination. Different clustering method could also be incorporated.
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Table 1: Video sequence used and the respective numbers of frames, abrupt cuts, fade-ins,

fade-outs, and other transitions.

TRECVID2003 video sequences

video frames cuts fade-ins fade-outs other transitions

6 debate videos 125977 230 0 0 0

4 CNN news 209978 1287 57 57 464

4 ABC news 206144 1269 64 69 553

TRECVID2006 video sequences

video frames cuts gradual transitions

6 news videos 225564 1292 664

8 List of figure captions

1. Consecutive frames from “news” video sequence showing: (a) a fade-out, (b) a fade-in

and (c) a dissolve.

2. Projected frame histograms on the subspace defined by the fifth and sixth singular vectors

reveal a dissolve pattern between two shots.

3. Fade detection visualized on the subspace defined by the first and second left singular

vectors.

4. Three-dimensional visualization of video frames obtained after SVD in the subspace

formed by the first three left singular vectors. The inner cone shows the placement of

fades.

5. Recall-precision curves by varying the threshold δ in rule (11) on TRECVID 2003 video
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Table 2: Shot detection results using the method described in Sections 3-4.

TRECVID2003 video sequences

video cuts fades other transitions

Recall Precision Recall Precision Recall Precision

6 debate videos 1.00 1.00 - - - -

4 CNN news 0.89 0.93 0.86 0.89 0.86 0.76

4 ABC news 0.86 0.93 0.94 0.97 0.79 0.77

TRECVID2003 total 0.89 0.94 0.90 0.93 0.82 0.77

Table 3: Shot detection results obtained for abrupt cuts using the method presented in [7].

Histogram based method

video Recall Precision

6 debate videos 1.00 1.00

4 CNN news 0.87 0.83

4 ABC news 0.85 0.81

TRECVID2003 total 0.87 0.83

Table 4: Shot detection results obtained for abrupt cuts reported in TRECVID 2003.

Abrupt cut detection in TRECVID2003

Group Recall Precision F1

IBM 0.94 0.95 0.945

Univ. of Iowa 0.89 0.98 0.933

AUTH 0.89 0.94 0.914

CLIPS 0.90 0.92 0.909
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Table 5: Shot detection results obtained for gradual transitions reported in TRECVID 2003

for recall fixed to 0.84.

Gradual transition detection in TRECVID2003

Group Recall Precision F1

IBM 0.84 0.76 0.798

AUTH 0.84 0.80 0.819

Table 6: Shot detection results using the method described in Sections 3-4 compared to the

results reported in TRECVID 2006.

TRECVID2006 video sequences

video cuts gradual transitions

Recall Precision F1 Recall Precision F1

AUTH 0.91 0.83 0.868 0.80 0.77 0.785

AT&T Labs 0.86 0.92 0.889 0.77 0.85 0.808

Tsinghua University 0.87 0.93 0.899 0.75 0.81 0.778
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test set, when the projected frame histograms are clustered by applying the procedure

of Section 3.2 and the resulting clusters are merged by either the ad hoc procedure of

Section 3.3 alone or the sequential application of the ad hoc procedure of Section 3.3

and the statistical tests of Section 3.4. Running δ values are shown overlaid.

6. F1 measure obtained for varying δ in rule (11) on TRECVID 2003 video test set.

7. Recall-precision curves by varying the threshold β in range [0.962, 0.998] for several

δ ∈ {0.993, 0.99, 0.98, 0.97} on TRECVID 2003 video test set.

8. F1 measure related to the recall-precision curves in Fig.7 by varying the threshold β in

(15).

9. Mean F1 curve for the leave-one-out method with ± one standard deviation intervals

obtained from 6 video sequences by varying threshold β in (15) in range [0.971, 0.999]

and fixed δ = 0.98; The F1 curve for one unseen video sequence of the same category -

TV news is also plotted overlaid.

10. Recall-precision graph by varying the threshold used in [7] in the range [2.2, 2.7] for

detecting cuts on TRECVID 2003 video test set.

11. Projected frame histograms onto the subspace defined by the fifth and sixth left singular

vectors reveal the intra-shot dispersion due to motion.

12. Recall-precision curve obtained for δ = 0.98 and varying β in range [0.998, 0.96] by

applying the SVD and the clustering and merging steps and 2 recall-precision curves

obtained by applying the clustering and merging steps directly on the histograms of di-

mensionality 4096 for δ ∈ {0.96, 0.98} and β varying in range [0.7, 0.98] on TRECVID

2003 video test set.
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13. Projected frame histograms onto the subspace defined by the fifth and sixth left singular

vectors reveal a flash pattern within a shot.
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