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Abstract—Two novel word clustering techniques em-
ploying language models of long distance bigrams are
proposed. The first technique is built on a hierarchical
clustering algorithm and minimizes the sum of Maha-
lanobis distances of all words after cluster merger from
the centroid of the resulting class. The second technique
resorts to the probabilistic latent semantic analysis (PLSA).
Interpolated versions of the long distance bigrams are
considered as well. Experiments conducted on the English
Gigaword corpus (Second Edition) validate that 1) long
distance bigrams create more meaningful clusters includ-
ing less outliers than the baseline bigrams; 2) interpolated
long distance bigrams outperform long distance bigrams
in the same respect; 3) long distance bigrams perform
better than bigrams incorporating trigger-pairs for var-
ious histories; 4) PLSA-based interpolated long distance
bigrams yield the most efficient language model in the
context of this study. To assess objectively the quality of the
formed clusters, cluster validity indices as well as mutual
information-based measures have been estimated and box
plots for the intra-cluster dispersion are demonstrated.

Index Terms—word clustering, language modeling, dis-
tance bigrams, probabilistic latent semantic analysis, clus-
ter validity, trigger pairs, cluster dispersion.

I. INTRODUCTION

Word clustering has been one of the most challenging
tasks in the natural language processing. It exploits
well founded unsupervised clustering techniques, such as
hierarchical, partitional, fuzzy, or neural network-based
ones, to reveal a simple, but yet valid organization of the
data [1]. More precisely, word clustering assigns words
to groups according to their contextual, syntactic, or
semantic similarity. Such context information can be cap-
tured by language models that estimate the conditional
probability of a word given its context. The definition
of context results in various language model types, such
as n-gram, long distance n-gram, skipping, caching, n-
gram classes, and sentence mixture models [2]. These
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language models can also be extended by using word
triggers [3] or can be combined with each other by
interpolation.

In this paper, we investigate the ability of long dis-
tance bigram models to capture long distance word
dependencies with a small number of free parameters in
order to derive meaningful word clusters. More precisely,
two word clustering techniques are proposed that take
into consideration long distance bigram probabilities at
varying distances within a context as well as interpolated
long distance bigram probabilities. The first technique
extends a hierarchical clustering algorithm that is based
on the minimization of the sum of Mahalanobis distances
of all words after cluster merger from the centroid of
the resulting class [4]. The second technique is based
on Probabilistic Latent Semantic Analysis (PLSA) that
associates unobserved class variables with words in a
way that increases the data likelihood [5]. Both tech-
niques assume the same predetermined number of word
clusters.

Although, word clustering techniques have already
been reported in the literature, our contribution is in
their enhancement with long distance bigram statistics.
The first proposed technique, which was presented in
our previous work [6] aiming at comparing two different
interpolation methods for long distance bigrams, it is
now elaborated further on a larger corpus where both
long distance bigrams and their interpolated variants are
considered. In addition, in this paper, PLSA, which has
primarily been applied for document classification, is
modified for word clustering by employing either long
distance bigrams or their interpolated variants.

An assessment of word clustering techniques is un-
dertaken with respect to the language model, that has
been incorporated. More specifically, the word clusters
derived in experiments conducted on a subset of the
English Gigaword corpus (Second Edition) [7] are ex-
amined. Cluster validity indices, such as the Jaccard,
the adjusted Rand, and the Fowlkes-Mallows, between
the resulting clusters and random ones [8] confirm that
the proposed techniques produce non-random clusters.
The normalized variation of information between the
clusterings derived by the clustering techniques under



study, when the baseline bigram and the long distance
bigrams are employed, also show that the long distance
bigram models differ more from the bigram model than
their interpolated variants do. Moreover, the intra-cluster
dispersion demonstrates that the PLSA-based word clus-
tering techniques, which exploit long distance bigram
models, provide more compact clusters and the use of
interpolated long distance bigram models within both
clustering techniques eliminates the outliers, which are
observed when long distance bigrams are used. The
aforementioned facts are further validated by observing
the words assigned to sample clusters, such as the words
appearing in the context of week days and car races,
for various distances. The just mentioned sample clus-
ters reveal the ability of PLSA-based word clustering,
when interpolated long distance bigrams are used, to
generate meaningful clusters similar to those formed
when a bigram model is interpolated with trigger word
pairs for various histories. However, the clustering with
trigger pairs assigns similar words into more than one
clusters and it suffers from the additional complex task
of appropriate trigger pair selection

The outline of the paper is as follows. In Section II,
word clustering methods are reviewed. Statistical lan-
guage modeling concepts, such as bigrams, long dis-
tance bigrams, and interpolation techniques, together
with absolute discounting, that is used to alleviate the
zero frequency problem, is addressed in Section III.
The proposed word clustering methods that incorporate
long distance bigrams with or without interpolation are
described next, in Section IV. Experimental results are
illustrated in Section V and conclusions are drawn in
Section VI

II. RELATED WORK

Natural language processing applications, such as au-
tomatic thesauri creation, word sense disambiguation,
language modeling, and text classification, have been
greatly favored from word clustering methods. Although,
word clustering methods may vary with respect to data
description, the similarity measure considered, or the
nature of the algorithms (i.e., hierarchical, partitional,
fuzzy, and so on), they succeed to enhance the afore-
mentioned applications by lowering the data dimensions
and providing data representations, which reveal the
similarity between words.

In automatic thesauri creation, a sigmoid Bayesian
network is built from local term dependencies to model
the similarity distribution between terms even with low
frequencies [9]. In a similar approach, a hierarchical
lexical clustering neural network algorithm automatically
generates a thesaurus and succeeds to create clusters

of synonyms, but at the expense of high computational
complexity, since it resorts to best-matching finding [10].
In another approach, syntactic information is used to dis-
cover word similarities by means of a weighted Jaccard
measure [11]. Both lexical and syntactic information are
used to derive an information-theoretic similarity matrix
in [12].

In automatic word sense disambiguation, several
methods exploit co-occurrence statistics, which poten-
tially reflect the semantic meaning of words. For exam-
ple, an iterative bootstrapping procedure computes the
word-sense probability distributions for word colloca-
tions [13]. By using heuristics, the algorithm finds the
word senses starting from seed classifications that are
subsequently refined to reveal all word senses. In another
approach, the maximization of an information-theoretic
measure of similarity between words with similar local
contexts, which are defined in terms of syntactic de-
pendencies, determines the assignment of words with
similar senses to classes [14]. Lexical features repre-
senting co-occurring words in varying sized contexts
are also exploited by an ensemble of Naive Bayesian
classifiers to classify words according to their sense
[15]. The clustering by committees (CBC) algorithm
discovers a set of tight clusters, called committees, that
are well scattered in the similarity space, and assigns
words to the most similar clusters [16]. The words are
represented by a feature vector whose elements are the
mutual information between the word and its context.
The overlapping features of a word assigned to a cluster
are removed enabling thus less frequent senses of words
to be discovered, while preventing sense duplication.
Word clusters are also derived from an efficient word
clustering algorithm that estimates the joint probabilities
of word pairs by means of the Minimum Description
Length principle [17]. The resulting word classes are
then combined with a hand-made thesaurus for syntactic
disambiguation. Another method augments the training
data with sentences extracted from WordNet [18] and
conducts semantic classification by means of a hierar-
chical multiclass perceptron [19].

In language modeling applications, word clustering
based on word co-occurrences is exploited in order to
alleviate the data sparseness problem and to improve
model quality. For example, a hierarchical word clus-
tering algorithm based on bigram and trigram statistics
constructs word classes by iteratively merging classes
so that the reduction in the average mutual informa-
tion is minimal. The derived classes are then used to
construct class-based n-grams [20]. A similar bottom-
up algorithm builds multi-level class based interpolated
language models by using the average mutual informa-



tion criterion and representing the words as structural
tags [21]. An exchange algorithm for bigram and tri-
gram word clustering similar to k-means produces word
classes by minimizing the perplexity of the class model
[22]. The number of the resulting word classes, however,
is constrained by the time complexity as well as the
memory requirements of the algorithm. Recently, a more
efficient exchange algorithm is proposed that generates
word clusters from large vocabularies by greedily max-
imizing the log likelihood of a two-sided class bigram
or trigram model on the training data [23]. Randomizing
the aforementioned exchange algorithm by considering
various initializations or data subsets yields random
class-based models that can be later combined in an
interpolated model to improve perplexity and reduce the
word-error rate compared to the n-gram and the class-
based language models [24]. A top-down asymmetric
clustering algorithm that splits the clusters with respect
to the maximal entropy decrease may generate different
clusters for predicted words (predictive clusters) and con-
ditional words (conditional clusters) [25]. Word clusters
can be obtained by applying Latent Semantic Analysis
(LSA) to bigram or trigram statistics as well. The word
clusters could be then used to build a multi-span lan-
guage model either in a maximum entropy framework
or by straightforward interpolation, that captures both
local and global constraints [26].

In text classification, the word clusters contribute to
feature reduction. In contrast to the divisive entropy-
based method, that produces soft noun clusters accord-
ing to their conditional verb distributions [27], a hard
agglomerative clustering algorithm, that is based on the
minimization of the average Kullback-Leibler divergence
between each class distribution over a given word and
the mean distribution [28], produces word clusters that
are later used to classify documents using a Naive-Bayes
classifier. An extension of this work that guarantees a
good text classification performance even for a small
training corpus, generates word clusters by taking into
consideration the global information over all word clus-
ters [29]. A more generalized word clustering technique
applies the Information Bottleneck method to find word
clusters that preserve the information about document
categories [30]. Similarly to aforementioned agglom-
erative methods, an information theoretic framework
is exploited by a divisive algorithm to monotonically
decrease an objective function for clustering, that is
based on the Jensen-Shannon divergence [31].

III. LANGUAGE MODELING
A. The n-Gram Language Model

The n-gram model assumes a Markov process of order
n— 1 and estimates the probability of a word given only
the most recent n — 1 preceding words [2]. The proba-

bility of a sequence of words W =< w; wo ... wps >,
P(W), is thus expressed as
n—1
P(W) = P(w) [] P(wilws, ... ,wi)
i=2

M
Hp(wi’wz‘—ly-'wwi—n—i—l)- (D)
i=n

Usually bigram or trigram language models are em-
ployed to facilitate the computations in (1) for large n.

For a limited size training corpus with a vocabulary
V of size @ = |V, the probabilities in (1) are estimated
by means of relative frequencies, i.e.

Wi—1 W;)

Wi — )
o)

where the notation N (.) stands for the number of occur-
rences of the word sequence inside parentheses in the
training corpus.

N(U)i_n+1 e

P(wi|wi—1, ..., wi—py1) ~

N(wi_nﬂ .

B. The Long Distance Bigram Model

To compensate for the loss of syntactic and semantic
information from the more distant words, when bigrams
or trigrams are used, and at the same time to reduce
the number of free parameters, skipping models were
proposed in [3], [32], [33]. The long distance bigrams
predict word w; based on word w;_q [32]. Taking
into consideration this notion, we introduce the notation
D(w;,w;) = d, where d € 7 denotes the distance
between words w; and w;. Accordingly, i = j —d. It is
clear that for D(w;,w;) = 1, we get the baseline bigram.
Assuming that the number of occurrences of the bigram
< w; wj > is Nd(wi wj) £ N(wi wj\D(wi,wj) = d),
the probability of the distance bigram can be obtained
as
Pafony ) = P (g, Dlwi ;) = d) = 205 03)

(w;)
3)
Accordingly, the probability P(W) of the resulting
language model for a given word sequence is expressed

by

d M
PyW) =[] Pw)) [] Pa(wjlws). @)
j=1 j=d+1



C. Interpolating Long Distance Bigram Language Mod-
els

To enhance the efficiency of the long distance bigram
model, the probability of long distance bigrams in H
different distances can be estimated [6]. Let

P (w;|w;) = P (wj|wi, D(wi,wj) < H). (5

It can be easily shown that the number of occurrences of
the bigram < w; w; > in H different distances is given
by

N(H)(wiwj) — N(wiwj‘D(wi,wj)gH)

H

d=1
Taking into consideration that the maximum value
Ng(w; w;) is N(w;) for d € [1, H], the probability (5)
can be estimated by means of relative frequencies as
follows:

P (w;|w;) ~ N (wi w;) _ s Na(wi w;)

(N
The decomposition (7) can be interpreted as a weighted
sum/average of the component probabilities Py(w;|w;)
for d € [1, H]. Introducing weights Ay for each compo-
nent probability, such that Zfl{:l Ad=1land0< )\ <1,
(7) can be generalized to:

H
_1 AaNg(w; w;
P(H)(wj|wi) ~ Dod=1 N(w'g Jj

d=1
(®)
The substitution of (8) into (1) yields

PI(W) = PUD (w1 wy ... wpy) =

d H M H (9)
H(zxdmwﬂ) 1 (zmwwn)
j=1 \d=1

j=d+1 \d=1
where )\; are estimated on held out data by means of the
Expectation Maximization (EM) algorithm [34].

D. Absolute Discounting

The probability estimates in (1), (4), and (9) become
zero for unseen events (i.e., bigrams, long distance
bigrams). Data sparseness necessitates addressing the
problem of unseen events. This can be achieved by
means of discounting, a smoothing technique which
discounts the relative frequencies of seen events and
redistributes the gained probability mass over the unseen
events [35].

To adapt discounting for long distance bigrams, the
“count-counts” ny, q(h) denoting the number of distinct

) H
=Y AaPa(wjlw;).

words w that were seen following history h at distance
d exactly r times and n,, denoting the total number
of distinct joint events that occurred exactly r times at
distance d should be defined:

nr,d(h) = Z 1 (10)
w:Ng(h w)=r
na =y, 1= mea(h). (D)
hw:Ng(h w)=r h

The events with counts 7 = 0, 1 are characterized as un-
seen and singleton (hapax legomena) ones, respectively.
Absolute discounting estimates Py(w|h) as follows:

Py(w|h) = max (0, Nd(’“‘f)—bd> N

N(h) .
b Q —ng.a(h) Ba(w|h) _ (12
N(h) 3 N (h wr)—o Ba(w![R)

where b; is a count-independent non-integer offset
and fBg(w|h) is a generalized distribution of a word
given a generalized history h at distance d. The count-
independent non-integer offset, by, which is estimated
by means of the data log-likelihood for the leave-one-
out model, is approximated by
n1,d

by —————
nid+ 2n2,d

(13)

and the generalized distribution 34(w|h) is estimated by

 NGw) | Sy Na(zw)
Palwlh) = = N R )~ S Sy Nalz )
_Nw)
= Ny - )
(14)

As a result, (3) using (12), after having substituted (14),
1S rewritten as

Pj(wj|w;) =max <0, Nd(txéqu,))_ bd) +
i 5
by @) Lo 4>
¢ N (wy) 17

IV. WORD CLUSTERING

The efficiency of the just defined language models,
which capture long-term word dependencies with a low
number of parameters, is to be tested for word clustering.
More precisely, two word clustering techniques, which
exploit the language models presented in Section III,
are proposed. The first technique is inspired by the
hierarchical word clustering algorithm presented in [20],
but it uses long distance bigrams instead of bigrams
and trigrams, and it is based on the minimization of
the sum of Mahalanobis distances of all words of the



cluster merger from the centroid of the resulting class
instead of the minimal reduction in the average mutual
information. The second technique extends the idea of
using bigram and trigram statistics in LSA [26] in using
long distance bigram statistics in PLSA, which is the
probabilistic version of LSA.

A. Word Clustering based on the Minimization of the
sum of Mahalanobis Distances

Word clustering, as presented in [4], is based on
the observation that the variance of the class-based
conditional probabilities is smaller than the variance of
the word-based conditional probabilities. In this paper,
we extend this idea by exploiting the long distance
bigram model and the interpolated long distance bigram
model for the conditional probability estimates between
words at different distances. The proposed algorithms are
outlined next.

1) Algorithm based on Long Distance Bigrams
(Method I-a): Given a vocabulary V of size @ = |V, let
us assume that R non-overlapping classes of functionally
equivalent words Cy, k =1,..., R, are found

R
V=|JC, CinCp=0fors#k (16)
k=1

such that

Vwi € Cs,ij S Ck, Pd(wj\w,-) = Pd(Ck|Cs) (17)

where Py(wj|w;) and Py(Cy|Cs) are the transition prob-
abilities between the words in the bigram < w;w; > that
lie at distance d as well as their corresponding classes C
and C},, respectively. Due to the constraints imposed by
the limited size of any corpus, estimates of the transition
probabilities Py(w;|w;) are employed, as defined in (3)
and (12), with absolute discounting for the unseen events.
Hence, every word w of the vocabulary is characterized
by the transition probability estimates Py(w;|w) from
this word to all vocabulary words w;,j =1,2,...,Q.

The probability of occurrence of the () generalized
long distance bigrams in Ng(w) = N(w) repeated
Bernoulli trials is given by [36]:

P (Ng(wwi),...,Ng(wwg)) =

Q ) Ng(w wjy)
[Pa(w;|w)]™ (18)
!

el 1= F e
where P (Ng(w w1), ..., Ng(w wg)) denotes the prob-
ability of having Ny(wwj), j =1,2,...,Q occurrences
of the corresponding distance bigrams in the training set.
In (18), since N(w) is sufficiently large and Ng(w w;)
is in the \/N(w) neighborhood of N(w) Py(w;w),

according to De Moivre-Laplace theorem, the right-
hand side is approximated by a ()-dimensional Gaussian
probability density function (pdf) [36]:

P (Py(wilw), ..., Pi(wglw)) = N(pt,, Uw)  (19)
with mean vector and covariance matrix given by

(Py(wi|w), . . ., Py(wolw))” (20)

N(lw) diag [Py(w1|w), ..., Py(wg|w)](21)

Py =
U, =

where 7 denotes vector/matrix transposition and diag| ]
denotes a diagonal matrix having the arguments inside
brackets as its elements on the main diagonal. In Ap-
pendix A, a detailed derivation of (19)-(21) is given.
The algorithm starts with every word w; in the vo-
cabulary forming an individual class on its own and
proceeds with merging the two classes for which the sum
of Mahalanobis distances of all the words of the cluster
merger from the centroid of the class is minimum. Let
v; be the vector of transition probabilities whose kth
component is the transition probability from word w; to
word W Pd(wk\wi), ie.
vi = (Py(wi|wy), . . ., Py(wglw;))" (22)

the probability of the hypothesis that classes C), and C,
are merged to form a single class is given by

1
P(C,UCy) =
P q W_}ﬂ){l;[(jpucq (27T)Q/2(det(qu))1/2

eXP{—%(W - Hpq)T[qu}_l(Vi - “pq)}

(23)
where p,,, and Uy, are the mean vector and covariance
matrix of the class formed by merging classes C), and Cj,
respectively [4]. In (23), det(-) denotes the determinant
of a matrix. Classes to be merged should maximize (23).
By taking the logarithm of the right-hand side in (23) and
dropping the normalization term, we should equivalently
choose C)- and Cy- such that

(p*,q*) = argmin

(p.9)
Z (Vi = ) [Upg] (Vi = Bayg). 9
Vi—w; €CpUC,
My, can be estimated as
1
SiirenEarerl WP SR B

Vi—w; €CLUC,

where |C),| and |C,| are the number of words that
belong to the corresponding classes. In par to (21), the



covariance matrix is diagonal with kkth element given
by
1
[vawiecpucq N (w;)]?
Y N(w)[Uu,Juk-
Vi—w;€CLUC,

The derivation of (25) and (26) is analyzed in Ap-
pendix B.

Summarizing, the clustering algorithm works as fol-
lows:

[qu]kk =

(26)

e Step 1: Each word of the vocabulary comprises
a class on its own. The algorithm starts with @
classes.

e Step 2: The two classes that minimize (24) are
merged.

o Step 3: If the number of remaining classes equals a
predetermined number of classes R, the algorithm
stops. Otherwise, a new iteration starts at Step 2.

There are approximately (Q — k)?/2 class pairs that
have to be examined for merging in each iteration
k of the just described algorithm. In order to avoid
the exhaustive search, the words of the vocabulary
are sorted in decreasing order of frequency and the
first R + 1 words are assigned to R + 1 distinct
classes. At each iteration, the class pair for which
the sum of Mahalanobis distances of all the words
of the cluster merger from the centroid of the class
is minimum is found and the merger is performed
yielding R classes. The insertion of the next word
of the vocabulary in a distinct class results again in
R + 1 classes. So at iteration k, the (R + k)-th most
probable word of the vocabulary is assigned in a distinct
class and the algorithm proceeds until no vocabulary
words are left. After () — R steps, the words of the
vocabulary have been assigned to R classes. Therefore,
at iteration k, the number of class candidates to be
tested for merger is ((R+1) —k)%/2 < (Q—k)?/2 [20].

2) Algorithm based on Interpolated Long Distance
Bigrams (Method I-b): Let us assume again that R non-
overlapping classes can be created, so that:

Yw; € Cs,ij € Cy, P(H)(wj\wi) = P(H)(Ck|CS)
27)
where P (w;|w;) and PU(Cy|Cy) are the inter-
polated transition probabilities between the words <
w; wj > that lie at distances d = 1,..., H as well
as between their corresponding classes Cs and Ck.
PUD (wj|w;) can be estimated by (8).
Following similar lines to IV-A1, the probability of the
occurrence of the () generalized long distance bigrams,

in 25:1 AaN(w) = N(w) repeated Bernoulli trials can
be expressed as [36]:

H H
(Z )\de ww1 Z/\de 'wa)>

d=1 d=1

> dH=1 )\de(w w]‘)
> Ade(wj|W)}

Q [ L
w)|!
I [ 5:1Ade(wwj)}!

j=1
(28)

where P (Zle AaNg(w wy), ..., 25:1 ANg(w wQ)>
denotes the probability of having 25:1 AiNg(wwj), j =
1,2,...,Q occurrences of the corresponding distance
bigrams in the training set. Applying the De Moivre-
Laplace theorem [36], we get

(Z AaPy(wi|w), . Z)\de wQ|w)> =

a1 a1 (29)

N(u{, Uh)

w

with mean vector given by

H H
[J, <Z )\de wllw Z )\dpd wdw))

d=1 d=1

(30)
and diagonal covariance matrix UQ(UH), 1.€.
1
U — -~ |
Y N(w)
H H 3D
diag [Z AaPy(wi|w), . Z)\de wQ|w)]
d=1 d=1

The derivation of (29) - (31) is similar to that of (19) -
210).

The clustering algorithm starts with every word w; in
the vocabulary forming an individual class and proceeds
by merging the two classes that satisfy

(p*,q ) = arg min
(,9)

S - u)T U (v -
Vi—w; €CLUC,

(32)
pq )

where v; is the vector of estimated transition probabili-
ties from this word to any other vocabulary word given
by

H T

Z)\dpd ’LUQ’LUJ)
d=1

H
<Z AdPa(wr|w;), .

d=1
(33)



and an estimate of ugl can be obtained by (25). Again
we have employed a diagonal covariance matrix with
kkth element given by

H 1
U, )20

a [Zw—»wiecpucq N (w;)]?

D

Vi—w; €CLUC,

(34)
N2(w;) [U S50

The derivation of (34) follows similar lines to that of
(26).

B. Word Clustering based on PLSA

PLSA performs a probabilistic mixture decomposition
by defining a generative latent data model, the so called
aspect model, which associates an unobserved class
variable z;, € Z = {z1,22,...,2g} with each obser-
vation. Here, the observation is simply the occurrence
of a word/term w; € V = {wi,wy,...,wg} in a
text/document ¢t; € T = {t1,ta,...,tpr}, while the
unobserved class variable z; models the topic a text
was generated from. Following the basic assumption of
the aspect model, all the observation pairs (¢;,w;) are
assumed to be independent and identically distributed,
and conditionally independent given the respective latent
class z. Accordingly, the joint distribution of a word w;
in a text ¢; generated by latent topic zj is given by

= P(ti) P(z[ti) P(w;]zp)-

Summing over all possible realizations of zj, the joint
distribution of the observed data is obtained, i.e.

ZP (ti,wj, z1) =

R
ZP (zk|ti) P(wj|zk) -
k=1

P(ti, U}j, Zk) (35)

tz,w]

(36)

P(w;lt:)

As can be seen from (35), the text-specific word distri-
butions P(w;|t;) are obtained by a convex combination
of the R aspects/factors P(w;|zy). This implies that the
texts are not exclusively assigned to clusters, but they
are characterized by a specific mixture of factors with
weights P(zg|t;).

Representing each text ¢; as a sequence of words <
v1 V2 ... vQ, >, where (); is the number of words in
text ¢;, P(t;, w;) can be decomposed as follows

P(t;,w;) = P(viva ... vg,,w;) = P(vi|va ... vg,,w;)
P(valvg ... vg,,wj) ... Plvg,|wj) P(wj).
(37

1) Algorithm based on Long Distance Bigrams
(Method 1l-a): Taking into consideration the long dis-
tance bigram model described in Section III-B, (37)
can be expressed in terms of long distance bigram
probabilities at a certain distance d. That is,

Qi
P(wy) [ Pavilw))

=1
= P(wy) ] Palwi|wy).

wy Eti

P(ti, wj) ~
(38)

Following similar lines to (36), P;(w;|w;) can be ob-
tained by summing over all possible realizations of z,

1.€.
R

) = Palzklw;) Pa(wi|z).
k=1

Pd(wl ”U)j (39)

The learning problem is formulated as maximization
of the log-likelihood function with respect to the entailed
probabilities. The log-likelihood function £ with the help
of (39) can be expressed as

Py(z1|wj) Pa(wi|2k)

(40)

where Ng(w; w;) is the number of word co occurrences
< w] w; > that lie at distance d and Z 1 Ng(wj) =
Z ‘1 El 1 Na(w;j wy). The maximization of the log-
hkehhood L can be achieved by applying the EM
algorithm, which alternates between two steps [37]:
1) Expectation (E)-step, where posterior probabilities
are computed for the latent variables based on the
current estimates of the parameters

Py(wy|zk) Pa(zx|wy)
Sy Pa(wi|zi) Pa(ze

Py(zlwj, wy) =

W

a>4
2) Maximization (M)-step, which involves maximiza-
tion of the expected log-likelihood depending on
the posterior probabilities computed in the pre-
vious E-step [5], which in our case takes the
following form:

2 Na(w; wy) Pa(zilw;, wy)

P(wy|zy) = -
Sy Sy Na(w; wp) Par|w;, wy)
(42)
Q A
¢ Na(w; wy) Py(zk|w;, wy
P(Zk|'w]) _ Zl*l ( 7 ) ( ’ 7 )

R A .
S 2 Na(w; wy) Pyl [w;, wy)
(43)



By alternating (41) with (42)-(43), a procedure that
converges to a local maximum of the log-likelihood
results. Each word w; is assigned to one only cluster
Cs, such that

Q.

2) Algorithm based on Interpolated Long Distance
Bigrams (Method II-b): Taking into consideration the
interpolated long distance bigram model described in
Section III-C, (38) can be expressed in terms of interpo-
lated long distance bigram probabilities as follows:

P(w; HP
= P(w;) H P (wy|w;).

w EL;

55 = argmgxP(zk]wj) , J=1,2,... (44)

P(t;,w;) ~ (v]wy)

(45)

Following similar lines to (37), P%)(w;|w;) can be
obtained by summing over all possible realizations of
2k, 1.e.
P(H (wl]w] Z [Z /\dP ’wl|2’k P(zk|wj). (46)
k=1 Ld=
The log-likelihood function to be maximized with re-
spect to the probabilities Py(wj|z;,) and PUD (zp.|w;) is
given by:

Q
L= N(w;)log P(w;)+
J:
Q Q R H
Z N(wj wy)log [ZZAde wi|zg) (Zk:iwj)]

47

where 337 N(w;) = Y71 S0, N(w; ).
It can be shown that the PLSA algorithm for (47)
alternates between two steps:

1) E-step:

Py(wi|zg) Pz w;)

Py(zg|wj, wy) =

Skt Pa(wi|zw ) P(zp |ws)
2) M-step:
Pd(wl\zk) =
S9N (wj w) Pyl wy, wy) (49)

S Y2 Na(wy wy) Pa(zewj, wy)
P(zkwj) =
SO S NN (wj wy) Py w;, w)

S S S NN (w; wy) Pa(zp [wy, )
(50)

By alternating (48) with (49)-(50), a procedure that
converges to a local maximum of the log-likelihood
results.

V. EXPERIMENTAL RESULTS

The word clustering algorithms developed in Sec-
tion IV were implemented and tested for various long
distance bigram models starting from the baseline bigram
corresponding to distance d = 1 and proceeding to
long distance bigram models at distance d=2-6 and
d=9 (Methods I-a and II-a). Interpolated long distance
bigram models at distance H=2-6 (Methods I-b and II-b)
have also been investigated. In addition, language models
combining the baseline bigram with trigger pairs [3] at
various histories (d=2—-6 and d=9) were also incorporated
in the best performing PLSA-based clustering algorithm
for comparison purposes.

The clustering algorithms are compared with respect
to the quality of the word clusters they produce. For
this purpose, various cluster validity indices, such as the
Jaccard, the Adjusted Rand, and the Fowlkes-Mallows
[8] between the resulting clusters and random clusters are
estimated first to demonstrate that the resulting clusters
are non-random. Next, the intra-cluster dispersion for
all clusterings has been studied to objectively assess
the clusters produced. Sample clusters, that are derived
by the clustering methods under study, are presented to
validate the aforementioned objective measurements.

A. Dataset and Parameter Setting

The experiments were conducted on a subset of the
English Gigaword Second Edition Corpus' [7] that in-
cludes 17288 newswire texts of story type produced by
the English Service of Agence France-Presse (afp_eng)
during 1994 — 1995. The texts have been pre-processed
in order to remove tags, non-English words, numbers or
symbols with no meaning. The word documents were
also stemmed using the Porter stemmer [38]. The result-
ing vocabulary contains 41744 words with frequencies
ranging from 162289 to 1. Due to memory limitations,
however, a vocabulary cut-off was applied by discarding
words with frequency of appearance less than 50. The
cut-off vocabulary size is 4720 words. In Table I, the
vocabulary size and the number of long distance bigrams
at various distances are summarized.

To derive the conditional probabilities needed in Meth-
ods I and II, first the frequencies of the distance bigrams
at distances d=1-6 and d = 9 were estimated and

"http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogld=
LDC2005T12



TABLE 1
VOCABULARY SIZE AND NUMBER OF LONG DISTANCE BIGRAMS.

Size of Number of Long Distance Bigrams
Original Vocabulary d=1 d=2 d=3 d=14 d=5 d=26 d=9
Vocabulary after cut-off
[[41744 [ 4582 [ 616854 | 783196 | 839605 | 868590 | 884075 [ 893322 | 903506 |

next absolute discounting was applied. Furthermore, the
interpolation weights needed for the interpolation of
the long distance bigrams at distances H=2-6 were
estimated by a two-way cross validation on held-out data
by means of the Expectation-Maximization algorithm.

For all clustering algorithms, the predefined number
R of the resulting classes was set to 300. In addition,
for the PLSA-based clustering algorithms (Methods II-a
and II-b), the convergence criterion for the EM algorithm
requests the relative log-likelihood change between two
successive EM-steps to be less than 10, a condition
that has reached after approximately 100 iterations. It is
also worth mentioning that the PLSA-based algorithms
have executed 10 times for each language model in order
to guarantee that the results are not affected by the EM
convergence to local minima.

To select among the possible Q? long distance word-
pairs (trigger pairs) at the same distances as the ones
employed in the long distance bigrams (d=2-6 and d =
9), a probability threshold pg = 1.5/@Q) was set. A trigger
interaction between two words was thus allowed only if
the corresponding word pairs probability in the bigram
model was below pg. The conditional probabilities of the
extended model (i.e. bigram with trigger pairs) was then
estimated by a back-off technique as described in [39].

B. Word Clustering Results and Their Assessment

Among the validity indices, the ones that are based
on external criteria, i.e. the Jaccard, the Adjusted Rand
and Fowlkes-Mallows were selected [8]. These indices
are based on counting the word pairs on which two
clusterings C' and C’ agree or disagree. More precisely,
let us defined the following parameters:

a: number of word pairs that are found in the same
cluster in both partitions;

b: number of word pairs that are found in the same
cluster in C, but in different clusters in C’;

c number of word pairs that are found in different
clusters in C, but in the same cluster in C’;

d: number of word pairs that are found in different

clusters for both partitions.
The maximum number of all pairs is M = a+b+c+d =
Q(Q—1)/2. The indices used are defined in Table II [8].
These indices admit values between 0 and 1. The higher
value is admitted by an index, the stronger the similarity

between the two clusterings is. The adjusted rand index
exhibits greater sensitivity than the rand index due to
the wider range of values it can take. This is why it is
usually preferred from rand index [40].

TABLE II
EXTERNAL INDICES.

l Jaccard [ Adjusted Rand [ Fowlkes-Mallows ‘

= rand index —ezpected index FM— /_a a
a+tb

a —_a
a+b+c ‘ maxzimum index —expected index a+tc

TABLE III
COMPARISON OF GENERATED CLUSTERINGS BY THE PROPOSED
METHODS AGAINST RANDOMLY GENERATED ONES USING
EXTERNAL INDICES.

’ Clustering ‘ Long Distance Bigram Model Jaccard | Adjusted | Fowlkes- ‘

Method Rand Mallows
d = 1 (Classic Bigram) 0.0026 0.0717 0.0053

Method I-a d=2 0.0023 | 0.0712| 0.0046

d=3 0.0025 | 0.0717| 0.0051

d=4 0.0025 | 0.0715| 0.0050

d=25 0.0023 | 0.0712| 0.0046

d=26 0.0021 | 0.0708 | 0.0042

d=29 0.0022 | 0.0709 | 0.0044

Method Ib Interpolated H = 2 0.0023 | 0.0710| 0.0048

Interpolated H = 3 0.0022 | 0.0710| 0.0044

Interpolated H = 4 0.0024 | 0.0714 | 0.0048

Interpolated H = 5 0.0023 | 0.0713| 0.0047

Interpolated H = 6 0.0024 | 0.0715| 0.0049

d = 1 (Classic Bigram) 0.0022 | 0.0530| 0.0048

Method II-a d=2 0.0024 | 0.0617| 0.0050

d=3 0.0017 | 0.0668 | 0.0036

d=4 0.0025 | 0.0700| 0.0051

d=25 0.0022 | 0.0695| 0.0045

d=26 0.0024 | 0.0723 | 0.0048

d=29 0.0024 [ 0.0708 | 0.0047

Method TLb Interpolated H = 2 0.0024 | 0.0574 | 0.0050

Interpolated H = 3 0.0024 | 0.0570| 0.0050

Interpolated H = 4 0.0020 | 0.0570| 0.0050

Interpolated H = 5 0.0021 | 0.0650 | 0.0044

Interpolated H = 6 0.0023 | 0.0684 | 0.0048

In our experiments, the values of these indices were
estimated for the resulting clusterings and randomly gen-
erated clusterings (Table III). The Monte Carlo technique
has been used to estimate the probability density function
of each index under the null hypothesis that the data
are randomly distributed [41]. A significance level of
p = 0.05 has been set. More precisely, the presented
clustering algorithms were applied for 100 randomly
generated data sets, and the aforementioned cluster va-
lidity indices were estimated. The values of the indices
for the randomly generated data sets were compared
to the values of indices corresponding to the real data.
Considering the significance lever p = 0.05, the null
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baseline bigram and the long distance bigrams, Method II-b with the baseline bigram and interpolated long-distance bigrams, as well as
Method II-a employing either the baseline bigram or trigger-pair bigrams.

hypothesis was rejected, since (1—p)100 = 95 values of
these cluster validity indices are smaller than the values
of the respective cluster validity indices corresponding
to the real data. Some indicative values of Jaccard,
adjusted Rand and Fowlkes-Mallows for the clusterings
corresponding to the randomly generated data sets are
0.0012, 0.0364 and 0.0030 respectively. As can be seen
from Table III, the values of all indices are very close to
0 verifying that the clusters generated by the proposed
clustering methods are not random.

In addition to the cluster validity indices, the variation
of information VI(C, C") is also estimated as a figure of
merit for clustering assessment [42]. Given a clustering
C containing R clusters, C' = {C1, ..., CRr}, the entropy
of the clustering is given by

R
H(C)=—=>_ P(k)log P(k). (51)
k=1

P(k) is the probability of a word belonging to cluster
C} in clustering C"

_ Nk
- R
> ket Mk

where nj is the number of words assigned to cluster
Cy. Defining the average mutual information between
two clusterings C' and C’, given the probabilities P(k),
k=1,...,R for clustering C, P'(k), k¥ = 1,..., R for
clustering C’, and P(k, k") for their intersection C' N C’
is defined as [43]:

P(k) (52)

Pk, k)

M(C,C") =) P(k,K)log PP (53)

the variation of information VI(C,C"), as proposed in
[42], is estimated as another figure of merit for the
assessment of clusterings:

VI(C,C") = [H(C)=M(C, ') +[H(C") =T (C.C")).

(54
The first term in (54) measures how well clustering C
can be predicted from C’, while the second one how well
clustering C’ can be predicted from C. VI(C,C") takes
only positive values. If C' = C’, then VI(C,C") = 0.
The upper bound of VI(C,C’) is log Q. Usually, the
variation of information is normalized by dividing it with
its upper bound.

Figure 1 plots the normalized variation of information
between clusterings derived by the proposed methods
that are based on either the minimization of the sum
of Mahalanobis distances of all words after cluster
merger from the centroid of the resulting class, without
(Method I-a) or with interpolation (Method I-b) as well
as PLSA without (Method II-a) or with interpolation
(Method II-b), when long distance bigrams for several
distances are used against the baseline bigram as well
as when trigger-pair bigrams are employed against the
baseline bigram model in Method II-a. The lower the
value of variation of information is, the more similar
the clusterings under comparison are. As can be seen
in Figure 1(a), the clusterings generated by minimizing
the sum of Mahalanobis distances of all words after
cluster merger from the centroid of the resulting class
applied to interpolated long distance bigrams are more
similar to those obtained by the same method, when it
is applied to bigrams than when long distance bigrams
(without interpolation) are employed in the same context.
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This can be attributed to the fact that interpolated long
distance bigrams include the baseline bigram. Similarly,
in Figure 1(b) it is seen that trigger-pair bigrams, when
they are employed within the PLSA-based clustering,
yield a clustering that is more similar to that obtained by
PLSA-based clustering applied to the baseline bigrams
than when the aforementioned algorithm is applied to
long-distance bigrams with our without interpolation. In
this case, the trigger-pairs bigram in some respect inherit
information from the baseline bigrams model. It is also
seen that as distance increases, the clusterings obtained
by both methods with the long distance bigrams differ
more than those when the baseline bigram is employed
in the same context.

A comparison of the clustering methods in terms of
their intra-cluster dispersion is illustrated using box plots
in Figures 2 and 3. Due to space limitations, results are
presented for histories d = 1,2 and d = 4. Figure 2 de-
picts the cluster assignment probability of each word for
seven sample clusters derived by the clustering methods
under study, when the baseline bigram model, the long
distance bigrams at distance d = 2 and the interpolated
long distance bigrams at distance H = 2 are used. Sim-
ilarly, Figure 3 shows the cluster assignment probability
of each word for the same seven sample clusters derived
by the clustering methods under study, when the long
distance bigrams at distance d = 4 and the interpolated
long distance bigrams at distance H = 4 are used. By
comparing Figures 2 (a) and (b) with Figures 2 (c) and
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Method II-a applied to long distance bigrams at distance d = 4; (c) Method I-b and (d) Method II-b applied to interpolated long distance

bigrams at distance H = 4.

(d) as well as Figures 3 (a) and (b), it can be seen
that intra-cluster dispersion, which represents the cluster
compactness, is smaller when long distance bigrams are
used instead of the baseline bigrams. Furthermore, it can
be verified from Figures 2 (c) and (e) and Figures 2 (d)
and (f), that interpolated long distance bigrams when
they are employed in the clustering algorithms reduce the
outliers observed when long distance bigrams are used.
The same observation can be made by the inspection
of Figures 3 (a) and (c) as well as Figures 3 (b) and
(d). Moreover, the examination of Figures 2 (c)— (f) and
Figures 2 (a)- (d) reveals the superiority of the PLSA-
based Methods II-a and II-b over the Methods I-a and
I-b, since the dispersion of the PLSA-based clusters is
smaller than the dispersion of the clusters produced by
Methods I-a and I-b.

In Tables IV-VII, sample clusters produced by the
methods under study are demonstrated, supporting the
aforementioned observations. The clusters contain words
representing various aspects of the corpus, such as days
of the week and car race. Inspecting the representative
clusters, the superiority of Methods I-b and II-b, which
employ the interpolated long distance bigram models,
against Methods I-a and II-a, which employ only a
single long distance bigram model, in producing more

meaningful and compact clusters (with less outliers) is
validated easily. For the cluster containing the week days,
method I-a gathers 4 — 5 days out of 7, while method II-
b, which employs the interpolated long distance bigram
models, collects 5 — 6 days. In the same way, the PLSA-
based methods II-a and II-b contain respectively 4 — 7
and 7 week days within one cluster.

Finally, the PLSA-based method II-a, which has been
proved to provide more meaningful clusters than Method
I-a, is applied to a bigram model extended with trigger-
pairs, that was selected from histories d=2—6 and d=9.
The same sample clusters are presented in Table VIII. As
can be seen, clustering with trigger pairs produces mean-
ingful clusters as Methods I-b and II-b do. However, the
compact clusters, which are obtained by Methods I-b and
II-b when applied to long distance bigrams, are now split
into more than one clusters with trigger-pairs.

VI. CONCLUSIONS

Two techniques for word clustering are developed
which employ long distance bigram models with and
without interpolation in order to capture long-term word
dependencies with a few parameters. The first technique
is based on the minimization of the sum of Mahalanobis
distances of all words after cluster merger from the



TABLE IV

CLUSTERS PRODUCED BY METHOD I-A.

Long Distance week days related clusters race related clusters
Bigram Model
d=1 year, years, said, thursday, wednesday, tuesday, win, winning, wins, race, races, racing, premier, draw, norway, romania, bulgaria, austria, barcelona,
monday finland, lap, laps, circuit, circuits, pole, poles, sena, reynolds
d=2 thursday, monday, tuesday, wednesday, flow, flows, win, winning, wins, race, races, racing, ireland, argentina, brazil, indies, indy, lap, laps, diego, honda,
flowed, evan, evans toyota, mph, mile, miles
d=3 thursday, monday, tuesday, wednesday, colleagues, lead, leading, race, races, racing, australia, brazil, win, winning, wins, beaten, tennis, prix, shock,
colleague, salary, salaries shocking, shocked, engine, engineer, engineers, engineering, vehicle, vehicles, yellow, pole, poles
d=4 year , percent, thursday, week , tuesday, wednesday race, races, racing, television, televised, televisions, series, serie, william, williams, series, opponent,
opponents, boat, boats, formula, mansell, mph, fittipaldi, tycoon, tycoons, senna
d=5 friday, wednesday, tuesday, monday, creation, au- race, races, racing, television, televised, televisions, away, title, titled, titles, william, williams,
thorisation, authorised midfield, midfielder, midfielders, tennis, formula, degree, degrees, compete, competed, competence,
competing, competiveness, bruguera, fittipaldi, pete, andretti
d=26 week, weeks, percent, thursday, friday, tuesday, race, races, racing, television, televisions, televised, associate, associated, association, associations,
wednesday associating, short, engine, engineer, engineers, engineering, object, objected, objective, objectives,
objections, tell, telling, delors, mike, bonn, fittipaldi, simon, simones
d=9 office, report, reports, reported, reporter, reporters, race, races, racing, television, televisions, televised, water, waters, watered, grand, carlo, carlos,
week, weeks, thursday, friday, tuesday, wednesday mansell, formula, pack, packing, packed, pierre, mph, senna

TABLE V
CLUSTERS PRODUCED BY METHOD I-B.
Interpolated Long week days related clusters race related clusters
Distance Bigram Model
H =2 thursday, monday, tuesday, wednesday, year, years ford, capriati, toyota, benneton, car, cars, race, races, racing, mile miles, lap, laps, fittipaldi,
circuit, circuits, driver, drivers
H =3 friday, week, weeks, thursday, monday, tuesday, car, cars, race, races, racing, position, positions, positive, positively, trial, trials, william,
wednesday williams, mph, mile, miles, lap, laps, circuit, circuits, fittipaldi, ford, capriati, toyota,
benneton, driver, drivers
H =4 year, years, friday, thursday, monday, tuesday, race, races, racing, win, winning, wins, trial, trials, circuit, circuits, sport, sports, sporting,
wednesday, saturday retire, retired, retirement, driver, drivers, engine, engineer, engineers, engineering, prix,
mph, brazil, barcelona, senna, mansell
H=25 thursday, monday, tuesday, wednesday, friday, sat- half, race, races, racing, premier, penalty, penalties, century, centuries, mansell, formula,
urday, week, weeks, month, months, elaborating, barcelona, runner, runners, ford, fittipaldi, grand, mph, senna, prix
elaborate
H =6 year, years, week, weeks, month, months, thursday, poll, polls, polling, race, races, racing, mph, lose, losing, fifth, william, williams, mansell,
monday, tuesday, wednesday, elaborate, elaborating formula, seventh, toyota, honda, ninth, pole, poles, driver, drivers, engine, engineer,
engineers, engineering, victory, victories, position, positions, positive, positively

TABLE VI

CLUSTERS PRODUCED BY METHOD II-A.

week days related clusters

race related clusters

thursday, friday, sunday, saturday, week, weeks,
tuesday

win, winning, wins, race, races, racing, victory, victories, success, successful, defeat, defeats, de-
feated, court, interference, sport, sports, sporting, car, cars ,engine, engineer, engineers, engineering,
fittipaldi, william, williams

friday, tuesday, wednesday, monday, week, weeks,
sunday, saturday, late, evening

race, races, racing, victory, victories, tour, tours, row, lap, laps, brazilian, austrian, tie, shuttle, shuttled,
fittipaldi, mph, season, seasons

monday, thursday, friday, wednesday, week, weeks,
early, holiday, holidays

time, times, win, winning, wins, race, races, racing, series, leadership, sponsor, sponsors, sponsored,
brazilian, brazilians, technical, technically, pena, fittipaldi, gift, gifts, gifted, inspired, inspiring,
inspiration, nigel

thursday, wednesday, friday, pope, rumour, ru-
mours, rumoured week, weeks, monday, saturday

series, win, winning, wins, leadership, season, seasonally sponsor, sponsors, sponsored, brazilian,
fifth, race, races, racing, protest, protests, protested, protesting, mansell, nigel

thursday, tuesday, wednesday, monday, source,
sources, saturday

car, cars, race, races, racing, drive, drives, driving, william, williams, row, rows, retire, retired,
retirement, mansel, indy, indies, formula, prix, lap, circuit, circuits, contender, contenders, fastest,
mph, pole, pit, pits, pitting, pitted, andretti, reign, reigned, reigning, tires, tired

thursday, tuesday, wednesday, saturday, week,
weeks, sign, signed, signing, discuss, discussion,
discussing, arrive, arrived, arrival, arriving, friday,
holiday, holidays, formal, formally

car, cars, race, races, racing, season, seasons, finish, finished, pit, pits, pitting, pitted, mile, miles,
persist, persisted, persistence, persistance, persistent, hero, heroes, win, winning, wins, mansell, prix,
driver, drivers

Long Distance
Bigram Model
d=1

d=2

d=3

d=4

d=25

d=6

d=9

wednesday, saturday, score, scores, scored, scoring,
friday, beat, beating, wednesday, draw, drawing

race, races, racing, season, seasons, series, paul, grand, row, rows, speed, speeds, indy, indies, austrian,
lap, laps, circuit, circuits, fittipaldi, fastest, mph, pole, poles, polling, polled, andretti, senna, mansell,
benetton, nigel

centroid of the resulting class. The second technique re-
sorts to the probabilistic latent semantic analysis (PLSA).
The validity assessment of clustering results has demon-
strated that both techniques produce more compact word
clusters with less outliers when either long distance
bigrams or their interpolated versions are employed

rather than when the classic bigram model is used. These
clusters have also been proven to be better than those
produced when trigger pairs from various histories are
employed in conjunction with the baseline bigram, since
they have less outliers. Moreover, trigger-pairs clusters
of similar words are often split into more than one



TABLE VII
CLUSTERS PRODUCED BY METHOD II-B.

Interpolated Long week days related clusters race related clusters

Distance Bigram Model

H =2 thursday, friday, tuesday, race, races, racing, season,seasons, position, positions, positive, positively, career, careers, grand, olympic,
wednesday, monday, sunday, olympics, indy, indies, formula, lap, laps, fastest, mph, runner, runners, circuit, circuits, fittipaldi, teammate,
saturday, week, weeks teammates, pit, pits, pitting, pitted, pole, poles, driver, drivers

H =3 thursday, friday, tuesday, race, races, racing, season, seasons, position, positions, positive, positively, grand, memory, memories, memorial,
wednesday, monday, sunday, olympic, olympics, indy, indies, formula, lap, laps, tire, tires, tired, william, williams, runner, runners, circuit,
saturday, weeks circuits, fittipaldi, teammate, teammates, pit, pits, pitting, pitted, pole, poles, driver, drivers

H=4 thursday, friday, tuesday, race, races, racing, season, seasons, position, positions, positive, positively, grand, memory, memories, memorial,
wednesday, monday, sunday, olympic, olympics, indy, indies, formula, lap, laps, wear, wearing, william, williams, runner, runners, circuit,
saturday, week, weeks circuits, fittipaldi, teammate, teammates, pit, pits, pitting, pitted, mph, pole, poles, driver, drivers

H =5 thursday, friday, tuesday, race, races, racing, season, seasons, position, positions, positive, positively, grand, memory, memories, memorial,
wednesday, monday, sunday, olympic, olympics, indy, indies, formula, lap, laps, tire, tires, tired, driver, drivers, runner, runners, circuit, circuits,
saturday fittipaldi, teammate, teammates, pit, pits, pitting, pitted, mph, engine, engineer, engineers, engineering, senna

H=6 thursday, friday, tuesday, win, winning, wins, race, races, racing, game, games, victory, victories, success, successful, succession, defeat,
wednesday, monday, sunday, defeats, defeated, formula, triumph, triumphs, triumphed, season, seasons, fastest, indy, indies, mile, miles, lap,
saturday, month, months laps, pit, pits, pitting, pitted, fittipaldi, senna, car, cars, circuit, circuits, grand, position, positions, positive,

positively, prix

CLUSTERS PRODUCED BY THE PLSA-BASED METHOD FOR A BIGRAM MODEL EXTENDED WITH TRIGGER-PAIRS SELECTED FROM

TABLE VIII

VARIOUS HISTORIES (THE SYMBOL / INDICATES CLUSTER SPLITTING).

Bigram with trigger- week days related clusters race related clusters
pairs from history
d=2 friday, tuesday, wednesday, pineau, pub- cars, race, races, racing, link, links, linked, linking, corp, corps, engine, engineer, engineers, vehicle,
licly, monday, overnight, shortly vehicles, indy, indies, formula, lap, laps, mile, miles, circuit, circuits, driver, drivers, mph, pole, poles,
toyota, benneton
d=3 thursday, monday, sunday, saturday, april, car, cars, oppose, opposed, opposing, driver, drivers, engine, engineer, engineers, indy, indies, formula,
week, weeks, wednesday shortly lap, laps, store, stores, stored, storing, pole, poles, andretti, race, races, racing, mansell
d=4 friday, tuesday, monday, early, shortly / team, teams, race, races, racing, season, seasons, driver, drivers, practice, practices, practiced, practical,
thursday, wednesday, sunday, saturday practically, sport, sports, favourite, favourites, favouritism, indy, indies, formula, lap, laps, circuit,
circuits, fittipaldi, teammate, teammates, unser, pole, poles, senna, mansell, prix
d=>5 thursday, friday, monday, late / tuesday, position, positions, positive, positively, car, cars, senna, black, blacks, william, williams, mph, race,
wednesday, sunday, saturday races, racing, route, routes, routed, win, winning, wins, formula, mind, minds, mindfull, lap, laps, drink,
drinks, drinking, pole, poles, fastest, tire, tires, tired
d==6 thursday, friday, tuesday, wednesday, race, races, racing, vehicle, vehicles, contribute, contributed, contribution, teammate, teammates, win,
monday winning, wins, personnel, engine, engineer, engineers, engineering, vehicle, vehicles, adjust, adjusted,
adjustment, adjustments, season, seasons, formula, triumph, triumphs, triumphed, mph, function,
functions, functioning, pit, pits, pitting, pitted, william, williams
d=9 thursday, friday, tuesday, wednesday, team, teams, match, matched, matching, race, races, racing, season, seasons, event, events, tournament,
monday, sunday tournaments, series, driver, drivers, course, career, retire, retired, retirement, indy, indies, formula,
circuit, circuits, mile, miles, fittipaldi, win, winning, wins, position, positions, positive, positively

clusters. Furthermore, it has been demonstrated that both
clustering methods form more meaningful clusters when
the interpolated long distance bigrams are used, while
the PLSA-based technique has been proved to be better
than the one based on the minimization of the sum of the
Mahalanobis distances of all words after cluster merger
from the centroid of the resulting class.

APPENDIX A
DETAILED DERIVATION OF (19) - (21)

Equation (18) is written:

Py w) (Ng(w wy), ..., Na(w wg)) =
N(w)! .
[Ng(w w1)]!- - ! [Ng(w wg)]!
[Pd(w1|w)]Nd(w wi) . [Pd(lew)]N‘l(“’ wq)

(55)

According to [36], the probabilities of Bernoulli trials
can be approximated by a Gaussian function:

n!
k)= ——— ph e
Q= ikl kgl PP

exp [—% [M_‘_..._FMH (56)

npi npQ
V(2mn)@ 1 pips--po
Taking into consideration that
N(ki,ka, ..., kg) = N(p,U)
_exp[—5(k—p)TU (k- p)]
- /@m)@ T pg

the mean vector and covariance matrix are given by:

Q)" (58)
n diag [p1, p2, - - ., pg] (59)

Py (k1 ke, ..

~

(57)

nHo= n (p17p2,-~
U p—

where diag[-] denotes a diagonal matrix having the
indicated arguments as elements on its main diagonal.



The exponent in (56) can be rewritten as

T
<I<31—’I’Lp1 kQ—ﬂPQ) ]
\/1P1 \V/1PQ
<k1—np1 kQ—an) _
/NP1 ’ \V PQ
1 1
ki—np1),...,(kg —n T dia [,...,]
((k1 — np1) (kg —npq))” diag s e
(k1 —np1,..., kg —npg) =
ky ko T
(B2 o)
1 1k ko
— - di — = e, = =
{n 1ag [p17 )pQ]} (TL D1, ) n pQ)
(60)
That is,
k k 1 1
P, <1, o Q) =N(~p, 5U). (6D
n n n n

If relative word frequencies are replaced by probabilities
in (61), we arrive at (19) - (21). I

APPENDIX B
FAST COMPUTATION OF THE MEAN AND
COVARIANCE FOR THE MERGED CLASSES

The mean vectors for class C, and C, are given
respectively by

1

By = 7 D Vi (62)
| p|Vi:w,~,€C’p
1

W= X v
|Cq| Vjw,; €C,

where v; is described in (22) and v is similarly defined.
When C), and C; are merged to form a single class Cj,
the resulting (gross) mean vector is given by:

W=, = 1 Z o |Cp|u’q + ’Cq“j’p
;= = — =
- ’Cl’ Vi, eCh ’Cp’ + ‘Cq‘

(64)

According to (21), the kkth element of the covariance
matrix is expressed as

1
wilkk = o P i
U]k N (w) d(Wy|w;) (65)
for w; € C). Similarly, for w; € C,
1
o s = P ).
For w; € C), U Cy we have
1
[V ke = Pa(wg|wr). (67)

N (wy)

Moreover,

Na(w; wy) + Ng(w; wy,) 1

Py(wi|w;) = N(w;) + N(wj) -

[N (w;) Pg(wg|w;) + N (w;) Py(wi|w;)] .
(68)
Taking into consideration (65) and (66), (68) is rewritten
1
N(w;) + N(wy)
{[IN (i) [ ik + [N (w;)]*[U, Jir } -
The substitution of (69) into (67) yields
1
Vo = 8wy NG )7
{[N (W) (U, Jik + [N (w)]? [U, 1k }
which can be generalized to
1
[vawlecpucq N (wp)]?

> N(w) [Ug e O
Vi—w,eCpUC,

Py(wg|wy) =

(69)

(70)

[Upglrr =

(71)
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