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Abstract

Independent Component Analysis (ICA) and Gabor wavelets extract the most discriminating features

for facial action unit classification by employing either a cosine similarity measure (CSM) classifier or sup-

port vector machines (SVMs). So far, only the ICA approach, which is based on the InfoMax principle, has

been tested for facial expression recognition. In this paper, in addition to the InfoMax approach, another

five ICA approaches extract features from two facial expression databases. In particular, the Extended

InfoMax ICA, the undercomplete ICA, and the nonlinear kernel-ICA approaches are exploited for facial

expression representation for the first time. When applied to images, ICA treats the images as being

mixtures of independent sources and decomposes them into an independent basis and the correspond-

ing mixture coefficients. Two architectures for representing the images can be employed yielding either

independent and sparse basis images or independent and sparse distributions of image representation co-

efficients. After feature extraction, facial expression classification is performed with the help of either a

CSM classifier or an SVM classifier. A detailed comparative study is made with respect to the accuracy of-

fered by each classifier. The correlation between the accuracy and the mutual information of independent

components or the kurtosis is evaluated. Statistically significant correlations between the aforementioned

quantities are identified. Several issues are addressed in the paper: (i) whether features having super-

and sub-Gaussian distribution facilitate facial expression classification; (ii) whether a nonlinear mixture

of independent sources improves the classification accuracy; and (iii) whether an increased “amount” of

sparseness yields more accurate facial expression recognition. In addition, performance enhancements by

employing leave-one-set of expressions-out and subspace selection are studied. Statistically significant

differences in accuracy between classifiers using several feature extraction methods are also indicated.

Keywords

Independent component analysis (ICA), super-Gaussian distribution, sub-Gaussian distribution, non-

linear mixtures of independent sources, cosine similarity measure classifier, support vector machine clas-

sifier, facial expression recognition, mutual information, kurtosis, correlation, statistical significance.

I. Introduction

Human facial expression analysis has captured an increasing attention from psycholo-

gists, anthropologists, and computer scientists [1]. Surveys on automatic facial expression

analysis can be found in [2,3,4]. Generally speaking, facial expression recognition methods

can be classified into appearance-based methods and geometry-based ones. In the first cat-

egory, fiducial points of the face are selected either manually [5] or automatically [6]. The

facial images are convolved with Gabor filters and the extracted Gabor filter responses at
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the fiducial points form vectors that are further used for facial expression classification. Al-

ternatively, Gabor filters can be applied to the entire facial image instead of specific facial

regions. Regarding the geometry-based methods, the coordinates of the fiducial points

form a feature vector that represents facial geometry. Although the appearance-based

methods yield a reasonable facial expression recognition accuracy, the highest recognition

rate has been obtained when both the responses of Gabor wavelets and the coordinates

of fiducial points are combined [5,7,8]. The analysis can be performed either on still im-

ages [5] or image sequences, where temporal information is considered [9]. Gabor and

Independent Component Analysis (ICA) representations were used for the recognition of

6 single upper facial action units (AUs) and 6 lower face AUs in [10]. The AUs correspond

roughly to the movement of the individual 44 facial muscles. The best recognition rates

were achieved by both Gabor wavelets and ICA representations [10]. The local properties

of ICA representation were found to be important for identity recognition [11]. Identity

and facial expression recognition performance were also investigated by directly comparing

ICA versus Principal Component Analysis (PCA) in [12], where it was found that ICA

outperformed PCA. On the contrary, insignificant performance differences between ICA

and PCA were reported on the same database in [13]. Guo and Dyer addressed facial

expression classification, when a small number of training samples was only available [14].

In particular, a new linear programming-based technique was developed for both feature

extraction and classification and a pairwise framework for feature selection was designed

instead of considering all classes simultaneously. Gabor filters were used to extract fa-

cial features and large margin classifiers such as support vector machines (SVMs) and

AdaBoost were employed for facial expression classification. Susskind et al. studied the

nature of emotional space [1], where evidence is presented justifying that emotion cate-

gories are not entirely discrete and independent, but they vary along underlying continuous

dimensions.

The facial expression recognition accuracy reported by Donato et al. in [10] was ob-

tained by applying the InfoMax approach [15]. Taking this ICA approach as baseline for

feature extraction, five additional ICA approaches, namely, the extended-InfoMax [16],

the Joint Approximate Diagonalization of Eigen-matrices (JADE) [17], the fastICA [18] ,
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the undercomplete ICA (uICA) [19], and the nonlinear kernel-ICA [20] are investigated in

this paper. By employing the aforementioned ICA approaches, we extend Donato’s work.

Additional issues are addressed, such as whether sub-Gaussian facial feature extraction

through the extended-InfoMax facilitates facial expression classification; whether a nonlin-

ear mixture of independent components through the nonlinear kernel-ICA influences the

classification accuracy. Moreover, we assess the effect of sparseness on the classification

accuracy. It is worth mentioning that the results reported in [10] refer to the recognition

of facial actions derived from the Facial Action Coding System (FACS), while, in this

paper, we are interested in the classification of facial expressions that are combinations

of facial action units. Each ICA approach has its own advantages over the others. For

example, the original InfoMax approach [15] is not able to recover signals having a sub-

Gaussian distribution. To alleviate this deficiency, the Extended InfoMax approach has

been developed that can extract the sub-Gaussian sources [16]. The strength of each ICA

approach is investigated with respect to the facial expression classification accuracy, when

the extracted features feed either a CSM classifier or an SVM.

The rest of the paper is organized as follows. ICA is viewed as a feature extraction

method in Section II. Section III briefly summarizes each ICA approach investigated

in the paper and the rationale for its use in feature extraction within the framework of

facial expression recognition. Section IV describes two ICA architectures for feature ex-

traction. The facial expression image databases used in the experiments are introduced in

Section V. Section VI presents two classifiers applied to the feature vectors obtained by

ICA for facial expression classification. Experimental results are reported in Section VII,

where issues such as independent basis images or independent coefficients, their mutual

information, their sparseness, and how these characteristics are correlated with the clas-

sification accuracy are addressed. In addition, performance enhancements by employing

leave-one-set of expressions-out and subspace selection are studied. Statistically signifi-

cant differences in accuracy between classifiers using several feature extraction methods

are also indicated. Finally, conclusions are drawn in Section VIII.
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II. ICA as a feature extraction method

In pattern classification, feature extraction represents an important processing step,

because one looks for features that incorporate sufficient class information and possess

reliable discriminating power in order to obtain a satisfactory classification accuracy. Fre-

quently, dimensionality reduction is performed as a first step, aiming at removing any

redundant information, whilst preserving the information which contributes more to the

classification accuracy. One of the most popular techniques for dimensionality reduction is

PCA. This technique is based on second-order statistics of the data and performs dimen-

sionality reduction by retaining components that correspond to the largest eigenvalues of

the covariance matrix, while discarding components that have insignificant contribution

to the trace of the covariance matrix. In principle, PCA yields uncorrelated components.

When the data have a Gaussian distribution, the uncorrelated components are indepen-

dent as well. However, if the data are mixtures of non-Gaussian components, PCA fails

to extract components having a non-Gaussian distribution. On the contrary, ICA takes

into account the higher-order statistics of the data in an attempt to recover non-Gaussian

components. For completeness, we mention that under certain conditions, non-Gaussian

components could be recovered by applying Exploratory Projection Pursuit (EPP) [21] as

well.

From a statistical point of view, the least interesting structure is the Gaussian one. In

one dimension, two moments, the mean and the variance, completely define the probability

density function (pdf). Moreover, the Gaussian distribution has the highest entropy among

all distributions with a given covariance matrix [22]. Taking the Gaussian distribution as

a reference, any quantity that measures the level of ‘interestingness’ of the data, is a

quantity that measures the non-Gaussian structure of the data. A principled measure

of nongaussianity is the negentropy. The negentropy of a standardized random variable

(i.e. one that has zero-mean and unit variance) can be approximated by the third-order

moment and the fourth-order cumulant (i.e. the kurtosis) in a computationally simple

manner. Therefore, we need moments and cumulants of order higher than 2 to capture

the non-Gaussian structure of data [22]. Seeking non-Gaussian components is related

to looking for statistical independence [22]. A measure of non-Gaussianity of a random
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variable (RV) s is its normalized kurtosis estimated as:

kurt(s) =

∑
i(si − s)4[∑
i(si − s)2

]2 − 3 (1)

where si are observations of s and s denotes the sample mean of s. The normalized kurtosis

of a Gaussian RV is zero. Super-Gaussian RVs have a positive kurtosis. A typical super-

Gaussian RV is the Laplacian one. Sub-Gaussian RVs have a negative kurtosis with a

typical example being a uniform RV in the interval [−α, α] ∈ R.

ICA can be formulated by considering the following statistical model:

x = A s (2)

where s = (s1, s2, . . . , sn)T is a latent random vector with independent components that

are combined via a p × n mixing matrix A to form a zero-mean observation vector x =

(x1, x2, . . . , xp)
T . ICA estimates a demixing matrix W of dimensions n×p that will recover

the original components of s as:

u = W x = W A s (3)

where u = [u1, u2, . . . , ui, . . . , un] is an estimate of s. Given a batch of m observation data

xj, j = 1, . . . , m we can form X whose columns are xj. Then (3) becomes:

U = W X = W A S (4)

where X and U are p×m and n×m matrices, respectively. Usually, we call the columns of

U (and implicitly the columns of S) independent sources. The columns of X are measure-

ments from a number of sensors that capture the sources. Usually, the number of observed

components is equal to the number of independent components (p = n). There are ICA

methods that cope with cases p < n or p > n, called overcomplete or undercomplete ICA,

respectively. Basically, the ICA algorithms attempt to obtain an estimate of W by using

an objective (contrast) function that must be maximized or minimized, depending on the

formulation.

III. ICA approaches

Let p = n. The InfoMax approach performs ICA based on the information maximization

approach proposed by Bell and Sejnowski [15]. This approach relies on the maximization
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of the entropy of the joint distribution f(u). The demixing matrix W is updated through

an iterative process. At iteration k + 1, W is updated according to:

Wk+1 = Wk + η[I + (1− 2zk) uT
k ] Wk, (5)

where η is the learning rate controlling the convergence speed of (5), 1 is a n × 1 vector

of ones, I is the n× n identity matrix, and z is a n× 1 vector having elements:

zi = g(ui) i = 1, . . . , n (6)

with g(.) being a component-wise nonlinearity applied to all elements of the demixer

output u, at each iteration k. The form of the nonlinearity must be chosen to match

the cumulative distribution function of the input. In the InfoMax algorithm [15], this

non-linearity is approximated by the logistic transfer function:

g(ui) = 1/(1 + e−ui) i = 1, . . . , n. (7)

The just described approximation works well when it comes to recover super-Gaussian

components, but fails to extract the components having a sub-Gaussian distribution if such

components exist in the mixture of non-Gaussians. To remedy this drawback, Lee et al.

have extended the InfoMax approach to the Extended InfoMax approach by employing a

new learning rule that is able to separate both sub- and super-Gaussian distributions [16].

The learning rule, that is able to switch between these distributions, iteratively updates

the demixing matrix as follows:

Wk+1 = Wk + η[I−Ξ tanh(uk)u
T
k − uku

T
k ]Wk, (8)

where Ξ is an n × n diagonal matrix whose ii-th element, ξii, takes the value 1 for a

super-Gaussian source and the value -1 for a sub-Gaussian one, and tanh() denotes the

hyperbolic tangent function that is applied to the elements of uk in a component-wise

fashion. The adaptation of ξii is given by:

ξii = sign(E{sech2(uki)}E{u2
ki} − E{[tanh(uki)]uki}), (9)

where i = 1, . . . , n, uki is the i-th element of uk, and sign() and sech() denote the sign and

hyperbolic secant functions, respectively.
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Another approach for separating sources, the so called Joint Approximate Diagonaliza-

tion of Eigen-matrices (JADE) was proposed by Cardoso and Souloumiac [17]. The main

advantage of JADE is the fact that it does not employ any learning step. Its drawback

is the relatively small number of components that can be extracted making it inadequate

for a large number of mixture components.

The fourth approach is fastICA developed by Hyvarinen [18], which maximizes negen-

tropy. The fastICA steps for estimating several independent components with deflationary

orthogonalization are the following [22]:

1. Center the data to zero their mean.

2. Choose the number n of independent components to be estimated. Set p = 1. Whiten

the data to obtain z = Vx = VAs.

3. Choose randomly an initial vector of unit norm for wp.

4. Let ŵp,k+1 = E{zkg(wT
p,kzk)} −E{g′

(wT
p,kzk)}wp,k, where g(ξ) = (1/a)log (cosh(aξ)) is

the contrast function and its derivative is given by g
′
(ξ) = tanh(aξ).

5. Do the following orthogonalization w̃p,k+1 = ŵp,k+1 −
∑p−1

j=1(ŵ
T
p,k+1wj)wj.

6. Let wp,k+1 =
w̃p,k+1

‖w̃p,k+1‖ .

7. If wp has not converged, go back to step 4.

8. Set p←− p + 1. If p ≤ n, go back to step 3.

A major advantage of fastICA is its speed, making it even 100 times faster than the

previously described approaches.

For all ICA approaches described so far, it has been assumed that the number of compo-

nents equals the number of sensors. If the number of sources is very large, the application

of ICA is limited by memory constraints. Therefore, the preprocessing PCA step is not

only intended to decorrelate the data, but also to lower their dimension. By keeping only

l < p appropriately chosen dimensions the demixing matrix W becomes of size l×l. When

discarding the (p − l) dimensional subspace with the smallest variance, there is a risk to

throw away the independent components (ICs) that might be contained in this subspace,

since there is no guarantee that ICs exist only in the l dimensional subspace defined by

the principal components (PCs) with the largest eigenvalues. For instance, an IC with a

very small variance was found to be associated with the form of the “on-off” experimental
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protocol when analyzing fMRI data [23]. To address the weakness of the previously de-

scribed ICA approaches, Stone and Porrill have developed the undercomplete Independent

Component Analysis (uICA) for preserving the information that might be lost during PCA

and established the following contrast function for maximizing the entropy [19]:

h(W) =
1

2
log|WDxW

T |+ E

{ n∑
i=1

log

(
∂zi

∂ui

)}
, (10)

allowing to have a non-square n × p demixing matrix without applying PCA for data

dimensionality reduction. Dx is the sample covariance matrix of the input data x. If

zi = g(ui) = tanh(ui), (10) can be maximized using, for example, the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) quasi-Newton method. The derivative of (10) is given by:

∂h

∂W
= W#T − 2E{uxT}, (11)

where W# = (DxW
T )(WDxW

T )−1 is the pseudoinverse of W with respect to the positive

definite sample covariance matrix Dx. However, when considering the whitened data,

the covariance matrix equals the identity matrix, simplifying the first term of (10) to

1
2
log|WWT | and W# to WT (WWT )−1.

All the aforementioned approaches treat the mixture X of independent components

S as a linear one. It may happen to have components that are mixed through nonlinear

functions. A kernel Hilbert space is used by Bach and Jordan to come up with the so called

kernel-ICA approach in order to extract such nonlinearly mixed sources [20]. Two contrast

functions that rely on canonical correlations in this reproducing space have been defined

namely the kernel ICA-KCCA (where KCCA stands for Kernel Canonical Correlation

Analysis) and the ICA-KGV (where KGV stands for Kernel Generalized Variance). Kernel

ICA-KCCA minimizes the first kernel canonical correlation that depends on the data xj,

j = 1, . . . , m only through the centered Gram matrices for l ICs. Kernel ICA-KGV

minimizes the kernel generalized variance. The interested reader may consult [20] for

more details.

IV. Two architectures for performing ICA on facial expression images

Donato suggests that ICA features contain suitable and powerful discriminative infor-

mation for classifying facial action units [10]. Facial expressions are combinations of such
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facial action units. Hence, ICA features may also be suitable for facial expression clas-

sification. In this paper, ICA is applied to facial images for feature extraction towards

facial expression classification. We have m images containing human facial expressions,

each image being of size r × c pixels, vectorized into a p = rc-dimensional vector by lex-

icographic ordering. ICA can be applied to facial images for expression classification in

two ways known as Architectures I and II, respectively [24].

A. Architecture I

The observation matrix X is formed by treating the facial images as row vectors. Thus

X is an m× p matrix. By doing so, ICA recovers m independent images.

First, PCA is applied. Let Dx be the covariance matrix of the original images, Dx =

1
m
X̃T X̃ = PΛPT , where X̃T = [x1 − ψ| . . . |xm − ψ] with ψ = 1

m

∑m
k=1 xk. Let us

choose l < p eigenvectors of Dx (those with the largest eigenvalues) and form Pl ∈ R
p×l

whose columns are the eigenvectors. Each training face image xk can be projected to the

eigenvectors (called here eigenfaces) and be represented by yk = PT
l (xk − ψ). Let us

construct YT = [y1| . . . |ym]. Then Y = X̃Pl. The original images can be reconstructed

as linear combinations of the basis images Pl as XrecPCA = YPT
l . In the following, we

assume that ψ = 0 and accordingly X̃ = X.

Next, ICA is applied to PT
l . A number of l ICs can be recovered into the rows of basis

U:

U = WPT
l . (12)

Hence, we have PT
l = W−1U, provided that W is invertible and the ICA reconstruction

of X is given by the approximation:

XrecICA = YPT
l = Y(W−1U) = (XPlW

−1)U. (13)

The rows of B = XPlW
−1 contain the ICA coefficients of the linear combination of

rows (basis vectors) in U, where the training images are represented by the matrix X.

The rows of B are used further for classification. The ICA coefficients of a zero-mean test

image xtest are obtained as:

bT
test = xT

testPlW
−1. (14)
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To perform classification based on distances or angles between bT
test given by (14) and

the rows of B, the basis vectors should be orthonormal. Accordingly, U should be a row

orthonormal matrix (i.e. UUT = I) or equivalently WWT = I. This implies that W is

a rotation matrix. An ICA approach that returns a rotation matrix for W is fastICA.

Accordingly, the ICA coefficients (14) do not offer more information than those derived

by PCA coefficients for the aforementioned classifiers as it was also pointed out in [25].

To address this point, we perform ICA subspace selection. If U is not orthonormal, then

it should undergo a Gram-Schmidt orthogonalization (i.e. a QR decomposition) before

classification that is based on distances or angles.

B. Architecture II

Now consider XT . In this case, the pixels are assumed to be independent [24]. The

columns of X are linear combinations of basis vectors obtained from the columns of matrix

W. In Architecture II, ICA is performed on the projected data YT = PT
l XT . Therefore,

the basis images obtained by performing PCA and ICA can be represented as PlW
−1 and

the coefficients needed for ICA reconstruction are expressed by the columns of U = WYT .

The reconstructed images are:

XT
recICA = (PlW

−1)(WYT ). (15)

A zero-mean test image is represented as:

utest = WPT
l xtest. (16)

To perform classification based on distances or angles between utest given by (16) and the

columns of U, the basis images should be orthonormal. This implies that W should be

an orthonormal matrix, i.e. WTW = I. In such a case, the ICA coefficients (16) do not

offer any additional information than the coefficients derived by PCA in this case as well.

V. Data description

The experiments have been performed using two databases of facial expression images.

The first database has been derived from the Cohn-Kanade (C-K) AU-coded facial ex-

pression database [26] that contains single or combined action units. Facial action units

August 18, 2008 DRAFT



12

anger disgust fear happiness sadness surprise neutral

Fig. 1. An example of one expresser from the JAFFE database posing 7 facial expressions (first row) and

another one from the Cohn-Kanade database posing 6 facial expressions (second row).

have been converted to emotions according to [27]. Thirteen persons (expressers) who

are able to express the six basic emotions create the database. Each subject from C-K

database delivers an expression over time starting from a neutral pose and ending with

a very intense expression, thus having several frames with different expression intensities.

We picked up three poses with low (close to neutral), medium, and high (close to the max-

imum) intensity of facial expression, respectively. By doing so, the statistical variability

of facial emotions is roughly captured. Therefore, the total number of images is 234 in

the first database. The second database contains 213 images of Japanese female facial

expressions (JAFFE) [28]. Ten expressers produced 3 or 4 examples for each of the 6 basic

facial expressions (anger, disgust, fear, happiness, sadness, surprise) plus a neutral pose,

thus producing a total of 213 images of facial expressions. Let us enumerate the 7 facial

expressions in JAFEE by j = 1, . . . , 7. In the case of the C-K database, we have only 6

expressions, therefore the enumeration ends at 6. Table I summarizes the details for the

two databases.

Each raw image x has been manually aligned with respect to the upper left face corner.

The registration was performed by clicking the eyes - thus retrieving the eyes coordinates,

followed by rotating the image to horizontally align the face according to eyes, cropping

the face to remove the image borders and, finally, downsampling the image to a final size of

60 × 45 pixels for computational purposes. Figure 1 presents samples of facial expressions

of one person from the JAFFE database posing 7 facial expressions and another person

from the C-K database posing 6 facial expressions.
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TABLE I

Details of the two databases.

Details C-K database JAFFE database

Expressers 13 10

Emotions 6 7

Instances per emotion 3 2,3 or 4

Total number of facial images 234 213

Number of training images 164 150

Number of test images 70 63

VI. Classifiers

In the experiments, two different classifiers are employed. We used the Cosine Similarity

Measure (CSM) classifier, since such a classifier was reported to yield a good classification

performance [10]. The classification method is based on the nearest neighbor rule and

uses the angle between a test vector btest and the facial expression class center bj as a

similarity measure:

dj =
bT

testbj

‖btest‖‖bj‖ j = 1, . . . , Ne, (17)

where Ne = 7 for JAFFE (Ne = 6 for C-K database) and chooses the class that corresponds

to the maximal cosine similarity

arg maxj=1,...,Ne
{dj}. (18)

In the case of Architecture II, b is replaced by u. From (17) it is seen that CSM is an

1-nearest neighbor classifier for normalized feature vectors.

SVMs [29] were employed for facial expression recognition, too. The sequential minimal

optimization technique developed by Platt [30] was used to train SVMs having b and

u as input, respectively. Since classical SVM theory was intended to solve a two class

classification problem, we chose the Decision Directed Acyclic Graph (DDAG) learning

architecture proposed by Platt et al. to cope with the multi-class classification [31]. It is

worth noting that CSM and SVMs are the most popular classifiers for facial expression

recognition, as they have been extensively used in [9], [10], [12].

August 18, 2008 DRAFT



14

The classifier accuracy, defined as the percentage of the correctly classified test images,

is used to assess the performance of the facial expression recognition systems that em-

ploy the six ICA approaches in order to extract features, which subsequently feed the

aforementioned classifiers.

VII. ICA assessment

The six ICA approaches were applied to create feature vectors bj,btest or uj,utest. We

split the data into disjoint training and test sets. We used 164 and 150 images for training

and we left out 70 and 63 images for testing in the C-K and JAFFE database, respectively.

Both training and test set images were chosen randomly from the database. However, we

ensured that both training and test data sets contain samples from all expressers and

expressions. In the case of SVMs, five kernels were used namely the linear kernel, the

polynomial kernel of degree 2,3, and 4, and the radial basis function (RBF). For all SVMs

the penalizing parameter was set to 10 and the width of RBF kernel was set to 0.005.

Among the five kernels only the two kernels, which yield the highest accuracy, are retained.

However, for the JAFFE database and Architecture II, three kernels are retained, because

the linear kernel has performed equally well to the polynomial kernel of degree 3.

The first objective is to find which ICA image representation performs best with respect

to the classifier accuracy. Experiments were conducted by varying the number of principal

components (PCs) from 5 to 160 (for the C-K database) and from 5 to 145 (for the JAFFE

database) accounting from 24% to 99.8% of the trace of the covariance matrix. Due to

the limited memory capacity and the algorithmic complexity, we were able to extract up

to a maximum of 80 components in the JADE and the kernel-ICA approaches.

In order to see if the accuracy differences are statistically significant, we apply the

approximate analysis described in [32]. We have examined if accuracy differences are sta-

tistically significant for pairs of the same classifier fed by features extracted by two different

ICA approaches as well as for pairs of different classifiers fed by the best performing ICA

approaches. The analysis is repeated for each database and architecture. Let us assume

that the accuracies p1 and p2 are binomially distributed random variables. Let p̂1, p̂2 de-

note the empirical accuracies, and p = p̂1+p̂2

2
. The hypothesis H0 : p1 = p2 = p is tested at

95% level of significance. The accuracy difference has variance β = var(p1−p2) = 2p(1−p)
N

,
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where N is the number of test facial expression images. If

p̂1 − p̂2 ≥ 1.65
√

β (19)

we reject H0 with risk 5% of being wrong. Then, we may claim that the accuracy difference

is statistically significant at 95% level of significance.

The second issue investigated in the paper is related to the variation of recognition accu-

racy with respect to the mutual information of the basis images or their coefficients. The

statistical dependencies of facial expression representations were measured by computing

the average mutual information between pairs of basis images that yield the maximum

recognition accuracy. The mutual information of two RVs u1, u2 is given by:

I(u1, u2) = H (u1) + H (u2)− H (u1, u2) (20)

where H(u) is the differential entropy of the RV u [24]. The average mutual information

calculated over all possible pairs of basis images is a good measure of the independence of

basis images.

The nature of independent components (ICs) and the influence of discarded PCs in the

recognition accuracy are investigated as well. The super- and sub-Gaussian nature of basis

images was tested by measuring their normalized kurtosis (1). Furthermore, non-linear

mixtures of independent components were also investigated.

To obtain a better quantitative insight on how well the accuracy is correlated to the mu-

tual information and the kurtosis over the number of PCs, we have computed the correla-

tion coefficient and the corresponding p-value. Mutual information, kurtosis, and accuracy

were computed for various numbers of components from the set {5, 10, 20, 30, 40, 50, 60, 70,

80, 90, 100, 110, 120, 130, 140, 150, 160} for the C-K database and {5, 10, 20, 30, 40, 50, 60,

70, 80, 90, 100, 110, 120, 130, 140} for the JAFFE database. Accordingly, we have 17 (15)

values of the aforementioned quantities (mutual information, kurtosis, accuracy) for vary-

ing numbers of components that are stored in three 17(15)-dimensional vectors. The

correlation was then calculated between the elements of the vector comprising the mutual

information values and the vector comprising the accuracy values as well as between the

vector having as elements the kurtosis values and the vector of accuracies.
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A. Cohn-Kanade database

A.1 Architecture I

The experimental results are presented in Table II. The number of PCs varies between

5 and 160 and admits the values in the set {5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120,

130, 140, 150, 160}. For each number of PCs, features were extracted by the several ICA

approaches and the classifier accuracy is measured over the test facial expression images.

The highest accuracy obtained along with the corresponding number of PCs are listed

in columns numbered by “1” and “2”. For both the CSM classifier and the SVM with a

polynomial kernel of degree 3, a small number of PCs yields a close to the best classification

accuracy. The classification accuracy obtained by the CSM classifier, when it employs

features extracted by the InfoMax, the JADE, the fastICA, and the kernel-ICA was found

to be identical. A decrease of approximately 3 % in accuracy was found, when features

extracted by the Extended InfoMax and the uICA. Overall, the best recognition accuracy

was 82.9 % and was obtained by the linear SVM with fastICA, when 110 PCs were used.

While such a large number of PCs is needed for the linear SVM in order to achieve the

highest accuracy, 30 PCs are adequate for the SVM with a polynomial kernel of degree 3 in

order to attain an accuracy of 81.43 %, which is reasonable compromise between accuracy

and dimensionality reduction. In Table II, the highest accuracy appears in bold.

For each classifier, the accuracy differences due to different ICA approaches are not

statistically significant at 95 % level of significance. The accuracy differences between the

several pairs of classifiers that employ the best performing ICA approaches, such as (CSM

& fastICA, SVM linear & fastICA), (SVM linear & fastICA, SVM cubic & extended ICA)

etc., are not statistically significant at 95 % level of significance as well.

One merit of ICA is that it produces independent and sparse basis images or coefficients

depending on the architecture employed. For Architecture I, the basis images are expected

to be independent and sparse. Their independence is measured by the average mutual

information listed in the third column of Table II.

The presence of a super- or a sub-Gaussian distribution in the basis images is tested

in columns “4” and “5” of Table II. These columns show the average positive and

negative kurtosis of the basis images indicating a super-Gaussian and a sub-Gaussian
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TABLE II

Experimental results for the C-K database and Architecture I. The columns numbered

from 1 to 9 represent: 1) classification accuracy (%), 2) Number of PCs, 3) average

basis image mutual information, 4) and 5) normalized average positive and negative

kurtosis of the basis images, 6) and 7) correlation coefficient between the

classification accuracy and the mutual information with its corresponding p-value, 8)

and 9) correlation coefficient between the classification accuracy and the positive

kurtosis with its corresponding p-value.

Classifier Approach 1 (%) 2 3 4 5 6 7 8 9

InfoMax 74.3 10 0.0758 4.1 NA -0.03 0.91 0.01 0.95

Extended InfoMax 71.4 10 0.0794 3.4 -0.8 -0.44 0.14 0.42 0.16

JADE 74.3 30 0.0332 14.1 NA -0.44 0.22 0.27 0.47

CSM fastICA 74.3 30 0.0341 13.8 -0.5 -0.44 0.14 0.36 0.24

uICA 71.4 50 0.0082 32.9 -0.7 -0.31 0.38 0.27 0.31

kernel-ICA 74.3 30 0.0628 1.38 NA -0.55 0.12 0.82 0.006

InfoMax 80 110 0.0013 34.8 NA -0.97 0 0.84 0.0006

Extended InfoMax 81.4 130 0.0014 46.3 -1.5 -0.98 0 0.80 0.0001

JADE 78.6 70 0.0067 27.6 NA -0.99 0 0.92 0.0003

SVM fastICA 82.9 110 0.0023 49.9 0 -0.97 0 0.78 0.0002

linear uICA 82.7 140 0.0318 1.2 NA -0.78 0.0002 0.68 0.002

kernel-ICA 78.6 70 0.0440 1.4 NA -0.80 0.007 0.67 0.012

InfoMax 80 20 0.0480 8.4 NA -0.56 0.053 0.34 0.27

Extended InfoMax 81.4 30 0.0353 13.6 -0.9 -0.63 0.026 0.40 0.19

SVM JADE 80 20 0.0505 9.2 NA -0.60 0.020 0.56 0.28

polynomial fastICA 80 20 0.0480 8.6 -0.7 -0.47 0.12 0.26 0.39

(q = 3) uICA 78.3 100 0.0430 1.0 NA -0.49 0.10 0.38 0.21

kernel-ICA 80 20 0.0743 1.1 NA -0.50 0.28 0.52 0.30
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distribution, respectively, and constitute a measure of sparseness of the basis images.

“NA” in the column “5” stands for “Not Available”, i.e. when a sub-Gaussian distribution

of basis images is not detected. The average negative kurtosis listed in column “5” shows

that the presence of sub-Gaussian components does not necessarily enhance the classifier

performance.

Ten basis images extracted from the C-K database during training with each method in

the case of Architecture I are depicted in Figure 2. As one can notice from Figure 2, the

Fig. 2. First ten basis images for Architecture I obtained by InfoMax (1st row), Extended InfoMax (2nd

row), JADE (3rd row), fastICA (4th row), undercomplete ICA (5th row), and kernel-ICA (6th row).

The images are depicted in decreasing order of normalized kurtosis.

basis images for JADE, fastICA, and uICA are more sparse than the basis images derived

by the remaining methods.

Columns “6” and “7” in Table II record the correlation coefficient between the accu-

racy and the average mutual information over all possible pairs of basis images extracted

for each number of PCs (mutual information for short, hereafter) and the corresponding

p-value. The last two columns list the correlation coefficient between the classification

accuracy and the average positive kurtosis of the basis images (positive kurtosis for short,
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hereafter). The strongest correlation between accuracy and mutual information was found

for the linear SVM. The minus sign achieved for all classifiers indicates a negative cor-

relation, meaning that a decrease in mutual information (hence greater independence)

correlates with an increase of the classifier accuracy. The correlation is weak in the case

of the CSM classifier and the SVM with a polynomial kernel of degree 3. Indeed, for the

CSM classifier, the p-value exceeds 0.05, a fact that indicates that the correlation coeffi-

cient is not statistically significant. For the SVM with a polynomial kernel of degree 3, the

Extended InfoMax and the JADE exhibit a correlation coefficient between accuracy and

mutual information that is statistically significant. A similar behavior was observed for

the correlation between the basis image sparseness and accuracy. For an SVM with a lin-

ear kernel, a strong statistically significant correlation between accuracy and the positive

kurtosis values is found.

The uICA was used in order to avoid discarding PCs having a small variance, but might

contain ICs. The uICA was not able to improve the accuracy by processing the original

image data. On the contrary, for the CSM classifier and the SVM with a polynomial

kernel of degree 3, applying PCA for input dimensionality reduction is found to be a good

practice, since it yields a high accuracy for a small number of PCs.

The linear SVM is the only classifier for which the details count, since a large number of

PCs is needed in order to obtain the highest accuracy. However, this is due to the linear

separating hyperplane which performs best in high-dimensional spaces.

To assess the descriptive power of nonlinear IC mixtures, Kernel-ICA is applied. It is

observed that the nonlinear ICA does not enhance the classification accuracy.

The classification accuracy reported in Table II has been averaged over all test facial

expression instances. To obtain a better insight into the performance of the linear SVM,

which employs fastICA for feature extraction in the C-K database, we have computed the

confusion matrix during testing shown in Table III. The rows of the confusion matrix

refer to the actual (correct or ground truth) expression labels and its columns refer to the

predicted expression labels by the classifier. Its diagonal entries correspond to the number

of facial expressions correctly classified, while its off-diagonal entries record the numbers

of misclassified test facial expression instances. It is seen that more errors are committed
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when angry and sad facial expressions are processed. This result is not surprising as the

two expressions look similar and can be easily confused by humans too. We must note

that, having the confusion matrix at disposal, a multiclass ROC analysis might be derived

[33].

TABLE III

Confusion matrix for the test images from C-K database, when a linear SVM in

Arcitecture I with fastICA is employed.

anger disgust fear happiness sadness surprise

anger 5 0 0 0 3 0

disgust 2 10 1 0 0 0

fear 1 0 10 0 0 0

happiness 1 0 1 15 0 0

sadness 2 0 0 0 8 0

surprise 0 0 0 0 1 10

A.2 Architecture II

The experimental findings are summarized in Table IV. All ICA approaches with the

CSM classifier yield the same accuracy (72.9%), as one can see from column “1”. The

best accuracy (80%) was obtained by the SVM with an RBF kernel that employs features

extracted by the Extended InfoMax. However, the accuracy difference between 80% and

72.9% is not statistically significant for 95% level of significance. Moreover, the pairwise

performance differences within each classifier due to different ICA approaches are not

statistically significant at the same level of significance. This is also valid for all pairs of

classifiers that employ the ICA approach yielding the highest accuracy.

The second architecture derives coefficients that are as independent and sparse as possi-

ble. The mutual information and the average positive and negative kurtosis was measured

for coefficients, as shown in columns “3”–“5” of Table IV. Ten basis images corresponding

to C-K database which are obtained after training each method in Architecture II are

depicted in Figure 3. They have a rather holistic appearance compared with the sparse

basis images of Figure 2.
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TABLE IV

Experimental results for the C-K database and Architecture II. The columns numbered

from 1 to 9 represent: 1) classification accuracy (%), 2) Number of PCs, 3) average

coefficient mutual information, 4) and 5) normalized average kurtosis of super- and

sub-Gaussian coefficients, 6) and 7) correlation coefficient between the classification

accuracy and the mutual information with its corresponding p-value, 8) and 9)

correlation coefficient between the classification accuracy and the positive kurtosis

with its corresponding p-value.

Classifier Approach 1 (%) 2 3 4 5 6 7 8 9

InfoMax 72.9 40 0.0260 14.7 NA -0.70 0.01 0.26 0.41

Extended InfoMax 72.9 10 0.1363 2.3 -1.3 -0.57 0.049 0.64 0.02

JADE 72.9 10 0.1311 1.1 NA -0.49 0.176 0.09 0.08

CSM fastICA 72.9 10 0.0884 3.5 -1.7 -0.21 0.50 0.08 0.78

uICA 72.9 60 0.0002 0.1 -1.8 -0.21 0.49 0.32 0.308

kernel-ICA 72.9 10 0.1311 1.1 -0.5 -0.36 0.337 0.03 0.92

InfoMax 75.7 90 0.0050 38.6 NA -0.91 0 0.60 0.003

Extended InfoMax 72.8 110 0.0005 5.2 -1.5 -0.98 0 0.80 0.001

JADE 72.8 60 0.013 42.1 NA -0.94 0.0004 -0.06 0.88

SVM fastICA 75.2 110 0.006 30.2 0 -0.98 0 -0.9 0.005

linear uICA 73.3 100 0.008 10.5 -0.5 -0.70 0.1 0.65 0.02

kernel-ICA 75.7 40 0.020 0.4 -0.8 -0.75 0.1 0.48 0.4

InfoMax 71.4 20 0.0049 8.9 NA -0.11 0.73 0.71 0.008

Extended InfoMax 74.3 10 0.1363 2.3 -1.3 -0.08 0.79 0.03 0.91

SVM JADE 75.7 20 0.0432 0.8 NA -0.10 0.80 0.40 0.09

polynomial fastICA 75.7 20 0.0001 8.5 -0.3 0.27 0.38 0.76 0.004

(q = 3) uICA 75.7 90 0.0013 9.1 -0.3 -0.23 0.46 0.76 0.47

kernel-ICA 75.7 20 0.0440 0.8 -0.5 -0.20 0.3 0.45 0.10

InfoMax 74.3 30 0.0192 12.1 NA -0.54 0.069 0.10 0.75

Extended InfoMax 80 120 0.0038 6.8 -1.4 -0.96 0 0.88 0

JADE 75.7 70 0.0534 51.8 NA -0.78 0.008 0.74 0.009

SVM fastICA 78.6 100 0.0659 76.3 0 -0.99 0 0.74 0.005

RBF uICA 71.8 60 0.0002 0.1 -1.8 -0.17 0.59 0.65 0.019

kernel-ICA 75.7 70 0.0070 1.7 -0.3 -0.41 0.3 0.57 0.09
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Fig. 3. First ten basis images for Architecture II obtained by InfoMax (1st row), Extended InfoMax (2nd

row), JADE (3rd row), fastICA (4th row), undercomplete ICA (5th row), and kernel-ICA (6th row).

The images are depicted in decreasing order of normalized kurtosis.

As for Architecture I, a weak correlation between the CSM classifier accuracy and mu-

tual information was found. Only InfoMax and Extended InfoMax yield a statistically

significant correlation. In contrast, strong statistically significant correlations between the

accuracy of the SVM classifier with an RBF kernel and mutual information were measured.

In this case, 3 out of the 6 ICA approaches yield statistically significant correlations and

the best performing classifier (i.e., SVM-RBF with Extended InfoMax) shows the second

highest correlation. The linear SVM shows a strong correlation between mutual informa-

tion and accuracy at least for 4 out of the 6 ICA approaches (i.e., Informax, Extended

InfoMax, JADE, fastICA) consistently in Tables II - V. This suggests that independence

is associated with a more linearly separated feature space.

Overall, the Architecture II yields a smaller classification accuracy than the Architecture

I.
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B. JAFFE database

B.1 Architecture I

The experimental results are summarized in Table V. The facial expressions in JAFFE

database are a little bit harder to be recognized than those recorded in the C-K database

due to the fact that the human expressers in the former database were less expressive

than those in the latter database. As a consequence, a larger number of PCs had to be

retained in order to obtain the maximum recognition rate of 66.67% for the CSM classifier.

This rate was obtained by all ICA approaches with Architecture I. However, the accuracy

differences between all possible classifier pairs employing different ICA approaches are not

statistically significant at 95 % level of significance.

In JAFFE database, a statistically significant correlation coefficient between mutual

information and the accuracy of the CSM classifier for all ICA approaches was found except

uICA. Moreover, the correlation coefficient between the accuracy of the CSM classifier and

kurtosis was found to be statistically significant for all ICA approaches. This was not the

case for the correlation coefficient between the accuracy of the CSM classifier and either

mutual information or kurtosis for the C-K database. The linear SVM classifier yields

the highest accuracy 79.4 %, when the extended InfoMax and the fastICA approaches

are employed. From the inspection of Table V, it is seen that very strong statistically

significant correlations between the classification accuracy and the mutual information

of basis images as well as the classification accuracy and the positive kurtosis of the

basis images are measured for the best performing ICA approaches with the linear SVM.

Table VI depicts the confusion matrix for test images from JAFFE when a linear SVM

in Architecture-I with fastICA is employed. It is seen that “fear” is the most difficult

expression to be recognized, which is confused 2 times with “neutral”, another 2 times

with “sadness”, once with “anger” and another time with “disgust”. We note that the

expressers from the JAFFE database are less expressive compared to those from the C-K

database.
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TABLE V

Experimental results for the JAFFE database and Architecture I. The columns

numbered from 1 to 9 represent: 1) classification accuracy (%), 2) Number of PCs, 3)

average basis image mutual information, 4) and 5) normalized average positive and

negative kurtosis of the basis images, 6) and 7) correlation coefficient between the

classification accuracy and the mutual information with its corresponding p-value, 8)

and 9) correlation coefficient between the classification accuracy and the positive

kurtosis with its corresponding p-value.

Classifier Approach 1 (%) 2 3 4 5 6 7 8 9

InfoMax 66.7 40 0.0077 15.5 NA -0.75 0.004 0.62 0.030

Extended InfoMax 66.7 50 0.0043 16.4 NA -0.85 0.0004 0.66 0.017

JADE 66.6 50 0.0014 19.8 NA -0.81 0.007 0.68 0.040

CSM fastICA 66.7 50 0.0041 17.0 -0.5 -0.88 0 0.70 0.010

uICA 66.7 60 0.0066 5.6 -0.2 -0.41 0.183 0.69 0.011

kernel-ICA 66.7 50 0.0179 2.2 NA -0.84 0.003 0.72 0.027

InfoMax 76.2 60 0.0013 19.6 NA -0.98 0 0.92 0

Extended InfoMax 79.4 110 0.0095 29.5 NA -0.99 0 0.92 0

JADE 73.2 80 0.0089 31.8 NA -0.77 0.008 0.74 0.09

SVM fastICA 79.4 110 0.0095 27.4 NA -0.97 0.001 0.91 0

linear uICA 77.2 110 0.0113 1.4 NA -0.83 0.001 0.62 0.009

kernel-ICA 76.2 80 0.0097 2.3 NA -0.60 0.3 0.26 0.2

InfoMax 71.4 70 0.0028 22.6 NA -0.92 0 0.83 0.007

Extended InfoMax 60.3 20 0.0289 7.4 NA -0.51 0.08 0.74 0.005

JADE 63.4 20 0.0263 8.7 NA -0.62 0.36 0.71 0.09

SVM fastICA 63.4 20 0.0266 8.1 NA -0.42 0.17 0.14 0.65

RBF uICA 62.5 40 0.0122 22.9 -0.2 -0.39 0.20 0.21 0.50

kernel-ICA 63.5 20 0.0396 1.9 NA -0.45 0.09 0.40 0.19
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TABLE VI

Confusion matrix for the test images from the JAFFE database when a linear SVM in

Arcitecture I with fastICA is employed.

anger disgust fear happiness neutral sadness surprise

anger 7 0 0 0 0 0 0

disgust 0 8 0 0 0 0 0

fear 1 1 6 0 2 2 0

happiness 0 0 0 9 1 2 0

neutral 0 0 0 0 7 1 0

sadness 1 0 0 0 0 7 0

surprise 0 0 0 0 2 0 6

B.2 Architecture II

The highest accuracy of 79.4 % was obtained with the linear SVM and fastICA. For

the SVM-RBF classifier, it is worth mentioning that the accuracy difference when Ex-

tended InfoMax is employed instead of uICA is statistically significant at the 95% level

of significance. All other pairwise accuracy differences either within the same classifier

due to different ICA approaches employed or across different classifiers are statistically

insignificant at the same level of significance.

In the case of the SVM with a linear kernel, a statistically significant strong correlation

between the classification accuracy and the mutual information was found for features

extracted by InfoMax, Extended InfoMax, JADE, and fastICA. The negative correlation

between the accuracy of the linear SVM and mutual information indicates again that

performance increases as mutual information decreases.

C. Performance enhancement using leave-one-set of expressions-out

One possible way of improving accuracy is by exploiting maximally the available data

set. To do so, we repeated the experiments by employing the leave-one-set of expressions-

out (leave-one-out for short, [LVO]) strategy. That is, one set of expressions was left out

for test in a cyclic fashion. During one rotation, the number of training images is 228 and

the number of test images is 6 and by performing 39 rotations overall 234 test images are
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produced for the C-K database. In a similar way, the rotations yield 214 test images for

the JAFFE database.

For both databases, the accuracy of all classifiers employing different ICA approaches

was increased substantially, as can be seen in Table VII. For example, an impressive

performance enhancement was noticed for the kernel-ICA with the linear SVM in Archi-

tecture I applied to the C-K database. Its accuracy was raised from 78.6 % to 86.6% with

LVO.

The statistical significance of accuracy differences at 95% level of significance was studied

for each Architecture and each database: (i) within the same classifier for all possible

pairs due to different ICA approaches; (ii) across different classifiers employing the best

performing ICA approaches.

For the C-K database and Architecture I, the only statistically significant accuracy

difference is that between the accuracy of the CSM classifier that employs InfoMax (81.4

%)and the SVM with a cubic kernel that employs fastICA (87.6 %). For the C-K database

and Architecture II, the use of fastICA instead of uICA within the SVM classifier with

an RBF kernel yields statistically significant performance improvement. The reader can

verify that the accuracy differences between 84% and 77.3% as well as between 84% and

77% are also statistically significant.

For the JAFFE database and Architecture I, it can easily be checked that the accu-

racy differences between the CSM classifier and the SVM linear classifier are statistically

significant irrespective of the ICA approach employed for feature extraction. Similarly,

the InfoMax within the SVM classifier employing an RBF kernel yields a statistically sig-

nificant performance than the other ICA approaches. The accuracy differences between

the CSM classifier and the SVM classifier with an RBF kernel, when InfoMax is used,

are also statistically significant. However, there is no statistically significant performance

difference between the SVM classifier with a linear kernel that employs fastICA and the

SVM classifier with an RBF kernel that employs InfoMax. For the JAFFE database and

Architecture II, the use of fastICA instead of uICA within the SVM classifier with a linear

kernel yields a statistically significant accuracy difference. Similarly, statistically signifi-

cant gains exist between the SVM classifier with a liner kernel and fastICA (or the SVM
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TABLE VII

Averaged accuracy obtained with leave-one-out. (NA stands for accuracy results that

are not available).

C-K database JAFFE database

Classifier Approach Architecture I Architecture II Architecture I Architecture II

InfoMax 81.4 77.3 69.6 72.6

Extended InfoMax 82 80 69.6 70

JADE 79 81.5 69.6 71

CSM fastICA 81.3 81.5 69.6 71

uICA 80.1 81.5 69.6 68.3

kernel-ICA 81.1 80 69.6 67.8

InfoMax 81.3 NA 80.3 77.5

Extended InfoMax 81.3 NA 83.5 80

SVM JADE 82.3 NA 82.5 78

linear fastICA 84.6 NA 84 81

uICA 83.3 NA 82.6 66

kernel-ICA 86.6 NA 82.1 78

InfoMax 83.7 80 NA NA

Extended InfoMax 84.6 77 NA NA

SVM JADE 82.4 80 NA NA

polynomial fastICA 87.6 80 NA NA

(q = 3) uICA 83.3 77.3 NA NA

kernel-ICA 85.7 78.2 NA NA

InfoMax NA 81.5 79 79

Extended InfoMax NA 83.8 64.7 81

SVM JADE NA 80 68.3 77.5

RBF fastICA NA 84 69.3 74

uICA NA 70 65.2 72.5

kernel-ICA NA 79 68.3 77
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classifier with an RBF kernel and Extended InfoMax) and the CSM classifier irrespective

of the ICA approach that feeds the latter classifier.

D. Comparisons with PCA

To assess the removal of higher-order correlation captured by ICA, the CSM classifier

was directly applied to the eigenimages extracted by PCA. The experiments were ran only

for the CSM classifier on the test set and the results are listed in Table VIII. The LVO

method, which is detailed in Section VII-C, was also used with PCA and the corresponding

results are included in Table VIII.

TABLE VIII

Experimental results for the C-K and JAFFE databases when PCA is used for feature

extraction and the CSM classifier is applied to the same training and test sets. The

accuracy estimated by using the leave-one-out method (LVO) is also recorded.

C-K database

No. of PCs 5 10 20 30 40 50 60 70 80 90 100 110

Accuracy

(test set)

57.1 75.7 70 71.4 71.4 72.8 71.4 71.4 72.8 71.4 71.4 68.5

Accuracy

(LVO)

67.7 80.7 80.7 78.6 81.2 81.6 81.6 81.6 82 81.6 81.6 81.6

JAFFE database

No. of PCs 5 10 20 30 40 50 60 70 80 90 100 110

Accuracy

(test set)

38.1 60.3 65 66.7 66.7 66.7 66.7 66.7 69.8 69.8 69.8 69.8

Accuracy

(LVO)

50 67.4 72.7 71.4 71 70.5 71.8 71.8 72.7 73.2 73.2 73.2

In the C-K database, the highest accuracy on the test set (i.e. 75.71%) is achieved with

only 10 PCs. For CSM, the accuracy difference due to PCA instead of the best performing

ICA approach in Architecture I (74.3%), as is recorded in Table II, is not statistically
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significant at 95% level of significance. Nor is statistically significant at the same level

of significance, the accuracy difference due to PCA instead of the best performing ICA

approach for CSM in Architecture II (72.9%), as is recorded in Table IV. When PCA is

used for feature extraction, the accuracy of CSM is improved by LVO reaching 82%. For the

CSM classifier, Table VII reveals that its highest accuracy obtained with ICA approaches

in either Architecture I or Architecture II is 81.4% or 81.5%, respectively. Obviously, the

accuracy differences are not statistically significant at 95% level of significance.

In the JAFFE database, the same maximum accuracy for the CSM classifier (69.8 %) was

obtained by both PCA and ICA with Architecture II in the test set. ICA in Architecture

I within the CSM classifier yields accuracy 66.7% in the test set. It can easily be verified

that the accuracy differences on the test set are not statistically significant. When PCA

is used for feature extraction, the accuracy of CSM is improved by LVO reaching 73.2%.

For the CSM classifier, Table VII reveals that its highest accuracy obtained with ICA

approaches in either Architecture I or Architecture II is 69.6% or 72.6%, respectively. The

accuracy differences are not statistically significant at 95% level of significance, in this case

as well.

E. Subspace selection

Unlike PCA, there is no inherent ordering into the independent components [10]. An

ordering parameter could be the class discriminability of each component [24] defined as

the ratio

r =
σbetween(k)

σwithin(k)
(21)

where

σbetween(k) =
∑

j

(b
j

k − bk)
2 (22)

σwithin(k) =
∑

j

∑
i

(bij
k − b

i

k)
2 (23)

with bk denoting the gross mean of coefficient bk, b
j

k being the jth facial expression class

mean of coefficient bk, and bij
k standing for the kth coefficient of the ith training image in

the jth facial expression class.
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It has been found that, by ordering the independent components with respect (21), ICA

can outperform the PCA approach [10]. We have repeated the experiments with the CSM

classifier in Architecture I, when feature selection is done according to (21) and compared

the resulted accuracy with that reported previously (i.e. without subspace selection). We

conducted the experiments for the maximum number of components and then we selected

as many independent components according to (21), so that the maximum accuracy was

obtained. The results are summarized in Table IX. By comparing the results in Table IX

and those in Table V, one can see that, in JAFFE database, the accuracy obtained by

each ICA approach after subspace selection is higher than that reported without subspace

selection with the extended ICA being an exception. By cross-examining Tables IX and

II, this observation is roughly valid for the accuracy obtained by each ICA approach

with the exception of kernel-ICA in C-K database. However, accuracy differences are not

statistically significant for neither the C-K database nor the JAFFE one.

TABLE IX

Accuracy (%) for the CSM classifier in Architecture I on both databases along with

the number of components corresponding to the maximum accuracy (in parenthesis and

italics), retrieved by employing subspace selection.

Database Approach

InfoMax Extended InfoMax JADE fastICA uICA kernel-ICA

C-K 77.1 (80 ) 77.1 (90 ) 74.2 (40 ) 78.5 (110 ) 72.5 (80 ) 70 (30 )

JAFFE 69.8 (70 ) 66.6 (80 ) 68.2 (50 ) 69.8 (130 ) 67.7 (40 ) 68.2 (50 )

We should also mention that a supervised ICA technique, the so called ICA-FX [34],

was developed in order to obtain features that are not only independent from each other,

but also convey class information, contrary to the other ICA approaches studied in this

paper, which are unsupervised (i.e. they do not utilize the class information). Unlike

the method described in [24], ICA-FX allows an intrinsic class information embedding.

To examine to what extent the classification performance is affected by incorporating the

class information inside the training procedure, we ran the ICA-FX approach on the C-K
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database and compared it with the classical ICA approach previously exploited. Due to

the fact that the Architecture I does not allow us to make a comparison against ICA-FX,

since ICA is performed on the PCA projection matrix implying loss of the class label, we

chose ICA Architecture II, where class label is preserved. Table X shows that the CSM

classifier yields a higher accuracy when it is fed by features extracted by ICA-FX than

those extracted by the other six ICA approaches. The difference in accuracies is found to

be statistically significant at 95 % confidence level.

TABLE X

Accuracy results by employing subspace selection with the help of the ICA-FX

approach. The results are shown for the Architecture II on C-K database using the

CSM and the SVM classifiers.

C-K database, Architecture II

Classifier CSM SVM RBF

Accuracy 84.28 78.8

VIII. Discussion and Conclusions

A systematic comparative study of six ICA approaches was performed for facial expres-

sion classification in order to select the one which provides the best classification accuracy

using two databases, two facial feature extraction architectures, and two classifiers. Re-

garding the classification performance, overall, the fastICA combined with SVMs yields a

reasonable compromise between accuracy and fast run time for feature extraction. In our

study we addressed the following issues:

1. Performance variation with the number of PCs: We found that a small number of

PCs can produce a reasonable recognition performance for a CSM classifier. Although

the present paper exhibits many common issues with the work described in [10], we must

notice that the present study differs in too many aspects with that in [10] that does not

allow for a fair comparison between the results reported here and in [10].

2. Implications of applying PCA prior to ICA to reduce data dimensionality : We found

that the use of uICA does not yield a higher classification accuracy than preprocessing

August 18, 2008 DRAFT



32

observations by PCA.

3. Features having super- and sub-Gaussian distribution did not improve facial expression

classification accuracy.

4. Independent features obtained by non-linear unmixing of observations using kernel-ICA,

do not improve the classification performance. This fact indicates that either there is no

such a non-linear mixture in the data, or, if any non-linear mixture exists, its contribution

to the classification performance is minimal.

5. The main conclusion drawn from the experiments is that, overall, as can be seen from

Tables II- V, there is a strong correlation between the average mutual information of

independent components and accuracy. A similar finding was obtained for sparseness. For

the linear SVM classifier, this relationship is consistently statistically significant, when

InfoMax, Extended InfoMax, or fastICA is used for feature extraction. However, the

degree of the correlation varies with the classifier and database involved.

ICA yields an efficient coding by performing a sparse image representation and removing

the higher order correlations. Whether this is necessary for efficient image representation

and pattern recognition purposes, it is still an open problem. It seems (and this is known

to the scientific community) that SVMs are more affected by the outliers and noise which

is the case of holistic representation. The outliers and “noise” are characterized by those

parts of the face that are not essential for facial expression recognition and are present in

a holistic representation that has a low degree of sparseness. As more localized features

are obtained by ICA by employing more PCs and reducing the mutual information, thus

increasing the degree of sparseness, the “noise” is eliminated and the performance of SVM

improves. In many cases, we found that obtaining more sparse basis images (or coeffi-

cient) does not necessarily lead to a more accurate facial expression classification. These

results can be related to the work conducted by Petrov and Li [35]. They investigated

local correlation and information redundancy in natural images and they found that the

removal of higher-order correlations between the image pixels increased the efficiency of

image representation insignificantly. Accordingly, their results suggest that the reduction

of higher-order redundancies than the second-order ones is not the main cause of receptive

field properties of neurons in V1. It is worth mentioning that there are other sparse image
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representations such as Sparse Component Analysis [36], Non-negative Matrix Factoriza-

tion [37] and Local Non-negative Matrix Factorization [38], for example, which, unlike

ICA do not assume component independence.

Although we do not deny the role of sparse image representations in visual cortex, we

argue that a more important characteristic of an efficient image representation is feature

orientation. Thus, a sparse representation alone does not seem to be sufficient in achiev-

ing the maximum recognition performance. This observation comes from [39], where ICA

and Gabor filter representation applied to facial expression recognition were compared.

Both ICA and Gabor filters approaches gave sparse representations and a highly kurtotic

(non-Gaussian) feature distribution. However, the Gabor images that contain important

spatially oriented features led to a higher accuracy than the ICA features. Another impor-

tant aspect is normalization. Brady and Field showed that the entropy of Gabor responses

to natural scenes does increase when a V1 response normalization model is applied [40].

This normalization model decreases the high-order dependencies between the Gabor re-

sponses in natural scenes, as also shown by Wainwright et al [41], where relationships

between Gabor filters, ICA, and sparse coding are investigated. However, while Gabor

filters and ICA may be highly related, Gabor filters have an advantage over ICA when

the amount of training data is limited. Contrary to ICA, where the features are learned

through learning algorithms involving large set of training samples whose size influences

the results, Gabor filtering does not actually involve a training procedure [39].

It is worth noting that Vicente et al. recently investigated PCA and ICA [25] by

comparing their performances for face recognition when simple classifiers (such as 1-NN

classifiers) are involved. Their main conclusion does not contradict ours evidence: no

significant performance gains exist between ICA and PCA when no feature selection is

performed prior to classification for these classifiers. However, our work differs in many

aspects from [25] that deals with face recognition only. First, they compared only InfoMax

against fastICA, while we compared several linear and non-linear ICA approaches. Second,

we used SVM, which was not employed and compared in their work. Third, they manually

projected the data either onto one ICA direction or over one eigenvector direction, while

we employed an intrinsic selection based on class information [34].
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Finally, some experiments have been performed by Yang et al. [42] who found that the

whitening step is responsible for increasing face recognition accuracy not the pure ICA.
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