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PAbstract

Recently, three learning algorithms, namely non-negative matrix factorization (NMF), local non-negative matrix fac-
torization (LNMF), and discriminant non-negative matrix factorization (DNMF) have been proposed to produce sparse
image representations. However, when their input is a database of human facial images, they decompose the images into
sparse representations with quite different degree of sparseness. Within a continuum of sparseness ranging from holistic to
local image representation, the first algorithm rather tends towards the first extreme, while the second algorithm produces a
local representation. The third algorithm provides an image representation that is in between these two extremes. These
algorithms decompose the facial images in the database into basis images and their corresponding coefficients. The basis
images are learned by the algorithm when human face images are given as input. By analogy to neurophysiology, the basis
images could be associated with the receptive fields of neuronal cells involved in encoding human faces. Taken from this
point of view, the paper presents an analysis of these three representations in connection to the receptive field parameters
such as spatial frequency, frequency orientation, position, length, width, aspect ratio, etc. By analyzing the tiling properties
of these bases we can have an insight of how suitable these algorithms are to resemble biological visual perception systems.
� 2006 Elsevier Inc. All rights reserved.
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O1. Introduction

Understanding how the image is processed at each level of the human visual system in order to be trans-
formed into this signal and the type of signal encoding at the receptive fields (RFs) of the neural cells is one of
the primary concerns of the neuropsychologists and neurophysiologists. Nowadays, the theoretical and exper-
imental evidence suggests that the human visual system performs object (including face) recognition process-
ing in a structured and hierarchical approach in which neurons become selective to process progressively more
complex features of the image structure [1]. Whereas neurons from visual area 1 (V1) are responsible for pro-
U
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cessing simple visual forms, such as edges and corners (leading to a very sparse image representation), neurons
from the visual area 2 (V2) process a larger visual area representing feature groups. As we further proceed to
the visual area 4 (V4) and the inferotemporal cortex (IT), we meet neurons having large receptive fields that
respond to high- level object descriptions such as ones describing faces or objects. This is equivalent with a
decrease in image representation sparseness. While holistic representation treats an image as a whole (global
feature) where each pixel has major contribution to representation, sparse representation is characterized by a
highly kurtotic distribution, where a large number of pixels have zero value, and small number of pixels have
positive or negative values (local features). In its extreme, sparse representation provides a local image repre-
sentation having only just a very small amount of contributing pixels. Finally, the IT area of the temporal lobe
contains neurons whose receptive fields cover the entire visual space. It also contains specialized neurons (face
cells) that are selectively tuned for faces. There is now good evidence that there are dedicated areas in temporal
cortical lobe that are responsible to process information about faces [2–4]. Moreover, it was found that there
are neurons (located in TE areas) with responses related to facial identity recognition, while other neurons
(located in the superior temporal sulcus) are specialized only to respond to facial expressions [5].

Models of receptive fields of neuronal cells have been proposed by numerous researchers. There are two
types of neural cells: simple and complex ones. It has been shown by Olsahusen and Field [6] that in V1 area
the simple cells produces a sparse coding of natural images. Their receptive fields respond differently to visual
stimuli having different spatial frequencies, orientations, and directions. Marcelja [7] and Daugman [8] have
noticed that the receptive fields of simple cells can be well described by 2D Gabor functions. The main draw-
back of Gabor function models is that they have many free parameters to be tuned ‘‘by hand’’ in order to tile
the joint space or spatial frequency domain to form a complete basis for image representation. Other attempts
to model the structure of V1 receptive fields were based on Principal Component Analysis (PCA), which leads
to holistic image representation [9,10] and independent component analysis (ICA) [11].

Although the receptive fields of V1 seem to be well described by the models proposed above, there is no con-
clusive model for cells of the higher cortical levels, especially for face cells. Here, we make an analysis of three
recent image representation algorithms namely, the non-negative matrix factorization (NMF), the local non-
negative matrix factorization (LNMF), and the discriminant non-negative matrix factorization (DNMF). They
all decompose an image database into basis images and the corresponding coefficients. The model, as it is
described here, associates the basis images with the receptive fields of neural cells and the coefficients with their
firing rates. In particular, we are interested in the representation of facial expression images. We propose a bio-
logical plausible model for the facial neurons responsible for biological facial expression recognition. From the
computer vision point of view, in this paper we analyze the parameters of the resulting basis images, such as
spatial frequency, frequency orientation, position, length, width, aspect ratio, etc., in analogy to the parameters
of the spatial neural receptive fields. The analysis of the basis images characteristics to be presented in this
paper is motivated by the performance of DNMF algorithm in classifying facial expressions [12]. However,
since some constraints are common for these three algorithms, NMF and LNMF are analyzed as well. The
results can show us how suitable are these algorithms for modeling biological facial perception systems.

The remaining of the paper is organized as follows. In Section 2, the facial image model is described along
with the ways of representing the human face. A brief description of the algorithms investigated in this paper is
presented in Section 3. The parameters of the receptive fields obtained through the learned basis images with
NMF, LNMF, and DNMF are analyzed in Section 4. The paper ends with some comments and conclusions
drawn in Section 5.

2. Human face representation

Face analysis has captured an increased attention from psychologists, anthropologists, and computer sci-
entists due to its special applications in biometrics or human–computer interaction. Research have been done
to find the way a human face is represented in the visual system. Both sparse and dense human face represen-
tations have been found by neuropsychologists and neurophysiologists to mode aspects of the human visual
system. However, as the final goal is either to recognize a face or a particular facial expression, these two
representations have their own contribution. While face recognition appears to rely more on a dense image
representation (hence producing a holistic appearance of the faces), the information for facial expression
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seems to be captured by a more sparse (or even a local) face representation. This difference has been noticed in
several research works. Psychologically, the theory that biologically face recognition is a holistic process was
explored by Tanaka and Farah [13]. Accordingly, biological face recognition does not simply use parts of the
face, but rather the face is perceived as a whole. Their theory is supported by the work of Dailey and Cottrell
[14]. Atick and Redlich have demonstrated that receptive fields of retinal ganglion cells can be viewed as local
‘‘whitening’’ filters that remove second-order statistics between pixels in images in a way similar to that of
PCA [15]. The use of principal components is consistent with psychological evidence that PCA accounts
for some aspects of human memory performance, as shown in the work of Valentine [16].

Contrary to face representation for biological face recognition, the work of Ellison and Massaro [17] has
revealed that the facial expressions are better represented by parts of the face, thus suggesting a non-holistic
representation. This is consistent with research results showing that humans respond to information around
the eyes independently from motion in the mouth area and that they are able to recognize and distinguish iso-
lated parts of faces. The dissociation between face and facial expression recognition is also noted in the paper
of Cotrell et al. [18] who found that PCA (that produce eigenfaces) performs well for face recognition but
eigeneyes and eigenmouth (eigenfeatures that are not holistic) perform better in recognizing expressions than
eigenfaces, suggesting that non-holistic eigenfeatures might be used to recognize expressions. One of the
approaches that has been successfully applied to classify facial actions was ICA. When applied to natural
scenes, this approach looks for image components that are as independent as possible from the rest and have
similar properties to V1 neural receptive fields, such as orientation selectivity, bandpass, and scaling properties
[11]. In a direct comparison between PCA and ICA, Draper et al. [19] found that an holistic approach (PCA)
performs the best for face recognition while an approach based on more localized features (ICA) performs
better for facial action recognition.

Three sparse image representation methods namely NMF, LNMF, and DNMF have been recently inves-
tigated with respect to their performance in facial expression classification [12]. Although they produce sparse
representation, their degree of sparseness is quite different. NMF representations are rather holistic (compared
to the other two ones), as proven by their small kurtosis value and by visual inspection and has the worst per-
formance in classifying facial expressions [12]. The basis images learned by that algorithm produced localized,
oriented, and bandpass Gabor-like features. LNMF produces a rather local image representation while
DNMF is situated between NMF and LNMF. As far as the facial expression recognition performance is con-
cerned, DNMF outperforms LNMF approach [12]. This fact might indicate that those features that are
important in recognizing facial expression are lost in the case of LNMF in its attempt to obtain a local image
representation. Our basic statement supported in the paper is that human facial expression recognition is best
modeled by DNMF representation that provides sparse and intuitively meaningful facial image representa-
tions. The spatial and frequency characteristics of this representation is elaborated in this work.
115

116
117
118
O
R3. NMF, LNMF, and DNMF image model representations

Let us suppose that an image is represented by a vector x having m pixels, x = [x1, . . . ,xm]T. Then, x can be
decomposed in the product of a m · p matrix Z, whose columns comprised basis functions z, and the coeffi-
cients vector, h = [h1, . . . ,hp]T [6]
119
121121
Cx ¼ Zh: ð1Þ

122
123
124
NHere, p is the number of images in the database. The choice of basis functions determines the image represen-
tation. To perform this decomposition we need to determine the basis functions and their coefficients. From
(1) we have
125
127127
Uh ¼Wx; ð2Þ

128
129
130
131
132
where W is a matrix whose rows are the inverse filters. Generally, from (1) and (2) we have that W = Z�1.
When Z forms orthonormal basis we have W = ZT, where T denotes the transpose operator. In biological
terms, this decomposition model can be interpreted as follows. The neural cells perform a fully distributed
or a sparse coding of the stimulus (image) presented at input in such a way that their neural receptive fields
are modeled by the inverse p filters w of the model and their firing rate is represented by the model coefficients
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h. Here, we have limited ourselves to the case where the stimulus is a human face. Non-negative matrix fac-
torization (NMF), as it was proposed by Lee and Seung, is a method that decomposes a given m · n non-neg-
ative matrix X into non-negative factors Z and H such as X � ZH, where Z and H are matrices of size m · p

and p · n, respectively [20]. Suppose that i = 1, . . . ,m, j = 1, . . . ,n, and k = 1, . . . ,p. Then, each element xij of
the matrix X can be written as xij �

P
kzikhkj. The quality of approximation depends on the objective function

used. One of the objective functions that can be used is represented by the Kullback–Leibler divergence be-
tween X and ZH [21]
140

142142
FDNMFðXjjZHÞ,
X

i;j

xij ln
xijP

kzikhkj
þ
X

k

zikhkj � xij

 !
: ð3Þ
143
144
145
146
147
148
149
150
151
152
153
P
R

O
OThis expression can be minimized by applying multiplicative update rules subject to Z, H P 0. This con-

straint is natural in many real image processing applications. For example, the grayscale image pixels have
non-negative intensities. From biological perspective, its proposers imposed non-negative constraints, partly
motivated by the biological aspect that the firing rates of neurons are non-negative. It has been shown that,
if the matrix X contains images from an image database (one in each matrix column), then the method
decomposes them into basis images (columns of Z) and the corresponding coefficients (rows of H) [20].
The resulting basis images contain parts of the original images, parts that are learned thorough the iterative
process in the attempt of approximating X by the product ZH. In this context, m represents the number of
image pixels, n is the total number of images, and p is the number of basis images. The following updating
rules for finding the factors hkj and zik are applied alternatively at each iteration t in an expectation-max-
imization (EM) manner [21]:
155155
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D
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zðtÞik hðt�1Þ

kjP
iz
ðtÞ
ik

; ð4Þ
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E
CThey guarantee a nonincreasing behavior of the KL divergence.

Local non-negative matrix factorization (LNMF) has been developed by Li et al. [22]. This technique is a
version of NMF which imposes more constraints on the cost function (3) to increase the degree of image rep-
resentation sparseness. Therefore, the character of the learned basis images is improved. If we use the nota-
tions [uij] = U = ZTZ and [vij] = V = HHT, the following three additional constraints can be imposed on
the NMF basis images and decomposition coefficients:

(1)
P

iuii! min (maximum sparsity in H). This guarantees the generation of more localized features in the
basis images Z, than those resulting from NMF, since, we impose the constraint that basis image ele-
ments are as small as possible.

(2)
P

i5juij! min (maximum orthogonality in B). This enforces basis orthogonality, in order to minimize
the redundancy between image bases.

(3)
P

ivii! max (maximum expressiveness in B). By means of this constraint, the total energy of the projec-
tion coefficients (total squared projection coefficients summed over all training images) is maximized.
The new objective function takes the following form:
174

176176
UDLNMFðXjjZHÞ,DNMFðXjjZHÞ þ a
X

ij

uij � b
X

i

vii; ð6Þ
177
178
where a, b > 0 are constants. A solution for the minimization of relation (6) can be found in [22]. Accordingly,
if we use the following update rules for image basis and coefficients:
180180

hðtÞkj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðt�1Þ

kj

X
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the KL divergence is nonincreasing.
NMF and LNMF algorithms do not take into account image class information and treat all images the

same way. By modifying the coefficients H in a such a way that the basis images incorporate class character-
istics, we obtain a class-dependent image representation. This is the discriminant non-negative matrix factor-
ization (DNMF) approach [12]. Let us suppose we have Q distinctive image classes and let nc be the number of
training samples in class Q, c ¼ 1; . . . ;Q. DNMF preserves the LNMF constraints on the basis images and
introduces two more constraints on the coefficients hcl, where c ¼ 1; . . . ;Q and l = 1, . . . ,nc. These are: (1)
Sw ¼

PQ
c¼1

Pnc
l¼1ðhcl � lcÞðhcl � lcÞ

T ! min, where Sw is the within-class scatter matrix and defines the scatter
of the projection coefficients of each class around their mean. This dispersion should be as small as possible.
(2) Sb ¼

PQ
c¼1ðlc � lÞðlc � lÞT ! max, Sb denotes the between-class scatter matrix of the projection coeffi-

cients and defines the scatter of their class mean around their global mean l. Each cluster formed by the pro-
jection coefficients that belong to the same class must be as far as possible from the other clusters. Here,
lc ¼ 1

nc

Pnc
l¼1hcl represents the mean vector of class c, l ¼ 1

n

PQ
c¼1

Pnc
l¼1hcl is the global mean vector. The new

objective function is expressed as:
200200
DDDNMFðXjjZHÞ,DLNMFðXjjZHÞ þ c
XQ
c¼1

Xnc

l¼1

ðhcl � lcÞðhcl � lcÞ
T � d

XQ
c¼1

ðlc � lÞðlc � lÞT; ð10Þ
201
202
Ewhere c and d are constants. Following the same EM approach used by NMF and LNMF techniques, each
element hkj of the coefficients matrix H is updated as [12]
204204
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r
4n

: ð11Þ
205
The elements hkl are then concatenated for all Q classes as
207207
E

hðtÞkj ¼ ½h
ðtÞ
klð1Þjh

ðtÞ
klð2Þj . . . jhðtÞklðQÞ�; ð12Þ
208
209
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211
212
213
214
215
216
217
218
219
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O
R

Rwhere ‘‘|’’ denotes concatenation and n = c � b. The expression for updating the basis image remains un-
changed from LNMF. Class-dependent image representation obtained by DNMF is very useful when it comes
to classification. Basically, the images are projected into the basis images and the new features are further clas-
sified by a classifier [12]. For visualization purpose, Fig. 1 displays the projection of images (which belong to
the Cohn–Kanade facial database) coming from three expression classes (anger, disgust, surprise) on the first
two basis images shown in Fig. 3. Let us denote by M1, M2, and M3 the mean of the three clusters formed by
these projections and the distance between the means by d12, d13, and d23, respectively. Then, for this metric
space we have d12 = 4.3, d13 = 6.7, and d23 = 7.9 in the case of NMF, d12 = 11.2, d13 = 8.2, and d23 = 18.2 for
LNMF and d12 = 35.8, d13 = 52.4, and d23 = 66.9 for DNMF approaches respectively. The between—classes
similarity is larger for DNMF than for the other two approaches. For simplicity in Fig. 1 is shown only M2
and M3 and the distance between them is drawn by a line. It can be noticed that the classes do not overlap in
the case of DNMF as much as they do in the case of NMF and LNMF methods.
U

220

221
222
223
4. Receptive fields modeled by NMF, LNMF, and DNMF

We trained NMF, LNMF, and DNMF on a database consisting of facial expressions derived from Cohn–
Kanade AU-coded facial expression database [23]. The facial action (action units) that are described in the
image annotations have been converted into emotion class labels according to [24]. Fig. 2 depicts the results,



R
R

E
C

T
E
D

P
R

O
O

F

224
225
226
227
228
229
230
231
232
233
234
235
236
237

150 100 50 0 50 100 150
150

100

50

0

50

100

150

150

100

50

0

50

100

150

First projection

S
ec

on
d 

pr
oj

ec
tio

n

M2 M3

anger
disgust
surprise

150 100 50 0 50 100 150

First projection

S
ec

on
d 

pr
oj

ec
tio

n

M2

M3

anger
disgust
surprise

150 100 50 0 50 100 150
150

100

50

0

50

100

150

First projection

S
ec

on
d 

pr
oj

ec
tio

n

M2

M3

anger
disgust
surprise

a b

c

Fig. 1. Scatter plot of the clusters formed by the projection of three expression classes (anger, disgust, surprise) on the first two basis
images shown in Fig. 3 for (a) NMF, (b) LNMF, and (c) DNMF. M2 and M3 represents the mean of the clusters corresponding to
‘‘disgust’’ and ‘‘surprise’’ classes and the distance between these means is drawn by a line. The ellipse encompasses the distribution with a
confidence factor of 90%.

6 I. Buciu, I. Pitas / J. Vis. Commun. Image R. xxx (2006) xxx–xxx

YJVCI 680 No. of Pages 12, Model 3+

27 July 2006 Disk Used Sasi (CE) / Padmavathy (TE)
ARTICLE IN PRESS
U
N

C
Oas they are reported in [12], obtained on the facial expression recognition task corresponding to the above

mentioned database for the all three algorithms.
We worked on a subspace of 144 basis images (p = 144). Once the basis images are calculated we compute

the 144 inverse filters W = Z�1 (to be called receptive field (RF) masks) corresponding to the basis images for
all three algorithms. Twenty five receptive field masks for NMF, LNMF, and DNMF are shown in Fig. 3. As
can be seen from the Fig. 3a, NMF produces neither oriented nor localized masks. The features discovered by
NMF have a larger space coverage than those obtained by LNMF or DNMF, thus capturing redundant infor-
mation. On the contrary, the LNMF receptive field masks are oriented and localized. Mask domain denotes
the mask region where mask coefficients are large (above a certain threshold). Some of them have domain of
almost a single pixel. Neurophysiologically, one single pixel representation is similar of having a grandmother
cell where a specific image is represented by one neuron (with a very small receptive field size). Furthermore,
the features discovered by LNMF have rather random position in the image domain. Receptive field masks
produced by DNMF are sparse but contain less localized and oriented domain than LNMF. In addition it
contains non-oriented features. Probably the most important issue related to the DNMF RFs masks is the
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Fig. 2. Accuracy (correct classification in percentage) achieved on the facial expression recognition task corresponding to the Cohn–
Kanade database for the NMF, LNMF, and DNMF algorithm, respectively, and for different number of subspaces (p). Details of the
experiment can be found in [12].

Fig. 3. Sample receptive field masks corresponding to basis images learned by (a) NMF, (b) LNMF, and (c) DNMF. They were ordered
according to a decreasing degree of sparseness.
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fact that almost all their domain correspond to salient face features such as eyes, eyebrows, or mouth that are
of great relevance to facial expressions. While discarding less important information (e.g., nose and cheeks,
which is not the case for NMF), DNMF preserves local spatial information of salient facial features (that
are almost absent in the case of LNMF). The preservation of the spatial facial topology correlates well with
the findings of Tanaka et al. [25] who argued that some face cells require the correct spatial facial feature con-
figuration in order to be activated for facial expression recognition. We have noticed in our experiments that
the degree of sparseness corresponding to basis images extracted by DNMF did not increase after a number of
iterations. We believe this is caused by those patterns in the basis images that encode meaningful class infor-
mation (such as those corresponding to salient facial features) and they cannot be disregarded as the iterations
proceed further. The degree of RF masks sparseness can be quantified by measuring the normalized kurtosis
of a base image z (one column of Z) defined as kðzÞ ¼

P
i
ðzi�zÞ4

ð
P

i
ðzi�zÞ2Þ2

� 3, where zi are the mask pixels and z denotes
the sample mean of z. The average kurtosis for the three representations over 144 basis images are:
kNMF ¼ 7:51, kLNMF ¼ 152:89, and kDNMF ¼ 22:57.

We have described the spatial distribution of the receptive field masks in terms of 4 spatial parameters:
average domain location (x, y), domain orientation (0�, 90�, 45�, and 135�, respectively) directions, and aspect
ratio. The aspect ratio is defined as l/w, where l and w are the length and width of the receptive fields calculated
as follows [26]:
256256
D
Plk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x;y

ðx sinðhÞ þ y cosðhÞÞ2z2
k

s
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wk �
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Eover (x,y) image space. These RF masks domain parameters calculated over the facial image database are rep-

resented in Fig. 4. We can notice in Fig. 4a that the RF masks do not cover the entire space. For NMF and
DNMF they are centrally distributed and cover the image center which is in par with a similar characteristic of
V4 receptive fields. LNMF features are rather distributed marginally as shown in Fig. 4a. Unlike NMF, where
domain orientation is at oblique angles (45� and 135�), LNMF emphasizes more horizontal and vertical fea-
tures. DNMF puts approximately the same emphasis on horizontal and oblique features and slightly less stress
on vertical ones. The oblique features are represented due to the chin contour (as it can be seen from Fig. 3c)
where DNMF acts like a local edge detector.

The aspect ratio of NMF ranges from 0.6 to 1.6 with a mean at 1.09 and a standard deviation of 0.19.
LNMF aspect ratios range from 2 to 11 with a mean at 1.65 and standard deviation 2.04. DNMF aspect ratios
range from 0.5 to 2.2 with mean 1.03 and standard deviation 0.26. The higher average aspect ratio of LNMF
indicates that its receptive fields are more elongated horizontally then those of NMF or DNMF.

To characterize the frequency distribution of RF masks we have computed their spatial frequency and ori-
entations from their Discrete Fourier Transform: F kðu; vÞ ¼ 1

NM

PN�1
x¼0

PM�1
y¼0 zðx; yÞ exp½�j2pðux=N þ vy=MÞ�,

where u = 1, . . . ,N � 1 and v = 1, . . . ,M � 1 are spatial frequency coordinates in the horizontal and vertical
directions, respectively, expressed in cycles/image and N and M are the number of rows and columns in the
basis image, respectively. The two-dimensional spatial frequency are represented in polar coordinates (r,u),
where r denotes the absolute spatial frequency, u orientation, u = r cos (u) and v = r sin (u). Thus, the optimal
spatial frequency (orientation) is defined as the spatial frequency (orientation) of the peak in the amplitude
(phase) spectrum.

Fig. 5 presents the optimal spatial frequency and optimal orientation for NMF, LNMF, and DNMF recep-
tive field masks found by taking the peak of the spectrum. Figs. 5a–c indicate that the features are evenly
spread in all orientation in the frequency domain for all three representation studied. Regarding radial spec-
trum distribution, NMF shows peak at a high spatial frequency bands (approximately between 0.7 and 0.9
cycles/image) as shown in Fig. 5d. LNMF features are distributed within a lower frequency band (of 0.25–
0.45 cycles/image) as shown in Fig. 5e. A bandpass spectrum shape is shown by DNMF in Fig. 5f. The
RFs power spectrum covers a larger spatial frequency band at [0.45,0.8] cycles/image, capturing a larger radial
spectrum.
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Fig. 4. Spatial characteristics or FS masks domain for NMF (top), LNMF (middle), and DNMF (bottom) receptive fields (RFs): (a)
average location of RF domain; (b) histogram of RF domain orientations in degrees (0�, 45�, 90�, and 135�) and (c) length-to-width aspect
ratio of RF spatial domain.
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NNMF, LNMF, and DNMF receptive fields show a low, high and bandpass frequency spectrum, respective-

ly. Redundancy reduction is also obtained by suppressing the low spatial frequency in order to whiten the
power spectrum of images, therefore this is done by highpass filtering [29]. This is consistent with what LNMF
performs through

P
i5juij! min, and, thus having receptive fields similar to highpass filters (see Fig. 5a and

Fig. 5d). On the other hand, the high frequency components contain only little power from the image source
and, therefore, it is not robust to noise. To avoid this, highpass frequency must be eliminated. The combina-
tion of noise and redundancy reduction optimizes the information transfer, resulting a bandpass filtering.
However, as noticed in [29], the balance between highpass and lowpass filtering depends on the signal to noise
ratio of the input signal, which depends on the ambient light level.
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Fig. 5. The optimal orientation and optimal spatial frequency for RF masks corresponding to (a) NMF, (b) LNMF, and (c) DNMF
receptive fields. The histogram of the distribution of 144 RFs in the spatial-frequency corresponding to (d) NMF, (e) LNMF, and (f)
DNMF approaches.
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D5. Discussion and conclusion

There are many models proposed for biological facial analysis in the human visual system. On one side, the
computer scientists try to find reliable methods that give satisfactory results for face or facial expression rec-
ognition. On the other side, psychologists and neurophysiologists try to understand how the human face is
perceived by the human visual system, and develop models based on various experiments. Not surprisingly,
some models proposed by the computer scientists, such as PCA, ICA, or Gabor image decomposition, have
been accepted as biologically plausible, since they share common properties with biological vision models. In
this paper, three other models (NMF, LNMF, and DNMF) were investigated. Although the main goal of this
paper was to analyze their receptive field masks, it is worthwhile to mention common properties and differenc-
es between these three methods in order to draw a general conclusion. Table 1 summarizes several common
and specific characteristics of these models.

The basic principle of efficient information transfer (and hence efficient coding) is to reduce the redundancy
of the input signal. It is well-known that the natural stimuli (images) contain a large amount of redundant
information that loads the dynamic range of the transmission channel without transferring information
[15,6]. Generally, the term efficient coding and information redundancy reduction was associated with finding
principal or independent components in representing a set of images. One fundamental difference between the
methods mentioned in the Introduction and these three algorithms analyzed in this paper is that neither NMF,
U
N

C

Table 1
Characteristics of NMF, LNMF, and DNMF methods

Decomposition method

NMF LNMF DNMF

Non-negative constraints Yes Yes Yes
Redundancy reduction No Yes Yes
Sparseness degree Holistic Local Sparse
Class-dependent learning No No Yes
Learning type Unsupervised Unsupervised Supervised
Salient feature extraction Yes No Yes
Spat. freq. bandwidth Lowpass Highpass Bandpass
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LNMF, nor DNMF assume features independence. ICA and other methods that rely on this assumption work
well when they are applied on natural scenes. Definitely, natural images can contain more independent fea-
tures than facial images. Here, each image has the same features (eyes, mouth, etc.) spatially located in approx-
imately the same position. This might be a reason why ICA performed worse than NMF, LNMF, and DNMF
when it comes to classify facial expressions [12].

Sparsity is another important issue that comes from neurophysiological field and has several advantages
over holistic or local representations [27]. It is argued that the tuning of the neurons in the temporal cortex
that respond preferentially to faces represents a trade-off between fully distributed encoding (holistic or global
representation, as NMF result) and a grandmother cell type of encoding (local representation, achieved by
LNMF) [28]. This trade-off seems to be provided by DNMF representation.

The next three characteristics, namely class-dependent learning, training type, and salient feature extraction
are closely related to each other. NMF and LNMF are unsupervised approaches while DNMF is supervised
one. In a feature extraction framework supervised learning is often necessary to guide feature development.
Forcing a class-dependent learning by means of new constraints on coefficients expression, combined with
the sparsity constraint on basis images (i.e., relation

P
iuii! min), leads to a DNMF sparse image represen-

tation where the salient facial features (emotion-specific patterns that contribute most to expression recogni-
tion) are selected from the entire face image while the contribution of irrelevant features is diminished.
However, it should be noticed that this class-dependent approach is rather a condition which comes from pat-
tern recognition domain.

As a general conclusion, when comparing these three matrix factorization algorithms with each other, we
favor DNMF since it fulfills several requirements: its enhances the class separability (which a pattern recog-
nition issue) compared to the first two approaches, minimizes the redundancy over basis images (similar to
efficient coding principle) and leads to a moderate sparse image representation (a neurophysiological issue).
We found that, when DNMF is applied to faces, the receptive fields obtained by its basis images are bandpass
filters covering the entire frequency orientation domain. Neurophysiology studies must be performed in order
to validate the values of the parameters of the DNMF receptive fields.
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