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Abstract—Music genre classification techniques are typically that more than one music genres may be associated with a
applied to the data matrix whose columns are the feature veots  certain recording. Accordingly, the creation of a univérsa
extracted from music recordings. In this paper, a feature vetor genre taxonomy remains still infeasible. Automatic geras-c

is extracted using a texture window of one sec, which enables~... . g . . . .
the representation of any 30 sec long music recording as 5 sification techniques classify recordings into distinbaisle

time sequence of feature vectors, thus yielding a feature miax. ~ genres by extracting relevant features and employing rpatte
Consequently, by stacking the feature matrices associated any recognition algorithms [3]. The accuracy of such genre-clas
dataset recordings, a tensor is created, a fact which necétsges  sification techniques often exceeds that reported for hsman
studying music genre classification using tensors. First, aovel \yisn moderate music training [4]. However, the research on
algorithm for non-negative tensor factorization (NTF) is derived . e

that extends the non-negative matrix factorization. Seveal vari- aUtO_mat'C genre classification appears to have reachedk IO_C
ants of the NTF a|gorithm emerge by emp|oying different cost Maximum I‘ecently due to the lack of Cal‘efully annotated musi
functions from the class of Bregman divergences. Second, acorpora with ground truth [5].

novel supervised NTF classifier is proposed, which trains adsis ~ Most genre classification approaches represent each music
for each class separately and employs basis orthogonalizan. recording by a feature vector and consequently employpatte

A variety of spectral, temporal, perceptual, energy, and pich i . . 2
descriptors is extracted from 1000 recordings of the GTZAN recognition algorithms in order to perform classification.

dataset, which are distributed across 10 genre classes. TTF  this paper, each recording is represented by a time sequence
classifier performance is compared against that of the multayer comprising feature vectors extracted every one sec, thus
perceptron and the support vector machines by applying a forming a feature matrix. Starting with a comprehensive set
stratified 10-fold cross validation. A genre classificatioraccuracy of features measuring spectral, temporal, perceptuarggne

of 78.9% is reported for the NTF classifier demonstrating the d pitch ch teristi f th di feat fole
superiority of the aforementioned multilinear classifier over and pitch charactensucs ot the recordings, feature selec

several data matrix-based state-of-the-art classifiers. is applied next by using a branch-and-bound search strategy
in order to determine the subset of the most discriminative

features with respect to the ratio of the inter-class dsiper
over the intra-class dispersion [9] and keep the number of
the features to be processed into a manageable size. By
. INTRODUCTION stacking the feature matrices associated to recordingssat
URRENT advances in multimedia data management ardcreated, which provides a more detailed representation o
retrieval have enabled the creation, distribution, andlusic characteristics. Tensors are considered as extensio
availability of vast amounts of music data including newf matrices or vectors [6]-[8]. A novel non-negative tensor
content as well as digitized one from analog archives. Aidégctorization (NTF) algorithm is proposed whose roots are
by the growth of the internet, these databases have becaraged back in the non-negative matrix factorization (NMF)
highly popular for personal as well as commercial use (e.@he algorithm is able to decompose a tensor in Kruskal
online music retailers or digital libraries). Accordingithe format [8]. That is, to decompose a tensor into a sum of
demand for tools to analyze and retrieve music content h@lg@mentary rank-1 tensors. The algorithm can employ sev-
emerged, leading to flourishing music information retriev@ral cost functions, which belong to the class of Bregman
(MIR) research. divergences [10]. The Bregman divergences have previously
Music genres are the most popular music content descrifeen used to solve the non-negative matrix approximation
tors, since they are employed by both the users and theblem [11]. Details on the derivation of the tensor eletnen
music industry [1]. One may argue that the genres sumpdate equations are provided and the computational cost of
marize music recordings based on some common percepti@l algorithm is estimated. In addition, a novel supervised
characteristics [2]. However, music genres have not yeh beglassifier based on the NTF is proposed, which trains a basis
precisely defined, because they are primarily determined fay each class separately and employs basis orthogoriatizat
users’ taste and may be culturally dependent. Not to menti®he proposed classifier extends a similar classifier that was
, , _ g based on the NMF [34]. Preliminary results for music genre
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. . TABLE |
10 music genre classes [12]. Several variants of the NTF ¢ assiFication AcCURACY (IN %) OF SEVERAL MUSIC GENRE

classifier employing different feature subset sizes aredes CLASSIFIERS IN CHRONOLOGICAL ORDERTHE HIGHEST ACCURACY IS

and their music genre classification accuracy is measuiad us SHOWN IN BOLDFACE

a stratified 10-fold cr(_)ss—validation._For comparison PSKS, Reference]  Dataset Classifier | Best Accuracy
support vector machines and multilayer perceptrons a@ al [12] GTZAN GMM 610
tested on the same database. In addition, experiments are [13] GTZAN SVM - LDA 785
performed using the features extracted by the MARSYAS$ 3] GTZAN SUM 749
platform [39]. An average genre classification accuracy of [14] GTZAN ADABOOST 805
78.9% with standard deviation equal to 2.6% is reported for—[15] GTZAN GMM 74.0

the NTF classifier, when the Frobenius norm is utilized wit [17] MIREX 2004 | NN - GMM 823

a subset of 80 features. The aforementioned accuracy places 3 MIREX 2004 SVM 704

the proposed NTF classifier within the most performing stat [15] MIREX 2004 GMM 835

of-the-art genre classification methods. The superiofiitthe
NTF classifier against the state-of-the-art data matriseba
classifiers is also demonstrated. Such results motivatadur

research using tensorial representations into audio psit® 3|0 employed the same dataset. By utilizing a spectrakbasi
applications. derived by the NMF, that is fed to a GMM classifier, they
The outline of the paper is as follows. Related work oBptained a 74.0% classification accuracy [15].

automatic music genre classification is discussed in Sedtio . . .
Section IIl details the proposed NTF method and establish éAnother collection used extensively is the MIREX 2004.
taset, released for the MIREX genre and rhythm classifi-

links with the NMF as well as other methods proposed for” 161, The MIREX 2004 q .

the NTF. In this section, a supervised classifier based on ts'%n rceocr:)tr?jsiasgg b]élonging o 6 gegre:rilaizzetfﬁgt?)lgst
roposed NTF is also described. Section IV briefly presdms t . ) i

prop yp ccuracy (i.e. 83.5%) was reported by Holzapfel and Stglian

dataset used, the feature set employed in the experimeiats, . o
thoroughly assesses the music genre classification agcur ]. Pampalk et al. used the nearest neighbor (NN) classifie

i 0
of the proposed NTF classifier against that of state-ofalhe-w'th G.MMS and obtamedf_ andaccuhraCé/_If)foli.g/o [17]. tl)n our
classifiers. Conclusions are drawn and future directioms aqxperlments, we are confined to the ataset, because
indicated in Section V. It contains more genre classes than the MIREX 2004 one, thus

being a more comprehensive dataset for genre classification

Other notable music genre classification approaches iaclud
that of Burred and Lerch, who proposed a 3-level music

Several benchmark datasets have been collected makiyemre taxonomy covering 13 genres [18]. In addition, 3
the performance of the various music genre classificatispeech classes, and one class for background noise were also
approaches comparable. Such benchmark datasets are listatsidered. A dataset was created containing 50 recordings
in Table | along with the best accuracy reported for state-dbr each genre. Timbral and rhythmic features were extcacte
the-art classifiers in chronological order. The GTZAN datasalong with MPEG-7 audio descriptors. A GMM classifier
was introduced by Tzanetakis and Cook [12]. It contains 1008ached classification accuracy of 59.76% for all classes. |
audio recordings split into 10 genre classes. The paramet2005, Meng et al. created two datasets for genre classificati
of a Gaussian mixture model (GMM) classifier were estimatg#l9]. The first dataset contains 100 recordings from 5 genres
by the iterative expectation-maximization (EM) algoritim and the second dataset 354 music samples from the ama-
[12]. A 61% correct classification was reported for timbrezon.com database. Short, medium, and long-time features we
rhythmic, and pitch features. The same dataset was usedeyracted, and two classifiers were tested. The first classifi
Li et al. who employed support vector machines (SVMs)yas a single-layer neural network and the second one was a
and linear discriminant analysis (LDA) for classificatidlB]. Gaussian classifier that employs full covariance matrices.
The Daubechies wavelet coefficient histograms were usexported best accuracy was 95% on the first dataset and about
as features and the reported classification accuracy of B%% on the second dataset. More recently, Barbedo and Lopes
SVM classifier reached 78.5%. Lidy and Rauber employguoposed a 4-level hierarchical genre taxonomy covering 29
a pairwise SVM classifier applied to the GTZAN dataset [3music genres [20]. Several timbre features were selectdd an
The extracted features include rhythm patterns, a stalstia classification procedure was developed that uses pairwise
spectrum descriptor, and rhythm histogram features. The genre comparison. Overall, a genre classification accuracy
ported best classification accuracy was 74.9%. Bergstraoft61% at the lowest genre level was reported. Finally,
al. tested the mel-frequency cepstral coefficients (MFCC%}ataltepe et al. employed 225 MIDI music pieces covering
the fast Fourier Transform coefficients, the linear praedict 9 genre classes [21]. Timbral, rhythmic, and pitch content
coefficients (LPCs), and the zero-crossing rate (ZCR) on theatures were extracted, and the recordings were classified
GTZAN dataset [14] and reported a classification accuraoging a 10-nearest neighbor classifier (10-NN) or a norredliz
reaching 82.5% for the BABOOST meta-classifier. It should compression distance classifier. Using a combination of the
be noted, however, that the classification accuracy in [18§ waforementioned classifiers, a genre classification acgufc
measured without cross-validation. Holzapfel and Stylian 62% was reported.

II. RELATED WORK



BENETOS AND KOTROPOULOS: NON-NEGATIVE TENSOR FACTORIZADN APPLIED TO MUSIC GENRE CLASSIFICATION 3

I11. N ON-NEGATIVE TENSORFACTORIZATION

In this section, a novel non-negative tensor factorization
(NTF) technique is developed. First, the non-negative imatr .A
factorization (NMF) is briefly discussed, because the NTF I
could be treated as a high-order generalization of the NMF
for tensorial data. Some definitions from tensor algebravol /'
and the motivation for using tensors is described. Previous Is
NTF algorithms are reviewed next and the proposed one is L
detailed. Contrary to previous approaches, the proposdd NT
algorithm is not limited to 3rd order tensors, but can be igpjpl Fig- 1. 3rd order real-valued tensgt € Rf1xf2x1s.
to nth (n > 3) order tensors. In addition, the algorithm can be
formulated using a variety of objective functions. Obvilgus ) o _
its use is not restricted to audio processing only. Finaly, MPoses spatial locality in the solution and consequently
novel supervised classifier based on NTF for 3rd order tenséfveals local features in the data matiix[24].
is proposed, which performs separate training for eacrsclasA more general view of the NMF is set under the so-
and employs basis orthogonalization. called non-negative matrix approximation (NNMA) in [11h |

Throughout the paper, tensors are denoted by boldface EQYMA, instead of minimizing a specific objective function,
script calligraphic letters (e.gd), matrices are denoted bythe mlnlmlgatlon of a class of objective functions, calle_d
uppercase boldface letters (eld), and vectors are denotedBrégman divergencess proposed. The same approach will
by lowercase boldface letters (e.g). The elements of all be adopted for the derivation of the NTF in Subsection 11I-D.
the aforementioned mathematical structures are denoted by
lowercase letters indexed by one or more indices. For exam
the elements of matrixJ are denoted as;,;,. Let R andZ
be the sets of real and integer numbers, respectively. Quantities addressed by more than two indices are often

employed in signal processing applications. To descriloh su
guantities, tensors need to be employed. In multilineazlaa,
A. Non-negative Matrix Factorization tensors are considered as high-order generalizations tf-ma

_ R I i
Subspace analysis seeks low dimensional structures of pc§§ and vectors [6]-[8]. A real-valued vectoe R', I € Z is

terns within high dimensional spaces. NMF is a subspa gated as a flr_st-order tensor. S|m|_larly, a real-valuedrima
- - A € ROz with I, I, € Z is defined as a second-order
method able to obtain a parts-based representation oftsbj ’

by imposing non-negative constraints. It was first intrazhilic ten?or. A reg\;}yglll:sq.g?soahof C}rderg |§_(j(if|ned ng tT]e
as positive matrix factorization by Paatero et al. [22] an ctor spacex » Wheres; € &,1=14,...,n. Bac
ment ofA is addressed by indices, i.e.a;,;,..;,, Where

was re-termed as NMF by Lee and Seung [23]. The problefn ) ot
addressed by the NMF is as follows. Given a non-negative _ 1’2’] "’fIiI' A 3rdf ohrder tensor IS fketﬁhed |n.F|gure 1.
real-valued data matri%v € R"*™, find the non-negative Mode- unfolding of the tensor yields the matrixA;) €

matrix factorswW e R;L_Xk andH ¢ le_xm so that RE: XTi, WhereTi £ Li--- Ii—lli-‘rl -+ Iy In the fOIIOWing,
the operations on tensors are expressed in matricized form
A k [8]. The symbolx; stands for the-mode product between a
3 wioh,
i=1

F?:15. Tensors and Multilinear Algebra Basics

k
Va~WH=) w;h]

() tensor and a matrix [6]. It can be computed via the matrix mul-
=1

tiplication B(;) = UA(;) followed by re-tensorization to undo
whereo stands for the outer product. Obviously; are the the mode+ unfolding fori = 1,2,...,n. For example, the
columns of W and h are the rows off. W contains the 2-mode product between the 3rd order tenfoe R/t /2%

basis vectors, while the column vectors Hf contain the and the matrixU e R’2*” yields the 3rd order tensor
weights needed to properly approximate the correspondifg—= A x, U e Rt */*!s_ The inner product of twaith
column vector ofV as a linear combination of the columngrder tensorsA and B is denoted as< A, B >. The norm
vectors of W. Usually, k is chosen so thatn + m)k < nm, of tensorA is defined ag|A|| = v< A, A >.

thus resulting in a compressed version of the original dataan n-order tensord has rankl, when it can be decomposed

matrix. To find the approximate factorization (1), a suieablas the outer product of vectorsu,u® ..., u® i.e.
objective function has to be minimized. L& = [v;;] and W @ )
WH 2 Y = [y;;]. In [23], the generalized Kullback-Leibler A=u"ou"o.. ou™. 3)

That is, each element of the tensor in (3) is given by

Qjyin.. iy — U(l) u(-z) ugn) for all e = 1,2,...,1 and

(KL) divergence betweelV and WH was used:
n m Vi
D(VI[WH) => ) | logﬁ — Vij + Yij @ ¢r=1,2,.. .,Zﬁ. The rank of an arbitrary:-order tensorA
i=1 j=1 Y is the minimal number of rank-tensors that yieldd when
The minimization of (2) can be solved by using iterativéinearly combined.
multiplicative rules [23]. Frequently, additional coretits are  In the following, several products between matrices shall b

incorporated into (2). For example, the local NMF algorithmeeded, such as the Kronecker product denoted land the
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Khatri-Rao product denoted by, whose definitions can be generalized to higher order tensors nor can degenerateto th
found elsewhere, e.g. [8]. NMF model for 2nd order tensors.
In this paper, we would like to derive a generic unified

I . NTF algorithm, which can handleth order tensors and can
C. M9t|vat|on for Usmg '_rensors and the Proposed Norﬁegenerate to the NMF, when= 2.
negative Tensor Factorization

_Th_e NMF h_as been useq extensively in signal _processie)g Proposed NTF Algorithm
yielding promising results in the past years. A list of the ] - ) )

numerous NMF applications can be found in [11]. However, Having set our objectives, we decided to build upon the
the NMF as any other subspace method deals only wiiiPdel proposed by Shashua and Hazan [26], which can be
vectorized data. By vectorizing a typical 3rd order tensé¥t€nded tonth order tensors and degenerates to the NMF,
stemming from 900 training recordings, which are repremgntVheén» = 2. A preliminary version of the algorithm was
by 30 feature vectors of 34 dimensions each, one obtaffst introduced in [33], which was also the basis for the
900 vectors of 1020 dimensions. Many pattern classifiefdScriminant NTF algorithm in [32]. We resort to the Bregman
cannot cope with the aforementioned dimensionality givéflvergences in order to offer a unified factorization fraroeky

the small number of training samples. In addition, handlin‘gih'Ch includes as special cases the Frobenius norm, the KL-
such high-dimensional samples is computationally expensid'vergence, and the ltakura-Saito (IS) distance. The Beggm
For example, eigen-analysis or singular value decompusitidivergences, proposed by Bregman in 1967 [10], are defined
cannot be easily performed. Despite implementation issués ,

it is well understood that vectorization breaks the natural Dy (z,y) = ¢(z) = o(y) = &'(y)(z - v), (4)
structure and correlation in the original data. Thus, ineordyhere(z) is a strictly convex function defined on a convex
to preserve the natural data structure and correlationgimset § R and ¢/(y) denotes the first derivative of()
sionality reduction operating directly on tensors ratfe@nt eyaluated aty. By definition, the Bregman divergences are
vectors is desirable. The concept of low-rank decompasitigon-negative [11] and can be extended to tensors. Let us

of high-order signal representations is addressed in 8,[ consider thenth order tensor€X,Y € Rl xI2xxIn_ The
where several algorithms are reviewed. Thus, a high-ordgfiowing identity holds:

generalization of the NMF could be of great importance in ;
the analysis of such high-order signal/pattern repretienta -

Some NMF generalizations have been proposed mostly forD‘/’(x’H) - Z Z Z Dy (Tisig.ins Yirig.win): (5)
3rd order tensors in face detection or recognition apptioat nEtE=l =t
In 2005, Shashua and Hazan proposed a generalization of fiee#(z) = 322, Dy(z,y) corresponds to the Frobenius norm.
NMF for nth order tensors [26]. The problem was formulatedor ¢(z) = xlog(x), the Bregman divergence coincides with
as the decomposition of a tensor into a sunk oéink-1 tensors the KL divergence, whereas fgz) = —log(z), the resulting
using the Frobenius norm as distance. Multiplicative updaDs(z,y) is recognized to be the Itakura-Saito (IS) distance.
rules were employed and an application to sparse imagegodin Therefore, our goal is to decompose a ten$dr ¢
was discussed. Hazan et al. extended the previous work By */>**'* into a sum ofk rank-1 tensors:
employing the KL divergence (also known as relative entjopy &
as distance [27]. V= Z u§1) o u§_2) 0.0 u§”) (6)

In 2006, Boutsidis et al. introduced an algorithm for 3rd

I Is

j=1

order tensor decomposition called projected alternataastl @ . A
squares with initialization and regularization (PALSIRB[. Wwhere u” € RY and j = 1,2,...,k Let UW £
This algorithm also employed the Frobenius norm as distaneg” |}’ | ... [u\”], i = 1,2,...,n. ObviouslyU(® e RT: **,

and alternating least squares was used to derive the deeomy us introduce the compact notation
sition. Experiments were performed on eye image databases— ) ,
for biometric iris recognition applications. Heiler andh®érr @iU LU ..U U o...oUM. (7)
proposed a generalization of the sparse NMF algorithm fdr 3{n
order tensors applied to face detection [29]. The Frobenius -
norm was used as distance in this case, too. The algorithm i n ; i

was termed as sparsity-constrained NTF, because a sparsity) — E(,), IJ( o oU H)v@ u'o. "U(1)>

J

matricized form, the factorization (6) can be written as:

maximization algorithm was employed. W) H®
In 2007, Cichocki proposed algorithms for 3rd order NTF _ oy -~ U T 8
using alpha and beta divergences [30]. These algorithms @Z ' (®)

employ(_ed alternating Interior-point grad_|ent and f|xed_m)0| From the inspection of (8), one may readily see that the NMF

alternating least squares techniques incorporating ispars ults if W = W) — U andH = [HO]T = [U®]T

constraints into the decomposition. The just described N B a o a a '

method was incorporated into multilayer networks in oraer t o n L Lich T I

improve the performance of multi-way blind source separati £ e .. ) (9)
2,5 X

in EEG [31]. It should be noted that this model cannot be oi—1=loit1i=1  on=1
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The following minimization problem with Bregman diver-
gences is solved
ug-n), V)

k
min Dy <Z ugl) o u(2)
j=1

( )>0 (10)

by using auxiliary functions, as is analyzed in Appendix I.

In particular, for the KL divergence (i.ep(x) = zlog(z)),
the following multiplicative update rule is obtained foreth
elements ofu(‘) denoted as z)

e1--ei—1leiy1--en

(l) _ (i) (Zgza-]gl i 10i41+--0n logﬁ

o1--ei—1leif1--en

< Uy -exp
! Zgiajgbngi—lgiJrl---Qn
) ] (11)
whereag.? is theth element of vectoug.‘) before updating,
j=1,2..,ki=12,...,n,1=1,2,...,I; and
1 i—1 i+1
Qjor...0i10iqt1---0n — u;g)l e glgl IU’;ZQH: t ’U/;Zl (12)
(i=1) @) (1) (n)
Bov..oiiloir.. Z u] 91 T g WYy T Yo,
(13)
For ¢(z) = %mQ (that is, when the Frobenius norm is used),

the resulting update rule is:

(i) Egla]Ql 0i—10i41--0n "~ Vor...0i—1l0it1...0n
jl

(l)(—u

Zgi Qjo1...0i-10it1-0n " /891~~~Qi—1l9i+1~~~£’n

(14)
Finally, for ¢(z) = —log(z) (i.e. when the IS distance is
employed), the update rule is:

~(z) §

jl E Qjoq...
Qi Voy...05_1lej41---0n

QXjoy...05_10i41---en

Qi 691---91'71191'4»1---971

u'®

Jl<_

(15)

0i—10i41--0n

In order to apply the aforementioned NTF algorithms ta:&m
order tenso®, then matricesU(®, i = 1,2, ..., n, should be

initialized by random numbers between 0 and 1. The update

rules (11), (14), or (15) are applied to the column vecto(fé
of matrix U®, j =1,2,...,k. The proof of convergence for

the Frobenius NTF algorithm can be found in Appendix I. The
computational cost of the various NTF algorithms is derived

in Appendix II.

E. Proposed 3rd Order NTF Classifier

The novel NTF classifier for 3rd order tensors discussed
next was inspired by the NMF classifier proposed in [34],
where a basis for each class was trained separately andsthe te

data were projected onto an orthogonalized basis. Predimin

results using the proposed classifier for 3rd order tensors i

music genre classification were reported in [33]. Iétbe

the number of genre classes. The proposed 3rd order NTF

classifier considers a tenstt. € Rlet x2xIs with I, being
the number of training recordings in classc = 1,2,...,C
(i.e. 90 for stratified 10-fold cross-validation in the GTRA
dataset),l> being the dimensionality of feature vectols,=

1) Decompose the training tensor for each gewe €
Rl xl2xls o =12 .  C,ie.

- ) o u®
(2 e
Z U, Uy

j=1

(16)

2) Determine the 1st mode of the ten$df by unfolding
[6], [8]:
T

Vo, =00 (U8 0 U (17)
where® stands for the Khatri-Rao matrix product. Thus,
U(3) ® U(Q) has dimension$l;I,) x k, while Ve, is
a matrix with dimensiong,.; x (I31,). In the following,
we deal with the transpose of matiik,, , i.e.

Vo |7 = (US) ® U?)) Uy

3) Pe(:rform QR decomposition on the basis maIﬂS?) ®
Uf):

(18)

U® oUu® = Q. R, (19)

whereQ. is a(I31>) x k column-orthogonal matrix (i.e.
QT Q. is thek x k identity matrix}t andR, is ak x k
upper triangular matrix. Store matric€}. and H. =
R. [UE”]T. It is worth noting that the Gram-Schmidt
orthogonalization does not affect the non-negativity of
the basis matrix. It is used to calculaterrectly the L,
norms in a non-orthogonal basis.

4) For testing, the feature matri¥; of dimensionsl, x
I3 is considered. The feature matrix is arranged to a
column vectorv; of dimensionsl» /3 by concatenating
its columns. The column vectat; is projected onto the
subspaces defined by the basis matrices of the classes:

h. =Ql v, (20)

and has lengtlt.

5) LetC'SMy,,(c) be the cosine similarity measure (CSM)
betweenh.; andh,,,, m = 1,2,...,1. (i.e. themth
column of matrixH,.):

h% h,,,
||| [ hem ]
Let C'S My, (c) denote thenth largest element in the

set {CSMyy(c), m = 1,2,...,1,}. The decision

taken by the classifier is based on

CSMim(c) = (21)

K
= > CSMy(c)
m=1
where K « 1.1 (e.g. K = 3). The class label of the
test patternv; is determined by the maximum among
wt(c), i.e.:

(22)

(23)

¢ = argmax {w(c)}.
c=1,2,...,C

A block diagram of the testing procedure of the proposed

30 being the number of feature vectors extracted per recordig@pervised NTF classifier is sketched in Figure 2.

(i.e. the number of 1 sec segments each recording is split to)
1obviously, Q. QT is not equal to the identity matrix.

The algorithm steps are as follows:
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TABLE Il
> Q%F - hiy —»| H; @(1) THE FEATURE SET
No. Feature # Values per segment
. ) w(2) 1 Short-Time Energy (STE) Ix4=14
Vi Qg hat Ho 2 Fundamental Frequency (FF) 1x4=4
arg 3 Total Loudness (TL) 1x4=4
4 Specific Loudness Sensation (SONE) 8x4=32
max 5 Spectrum Centroid (SC) 1x4=4
6 Spectrum Rolloff Frequency (SRF) 1x4=4
o wy (C 7 Spectrum Spread (SS) 1x4=4
i Qg »hcy —»| He L 8 Spectrum Flatness (SF) 4x4=16
9 | Mel-frequency Cepstral Coefficients (MFCCE) 24 x4 =96
h. = Q' v, 10 Auto-Correlation Values (AC) 13
¢ 11 Log Attack Time (LAT) 1
12 Temporal Centroid (TC) 1
Fig. 2. The proposed supervised NTF classifier. 13 Zero-Crossing Rate (ZCR) Ix4=4
14 Spectral Difference (SD) 1x4=4
15 Bandwidth (BW) 1x4=4
16 Phase Deviation (PD) 1x4=4
IV. EXPERIMENTAL RESULTS 17 Pitch Histogram (PH) 1x4=4
. . . " . . 18 Rhythmic Periodicity (RP) 1x4=4
In this Section, music genre classification experiments are Total number of features 207 ‘

discussed. In subsection IV-A, the employed dataset is de-
scribed. The feature extraction is detailed in subsecti6B,|

while the feature selection method is discussed in sullBectsensation (SONE) coefficients are extracted for each audio
IV-C. Finally, the accuracy using the various classifiers i§ame of 10 msec duration.

reported in subsection IV-D. Except features 10-12, the remaining features are computed
on frame basis and their 1st and 2nd moments are exploited
A. Dataset by averaging over the frames within each 1 sec long texture

The GTZAN database was employed for genre classificati$indow. Similarly, the 1st and 2nd moments of the first-order
experiments. The database contains 1000 audio recordifiggne-based feature differences are computed. This eeplai

distributed across 10 music genres [12], namely: Classic§l® factor 4 appearing in Table II. In total, 207 features
Country, Disco, HipHop, Jazz, Rock, Blues, Reggae, P e extracted from each texture window. All features but the

and Metal. 100 recordings are collected for each genre. AJFCCs are non-negative. Accordingly, they can be employed

recordings are mono channel, are sampled at 22050 Hz r&téectly into the NTF. For the MFCCs, their magnitude is
and have a duration of approximately 30 sec. Each recordiffgained only. The computation of the aforementioned featu

is separated into 30 segments (i.e. texture windows) of 1 S¥ery 1 sec yields the tens¥rof dimensionsl 000 x 207 x 30.
duration. Such a texture window has commonly been usedror comparison purposes, a smaller feature set is alsalfeste
in genre classification experiments, because it incredses Yhich includes the features extracted by the Music Analysis
classification accuracy compared to direct analysis fratles Retrieval and Synthesis for Audio Signals (MARSYAS) plat-
[12], [19]. For each 1 sec long texture window, 207 featurd@rm [39]. This feature set consists of the 1st order moments

are extracted, which are described next. of the following timbral features: Spectral Centroid, Spaic
Rolloff Frequency, Spectral Difference (also known as sjaéc

. flux), and 30 MFCCs per frame, which are averaged over 1 sec
B. Feature Extraction texture windows. Thus, the tensor of the MARSYAS features

In music genre classification experiments, the extractad feas dimension$000 x 34 x 30.
tures usually belong into 3 categories, namely timbre,mmyt
and pitch-based ones [1], [2]. In this paper, a combination o
descriptors measuring energy, spectral, temporal, ptrakp c
and pitch characteristics of the music recordings is exgalor Careful feature selection is essential for classificatidere,
[35]. The complete list of the extracted features can be douthe optimal feature subset maximizes the ratio of the iokess
in Table II. dispersion over the intra-class dispersioh:= tr(S,'S),

The 1st feature measures the energy of the audio signaheretr(-) stands for the trace of a matri%,, is the within-
Feature 2 is computed by maximum likelihood harmoniclass scatter matrix, arft}, is the between-class scatter matrix.
matching. Features 3 and 4 refer to the perceptual modelingetails on the computation d8,, and S, can be found in
the human auditory system [17]. The spectral shape is caghtuany textbook on pattern recognition (e.g. [9]). Because, in
by features 5-9 and 14-15. The temporal properties of toer case, the number of distinct subsets having cardinality
signals are correlated with features 10-13 and 16. Feaftire(1 < I, < 207) is (2072707[72'),[2, the branch-and-bound search
describes the amplitude of the maximum peak of the foldetrategy is employed for complexity reduction. In this &gy,
histogram [36]. Feature 18 was proposed in [37]. Featuresaltree structure of207 — I, + 1) levels is created, where every
2,5, 7,11, and 12 were computed using the definitions nbde corresponds to a subset. The tree root corresponds to th
the MPEG-7 audio framework [38]. It should be noted thdtll set (e.g. 207 features), while each leaf node corredpon
24 Mel-frequency cepstral coefficients and 8 specific losdneio a subset of cardinality,. The branch-and-bound search

. Feature Selection
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TABLE IV .
AVERAGE ACCURACY ACHIEVED BY SEVERAL CLASSIFIERS WHEN EITHR
THE SUBSET OF80 SELECTED FEATURES OR THEMARSYAS FEATURE 791
SET WAS EMPLOYED
781
Classifier 80 Feature Subset| MARSYAS Feature Set <
NTF Frobenius 78.9% 68.3% z
SVM 77.2% 67.6% 5 6l
MLP 77.0% 69.1% <
NTF KL 70.4% 61.4% g sr
NTF IS 63.6% 55.0% g 7l
3 Sl —— swM
— —— — MLP '
strategy traverses the structure using a depth-first seeitbh - —— — NTF Frobenius

backtracking [9].
In order to apply the feature selection algorithm, the da
tensor should be transformed into a matrix by unfolding [6 70— o P %
H 7x30000
Thus, the unfoldlngVBg) € RY

is computed from Feature Subset Cardinality

tensorV € R\2°0*207%30 "Several feature subsets were derived

with respect to maximizing comprisingl, € {60,70,80,90} Fig. 3. Average music genre classification accuracy for tmious feature
features out of the 207 initial features. The subset cornmgyis subsets.

80 features listed in Table Il is found to yield the highest

music genre classification accuracy, when it is employed in

the proposed NTF Frobenius classifier (cf. subsection IV-Dgither the subset of 80 selected features or the MARSYAS
It is seen that 31 out of the 80 selected features are momedieture set was employed. In Figure 3, the average accuracy

of the MFCCs or their first-order differences. of the SVM, MLP, and NTF Frobenius classifier is plotted
versus several subset cardinalities. From Figure 3, it @an b
D. Performance Assessment seen that the highest average accuracy of 78.9% was obtained

Experiments were performed by employing various subsdt¥ the proposed NTF Frobenius classifier, when it is applied

of selected features as well as the MARSYAS feature set usifgy the subset of 80 selected features listed in Table I,
a stratified 10-fold cross validation, which is widely used i TN€ standard deviation of the accuracy achieved by the NTF

genre classification experiments on the GTZAN dataset. Frobenius classifier is found to be 2.60%. The aforementione
The rank of the 3rd order genre class-dependent teWisor classification accuracy outperforms that reported in [12] (

should Satisfy [8] (and references therein) 610%), [3] (|e 749%), [15](|e 740%), and Slightly‘ex
' ceeds that reported in [13] (i.e. 78.5%). In [14], a greater
k <min{le1ly, Ie1 I3, 1215} (24) classification accuracy than ours is reported (i.e. 82.5%6) b

employing boosting. However, since cross-validation was n

and 30, respectively, the inequality (24) impligs< 301, used, the latter accuracy is not directly comparable witis ou

if I, < 90. Various values ofk were tested for the NTF (i.e. 78.9%). The NTF classifier, when the Frobenius norm

algorithms within the proposed NTF classifier. The highe as used, attained a higher accuracy than that achievecdeby th
VM or the MLP for 80 selected features. This was not the

genre classification accuracy was obtained for the follgwi i
values of k: k — 55, when the feature subset compriseS2S€ when 60 or 70 features were selected, as can be seen in

I, = 60 features;k = 61, when the number of selected igure 3. ) o
featuresl, is 70 or 80; and: = 64, whenl, = 90 features are Concerning the classification accuracy when the full set of
selected. For the MARSYAS sékt,was set to 22. The number207 features is used with , it was measured 54.7%, 49.2%,
of termsK taken into account in (22) was set to 3 for all NTFNd 40.8% for the NTF Frobenius, NTF KL, and NTF IS
classifiers. classifiers, respectively, witk set to 86. The corresponding
The performance of the NTF classifier was Comparégzcuracies for the _SVM or the MLP classifiers were 51.8%
against that of multilayer perceptron (MLP) and SVMs. I@nd 53.5%, respectively.
particular, a 3-layered perceptron with the logistic aatitn The NTF Frobenius classifier outperforms the SVM for all
function was used. Its training was performed by the backubset feature cardinalities tested. The NTF classifieieaet
propagation algorithm with learning rate equal to 0.3 and lower accuracy, when either the KL divergence or the IS
momentum equal to 0.2 for 500 training epochs. A multdistance was employed, than that when the Frobenius norm
class SVM classifier with a 2nd order polynomial kernel withvas used.
unit bias/offset was also tested [40]. The experiments withIf the comparison is made across the sets of features
the aforementioned classifiers were conducted on the matixployed, the inspection of Table IV reveals that the set of
unfolding V, € R **%°% using 10-fold cross validation, 80 features listed in Table Il clearly performs better than
where I, = {60, 70, 80,90}. the MARSYAS feature set within all classifiers. Using the
The average music genre classification accuracy achieWddRSYAS features, the best classification accuracy of 69.1%
by the classifiers over the 10 folds is listed in Table 1V, whewas achieved by the MLP classifier. When the NTF Frobenius

Since by the experimental protochl andI; are fixed to 90
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TABLE Il
THE 80 FEATURES SELECTED BY THE BRANCHAND-BOUND ALGORITHM.

No. Selected Feature No. Selected Feature

1 Mean of 2nd SF coefficient 41 Mean of 1st order difference of 2nd SF coefficient
2 Variance of 1st SONE 42 Variance of SS

3 Mean of SF 43 Mean of 8th SONE

4 Mean of 2nd SONE 44 Variance of 2nd SF coefficient

5 Mean of BW 45 Variance of 1st order difference of 20th MFCC

6 | Variance of 1st order difference of 13rd MFCC 46 Mean of 9th MFCC

7 Mean of 12th MFCC 47 Variance of 1st order difference of 2nd MFCC

8 Mean of SC 48 Mean of 1st order difference of 10th MFCC

9 Mean of 1st SF coefficient 49 Mean of 5th MFCC

10 Mean of SS 50 Mean of 3rd MFCC

11 Variance of TL 51 Variance of 1st order difference of 1st SF coefficient
12 | Variance of 1st order difference of 5th MFC( 52 7th AC coefficient

13 Mean of 3rd SF coefficient 53 Mean of SRF

14 Variance of 8th MFCC 54 Variance of 1st order difference of 24th MFCC

15 Variance of SD 55 3rd AC coefficient

16 Mean of RP 56 Variance of 1st order difference of 12th MFCC

17 Variance of PD 57 Mean of 6th SONE

18 Mean of 4th SF coefficient 58 4th AC coefficient

19 Variance of 1st order difference of SS 59 Variance of 9th MFCC

20 | Variance of 1st order difference of 8th MFC(¢ 60 Variance of 2nd SONE coefficient

21 | Variance of 1st order difference of 11th MFCC 61 Variance of 1st MFCC

22 | Variance of 1st order difference of 10th MFCIC 62 Mean of 14th MFCC

23 Mean of 11th MFCC 63 Mean of 1st MFCC

24 Variance of 4th SF 64 Variance of 1st order difference of 4th SF coefficient
25 Mean of TL 65 Mean of 2nd MFCC

26 Variance of 1st order difference of 1st SONl 66 Variance of 1st order difference of 3rd SF coefficient
27 Mean of 1st order difference of RP 67 | Variance of 1st order difference of 8th SONE coefficient
28 Variance of 3rd SONE 68 | Variance of 1st order difference of 5th SONE coefficient
29 Mean of FF 69 | Variance of 1st order difference of 3rd SONE coefficient
30 | Variance of 1st order difference of 9th MFC( 70 Mean of 1st order difference of 1st SF coefficient
31 Mean of 1st order difference of 11th MFCC|| 71 Variance of STE

32 Variance of 1st order difference of RP 72 Variance of BW

33 Mean of 13th MFCC 73 Mean of 1st order difference of 12th MFCC

34 Variance of 1st order difference of SC 74 Mean of 16th MFCC

35 Mean of 1st order difference of 14th MFCC|| 75 Variance of 1st order difference of 7th MFCC

36 Variance of SC 76 Variance of SRF

37 Variance of 2nd MFCC 77 Variance of 1st order difference of 2nd SF coefficient
38 Variance of 1st SF coefficient 78 Variance of 7th MFCC

39 Variance of 3rd SF coefficient 79 Mean of 4th MFCC

40 Variance of 5th SONE 80 Mean of PD

classifier was used with MARSYAS features, the second besstme classifier, when either the KL divergence or the IS
accuracy 68.3% was obtained. The superiority of the exdthctdistance is used, is found to be statistically significar@%o
features over the MARSYAS ones is partially attributed te thconfidence level. It should be noted that the difference 4%0.
fact that the latter features roughly consist a subset of thetween the one-vs-the-rest SVMs [13] and the NTF Frobenius
former ones. For the MARSYAS features, the NTF classifielassifier is statistically insignificant as well. Howevéng
with either the KL divergence or the IS distance is legserformance gain obtained by the NTF Frobenius against the
performing than the NTF classifier with the Frobenius norntlassifiers employed in [3], [12], [15] is statistically si§icant.

Next, the statistical significance of the accuracy differ- Insight to the performance of the NTF Frobenius, SVM,
ences between the classifiers was addressed by employand MLP classifiers is offered by the confusion matrices
the method described in [41], where the number of correctiveraged over the 10 splits determined by 10-fold stratified
classified patterns is assumed to be distributed accorditiget cross-validation, in Tables V, VI, and VII, respectivelyhd
binomial distribution. It can easily be shown that the perfocolumns of the confusion matrix correspond to the predicted
mance gains obtained by the NTF Frobenius classifier againsisic genre and the rows to the actual one. For the NTF
the SVM and MLP classifiers are not statistically significant Frobenius classifier, most misclassifications occur ambeg t
95% confidence level. On the contrary, the accuracy difisgenHiphop, Pop, and Rock genres. Concerning the SVM classifier,
between the NTF classifier with the Frobenius norm and tineost misclassifications occur for Rock recordings, whiah ar
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TABLE V . .
AVERAGE CONFUSION MATRIX FOR THENTF FROBENIUS CLAssIFiEr  FOF €xample, tensors can be used for modeling any recording

USING THE80 SELECTED FEATURES OVER THELO SPLITS DETERMINED  as a time series of potentially different genre labels. Nfére
BY 10-FOLD STRATIFIED CROSSVALIDATION . an attractive framework for modeling data as a multilinear
reggas| Rock]  COmbination of features and can extract basis featurediagab

Genre | Blues | Classical| Country | Disco | Hiphop | Jazz| Metal | Pop

Blues 86 1 6 1 0 1 0 0 1 4 i ili i 1 1 -
e - e : ¢ 1 : a grea_ter interpretability of the basis contrlbu_t|0n_s te thas
Country |2 0 87 1 0 [ 3] 0 [0] 1 6 sification than SVMs and MLPs. Such factorizations can also
e G N T be used for dimensionality reduction prior to the applizati
Jozz 2 : U N A A - A - of standard machine learning algorithms (e.g. SVMs). NTF is
Pop | 3 1 3 15 | 3 [ 0| 0 |[72] 1 2 not limited to music genre classification, but it can be zitl

R 2 0 2 5 5 1 0 5 73 7 . - : .

O - = - in various cases associated with feature vectors computed

over time, such as for multiple frequency estimation in audi
TABLE VI recordings in order to provide a global spectral basis for a

AVERAGE CONFUSION MATRIX FOR THESVM CLASSIFIER USING THE80 . . .
SELECTED FEATURES OVER THELO SPLITS DETERMINED BY10-FOLD whole set instead of a basis for each recordlng [42]'

STRATIFIED CROSSVALIDATION . In the future, the performance of NTF will be assessed
on hierarchical music genre databases, which offer additio

Genre | Blues | Classical| Country | Disco | Hiphop | Jazz| Metal | Pop | Reggae| Rock - . . L.

Blues | 84 0 2 2 T |2 0 [1] 2 3 flexibility over the flat classification approaches. In aubafi
e %+ o135 1191 the NTF algorithms could be enhanced by incorporating
H?;shcgp 2 0 : LA T T 2 penalty functions into the factorization problem, whichnca
Jazz | 5 5 7 0 1 |80 0 | 0] o© 2 control the outcome of the factorization. Finally, various
Metal 0 0 0 1 3 0 90 1 0 5 fitiali H H e

o 1 T = 3 — =t 5= |n|t|al_|zat|on techniques similar to those proposed f& MMF
Reggae | 4 0 1 o | 11 1] 0 3] 6 | 4 algorithm [44], could be developed for the NTF algorithms
Rock 7 0 17 11 1 0 5 2 3 54

aiming to reduce the number of iterations.

misclassified as either Country or Disco ones. The same sccur

for the MLP classifier. It is worth noting that the boundaries APPENDIX |
between genres such as Pop and Rock as well as Rock and

Metal still remain fuzzy [2], a fact that is reflected in thea. Problem Formulation

annotations accompanying the dataset. _ . _ o
As stated in Section IlI-D, the following minimization

V. CONCLUSIONS- FUTURE WORK prOblem Is treated:

In this paper, music genre recognition experiments have min Dy <i a®ou® 6. ou™ V)
been performed using a variety of sound description feature >0 ! ! 7
and multilinear classification techniques. Novel algarighfor ) . ,
the NTF have been derived from first principles and thelrretl N 1’2’_“"[" an_dz = 1,2,...,n. The goal is to f|§d
computational cost has been estimated. An NTF classifier tﬁamultlpllcatgxe updating rule for the elements of vectof
trains a basis for each class separately and employs b&§goted asi;;’, j = 1,2,..., k. From (5), it can be seen that:
orthogonalization has also been proposed. The NTF classifie |
has been tested against state-of-the-art classifierssibban Dy (> uVoul® 0.0 uj(-”),\?) =
found to be slightly superior than them. This superiority is =!
attributed to the higher expressive power of the multimeal: o e G—1) (i) (i+1) (n)
representations than that of the pattern matrix the stand :1D¢ <]Zl b T A T A ’V@i:l>
pattern recognition algorithms they depend on. (25)
NTF classifiers compared to standard machine learnin I s To oo Ty X Tipr XX In |
approaches, such as MLPs and SVMs, are not limited to vé"c&]ere Vot € R 'S a sub-tensor

torized data, but can be used for higher order represenmtio\slIth the ith index fixed tol whose elements are denoted by

j=1

o100 1loisrons 00 =1,2,.. Trandl =1,2,...i—1,i+
1,...,n.
TABLE VI
AVERAGE CONFUSION MATRIX FOR THEMLP CLASSIFIER USING THE80
SELECTED FEATURES OVER THELO SPLITS DETERMINED BY10-FOLD

STRATIFIED CROSSVALIDATION . - .
B. Auxiliary function

Genre | Blues | Classical| Country | Disco | Hiphop | Jazz| Metal | Pop | Reggae| Rock

Blues | 80 3 4 0 O s 2 1] 1 6 The minimization problem can be solved using auxiliary
Classical| 0 93 0 0 0 3 0 1 0 3 . (z) .

Country |3 1 72 | 3 o [ 5 0 | 2] 1 |11 functions [11], [23]. LetF'(u;”’) denote the divergence term
Disco 4 1 8 72 3 0 2 3 4 3 in (25) ie

Hiphop | 2 0 1 2 80 0 2 5 7 1 y 1S

Jazz 9 4 2 0 0 82 1 0 1 1 &

Metal 1 0 0 2 2 0 87 3 0 5 - - - -

Pop | 1 0 5 3 2 o 1 (7] 1 7 Ful”) =D, <Z uj(.l)ou;?)O- --u](-Z 1)u§§)0u§l+1)0~ : -Ouj(n),vgi:l)
Reggae 4 0 3 3 9 1 0 3 72 5 j=1

Rock 6 0 19 8 1 2 6 2 5 51 (26)
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The application of (4) and (5) to (26) yields:

=3, ¢(zu§zz -

(n)
ujsm)
¢(”Q1---Qi—119i+1---9n )-

Qi—119i+1---9n)

27)

(Z 1) (1>
Ujo;_1 Uj1

(i+1)
J0it1

- ¢(UQI---Qi—1lQi+1---Qn)

j=1

S

(i=1) (i), (i+1)
o1 U u

Joi—1 Jl Tjei+1

where ¢(z) = ¢'(x). The following auxiliary function for
F(u(’)) is proposed:

wl™

]Qn ))

G, ~“>>
(1) |, G=1) ), (+1)

A ) Ujg, Joi—1 Jl Joit1
01--J--0n ° ¢ )\
0i \“
Jj=1

01---0i—1JQi41---0n

_(b(”m i—1leig1--. )_ ¢(UQ1---Qi—1lQi+1---Qn)'
(1) w0 5, (0, G+1) (n)
(Z”ng U Wi Yy, Yo, _”@1---9i71l9i+1---9n>
(28)
where
(1) (i—1) ~(i), (i+1) (n)
\ ) _ Yior " Yioi 1%t Yjoigr T Yon
eroeimdeiyioen =Sk T M G G, 6ED ()
Jj'=1"j"01 Wjr g1 Y511 J’91+1 J'on
i) (%) (1) )
H l k2 k2
It can easily be shown thaf}(ul yu,7) = F(u;”). In

addition, using Jensen’s inequality for convex functiaghsan
be verified thatG(ul ,"(’)) F(u (’)) Accordingly, indeed
G(ul(’) ul(’)) is an auxiliary function forF(ul( )).

C. Minimization of the auxiliary function

In order to derive a multiplicative update rule fmr%),
the auxiliary tunctiorG(ul’) 1’} should be minimized with
respect t0u§.;). The partial derivative oG(ul ,”l(’)) with

respect tou'y is set to zero:

aG(u”,al")

(9u(.ll)

J
O Y (l) (+1) )
]Ql ]Qz ] ]Qz ]Qn

Zg_/\gl---gi—ljgi+1---gn w( by : = )

* 01---0i—1J0i4+1---0n
N C I G U G VRN O
e Joi—1 ji+1 jon

/\91---gi71j9i+1---gn
N 1),
7Zgi¢(le---Qi—llQi+1---Q ) (

(—1) (i+1)
jo1 “ ’

( ( u™
joi—1%jeiy1 Yien

(30)
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The equation o
AG(uf”, al")

- =0
3uj(.l>

(32)
cannot be analytically solved for any(). If ¢() is assumed
to be multiplicative as in [11] (i.ey(zy) = ¥ (x)y(y)), the
substitution of (31) in (32) yields the following update eul

u( O ~( ) - (Zgi¢(Ug1---gi_1lgi+1---gn) " Qjoy..0i—10i41--0n
! Egianl---Qi—19i+1---Qn -¢(ﬂ91---gi—1l9i+1---9n)
(33
Wherea;,, ..o 10i41...0n. ANABo, . 0:_110i11...0, are defined in
(12) and (13), respectlvely The update rule (33) should be
applied to all elements forj=1,2,...,k,i=1,2,...,n,
andl =1,2,. Lt should be noted thap() is multiplica-
tive for the Frobenius norm, sineg(z) = 1z° = ¢(z) = =.
The update rule for the Frobenius norm given in (14) can be
easily derived from (33).
However, (33) cannot be applied to the KL divergence or
the IS distance, since the associated functigiis are not
multiplicative. Indeed, we havé(z) = xlog(z) = ¥(z) =

log(z) + 1 for the KL divergence. By replacing the explicit
form of ¢(z) into (31), we obtain

__ (i)
u
Zg'ajg1---9i—1gi+1---g (lOgBm 0i—1loig1--on + log ( ))

- Zgi lOg’(,[)(Ugl...gi,1lgi+1---gn) "Qjor..gi—10it1--en = U,

(34)
which leads to the update rule (11). Similarly, for the IS
distance ¢(z) = —log(z) = ¥ (z) = —1. By replacing the
explicit form of(z) into (31), we obtain the update rule (15).

D. Proof of Convergence

To prove the convergence of the multiplicative update rule
for the Frobenius NTF algorithm (14), one needs to show
that Fu”) < F@@"). Using the definition of F(u'"),

0i10i4 ndB 0imrloit1 00 DiVENIN (27), (12)
and (13), respectlvely, it can be shown that:

F(a) - F(ui”) =
- U91---Qi—119i+1---9n>'

_ k
s u®
) J01.-0i—10i41--0n " Ujj
0i \| 4
Jj=1
k
§ . u®
P( a]Ql---Qi—lQi+1---,Qn s )
+ D 3 @ )
[ 01--0i—1l0i41--50n> JO1-+-0i—10Qif1:-+,0n AN

Jj=1
(35)

: <1/}(/3Q1---Qi—1lgi+1---s9n) -

By replacing (29) into (30) and after performing some alge-

braic manipulations, we obtain:

oG a) = (o (=1) G+ ()
ou (zl) = Zgi Ujoy -..ujQi—lujQi+1 T lon
J
. (1) LG 5@, G+ u (?
. 1 . z 1) ~(z z+1 . n L
¢(Z Ujroq Wirg; Wity 41 Uirg, ~(z))
J'=t U1

(1,

(i—1)  (i+1)
jer Y “ ’

joi—1 ‘jeit1

- Zgi¢(le---Qi—1lQi+l---Q ) (

W )
.]Qn

@1

Since the 2nd term is by definition non-negative, it suffices
to prove that the first term in (35) is non-negative. For the
Frobenius normy(z) = z, a fact that facilitates further the
derivations. Moving the denominator in (14) to the left hand
side part and summing ovgr we get

E /891---91'—1191'+1---a9n
Qi
k
E E ) (l)
0 < Qjo1...0i—10i41--0n ~ Ujy '691---9i7119i+1---,9
i \4
j=1

“Ugi...0i—110i41---0n

n- (36)
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Using (36) into the algebraic manipulations of the first terBesides the NTF, the computational cost of the proposed NTF
in (35), we conclude that it is sufficient to prove classifier training in Section IlI-E involves tensor unfiolg (of

__ k . no cost), the Khatri-Rao matrix produI:I§3) ® U§2), its QR

Zg_vm__.gi_lzgiJrl...gn : (Z Qo105 10i41-:0n 'U%)) 2 decomposition, and the matrix produdi. = R.. [UEI)]T for

' j=t each genre. The just mentioned Khatri-Rao matrix product is

— - G computed at a cost di 1>k flops. The QR decomposition can
>, (Zl Qder--eiz10iti-men " Uj1 ) be performed at a cost afi; 1,2 flops, if the modified Gram-

A ! Schmidt method is used [43H,. can be computed at a cost
(Z o101 1041 mam u(i>> @37) of I.1(2k—1)k flops. The test phase involves (20)-(22), which

il . . .
jr=1 ! implies a computational cost @?(I.; k%) for each genre.
(14) implies that TABLE VIII
3RD ORDERFROBENIUSNTF COMPUTATIONAL COST.

E g'anl---Qi—19i+1---aQn “Voy...0i—1lojq1---0n —
i

o u@ Term IFI?pks
j QXjgso 213
Zg_ajgl---Qi—l Qif1-0n " /391---91'—1191'+1---,Qn : j(i) (38) {7’;;2;: Bk - 1)1 1, I;
’ ©ji “'(i}) given jg, o, and Big, o, AL L 13k
Using (38), the inequality (37) is rewritten as U per teration (Tk = DLLI; + kLT
U@, =1,2,3, per iteration 3(Tk — )L LI + k(I Is + L I3 + I I)
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