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Abstract—A novel system for speaker diarization is proposed
that combines the eigengap criterion and cluster ensembles.
No explicit assumptions on the number of speakers are made.
Two variants of the system are developed. The first variant
does not cluster the speech segments that are detected as
outliers, while the second one does. The aforementioned system
variants are assessed with respect to various metrics, such as
the overall classification error, the average cluster purity, and
the average speaker purity. Experiments are conducted on two-
person dialogue scenes in movies as well as on news broadcasts
from MDE RT-03 Training Data Speech Corpus released by the
U.S. National Institute of Standards and Technology. In the latter
case, the diarization error rate is also reported. It is demonstrated
that the clustering performance does not degrade when outliers
are present. Moreover, thanks to the eigengap criterion, the
evaluation metrics are improved.

Index Terms—Speaker diarization, speaker clustering, eigen-
gap criterion, cluster ensembles, movie scene analysis, two-person
dialogues, broadcasts.

I. INTRODUCTION

NOWADAYS, a rapid increase in the volume of recorded
speech is manifested. For example, archives of television

and audio broadcasting, meeting recordings, and voice mails
have become a commonplace. As a result, a growing need
for automatically processing such archives has arisen [1].
However, their enormous size hinders content organization,
navigation, browsing, and search. Speaker segmentation and
speaker clustering alleviate the management of huge audio
archives.

Speaker segmentation aims at splitting an audio stream into
acoustically homogeneous segments, so as each segment is
attributed ideally to only one speaker [2]. It is an integral part
of the MPEG-7 standard developed by the Motion Picture Ex-
perts Group [3]. To model speakers, MPEG-7 low-level audio
feature descriptors, such as AudioSpectrumProjection, Audio-
SpectrumEnvelope [4], [5], AudioSpectrumCentroid, Audio-
WaveformEnvelope [6], [7] could be used. MPEG-7 high-
level tools, such as SpokenContent, that exploit speakers’ word
usage or prosodic features, could also be exploited for speaker
segmentation.

Speaker clustering refers to the unsupervised classification
of speech segments based on speaker voice characteristics [8].
That is, to identify all speech segments uttered by the same
speaker in an audio episode and assign a unique label to them
[9]. Many speaker clustering methods have been developed
ranging from hierarchical ones, such as the bottom-up (or
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agglomerative) methods and the top-down (or divisive) ones,
to optimization methods including the K-means algorithm
[10] or the autoassociative neural networks [11] to mention a
few. Speaker segmentation could precede speaker clustering.
In such a case, the segmentation errors degrade clustering per-
formance. Alternatively, speaker segmentation and clustering
can be jointly optimized [12]–[15].

Speaker segmentation followed by speaker clustering is
called speaker diarization [8], [14]–[16]. It has received much
attention recently, as is manifested by the focused competitions
on diarization conducted under the auspices of the U.S.
National Institute of Standards and Technology (NIST) [2],
[17]–[19]. Speaker diarization is the process of automatically
splitting the audio recording into speech segments and deter-
mining which segments are uttered by the same speaker. It
is used to answer the question “who spoke when?”. Speaker
diarization is also related to speaker verification and speaker
identification. In automatic speaker verification, the claimed
speaker identity is tested whether it is true or not [20], while
no a priori speaker identity claims are made and the system
decides who the speaker is in speaker identification [21].

Several applications of speaker segmentation and speaker
clustering could be identified. The first application is rich
transcription [17]. Rich transcription adds several metadata in
a spoken document, such as speaker identity, sentence bound-
ary detection, annotations for disfluency and so on. A second
application is movie analysis. For example, dialogue detection
determines whether a dialogue occurs in an audio recording or
not. Further questions, such as who the interlocutors are, when
the actors appear, could also be addressed in the framework
of movie analysis.

Some interesting observations on speaker segmentation and
clustering can be deduced. First, speaker segmentation signif-
icantly affects speaker clustering. In addition, the inclusion
of speech that comes from two speakers in a single speech
segment deteriorates speaker clustering performance. More-
over, it is crucial speech segments to be homogeneous. Thus,
the research community is motivated to strongly prefer over-
segmentation, since false alarms are considered to be less
cumbersome than miss detections. Most speaker clustering
algorithms set the number of clusters a priori. This fact usually
leads to more clusters than those actually existing in the data
to be referred as natural clusters. Of course, it is preferable
to start with many clusters, that can be merged in a latter
step, than under-estimating the number of clusters. It is worth
mentioning that the complexity of speaker diarization depends
on the population size, the duration of the speech segments,
the signal bandwidth, the environmental noise, the recording
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equipment, and whether the task has to be performed in real-
time or not [22].

In this paper, a novel speaker diarization approach is
proposed that combines cluster ensembles and the eigengap
criterion in order to improve clustering performance. Cluster
ensembles are able to reveal the natural clusters, that actually
exist in data, by combining a randomly chosen number of
partitions, which are created by multiple clustering algorithms
yielding a random number of clusters each. One of the main
reasons to employ a random number of partitions and/or
random number of clusters within cluster ensembles is to avoid
the bias of the voting mechanism. However, the adjacency
matrix, used by most clustering algorithms, strongly depends
on vertex labeling. To remove such a dependence, we employ
the graph spectrum, which is a graph invariant. Accordingly,
the proposed method combines the main advantages of cluster
ensembles and spectral graph clustering. We resort to the
eigengap criterion in order to obtain a preliminary estimate of
the number of clusters present in the data. Having estimated
the number of clusters, there is no need to randomly set
the number of clusters to be created in each partition, while
the number of partitions can be kept equal to the number
of the different clustering algorithms tested. Cluster merging,
that relies on basic set theory operations, completes the
procedure by merging the clusters which significantly overlap.
The proposed method exploits concepts from spectral graph
theory and cluster ensembles in speaker diarization. To the
best of authors knowledge, no similar work has been reported
for speaker diarization. The proposed approach is tested on
two application scenarios. First, two-person dialogue scenes
are considered within the context of movie scene analysis.
In movies, the conversations are unconstrained allowing for
concurrent speech and frequently take place in the presence
of background music, clapping, and/or environmental sounds,
that cause speaker segmentation errors, and consequently,
harden speaker clustering. Second, news broadcasts from
MDE RT-03 Training Data Speech Corpus of total duration
exceeding 4 hours, released by the NIST and distributed by
the Linguistic Data Consortium, are considered in order to test
the performance of the proposed approach when the number of
speakers is greater than 2. In the latter case, single microphone
recordings have been used and the reference speech/non-
speech segmentation has been exploited in order to focus on a
single source of the diarization error rate, namely the speaker
error, that is associated to the portion of the total length of the
speech segments that are clustered into wrong speaker groups.

The outline of the paper is as follows. Related work on
speaker diarization emphasizing on speaker clustering is re-
viewed in Section II. Section III briefly addresses the distance
metric used for speaker clustering, while in Section IV the
proposed speaker diarization system is described in detail. Ex-
perimental results are demonstrated in Section V. Conclusions
are drawn and future work is identified in Section VI.

II. RELATED WORK

Several algorithms for speaker diarization have been pro-
posed and tested on different applications. They either assume

an a priori known speaker segmentation or apply speaker
segmentation in order to extract speech segments. The most
representative works are briefly presented next. Generally,
speaker diarization algorithms can be classified into two main
categories: deterministic and probabilistic ones [22]. The de-
terministic algorithms cluster together similar audio segments
with respect to a metric, whereas the probabilistic ones use
Gaussian Mixture Models (GMMs) or Hidden Markov Models
(HMMs) to model the clusters.

As far as deterministic algorithms are concerned, [23],
[24] propose a SOM-based speaker clustering algorithm, that
assumes an a priori number of speakers and uses a SOM to
model each speaker. An alternative is the on-line hierarchical
speaker clustering algorithm [9]. This method considers speech
segments that have been extracted manually and makes no
assumptions on the number of speakers. It employs the gener-
alized likelihood ratio and the within-cluster dispersion to esti-
mate the distances between the segments. A deterministic step-
by-step speaker diarization system is proposed by Meignier
et al., that is based on speaker turn detection followed by
hierarchical clustering [14].

Concerning GMM-based algorithms, Solomonoff et al. de-
velop a method, that creates a cluster dendrogram according to
the generalized likelihood ratio and the cross entropy [1]. The
core of the clustering method relies on dendrogram cutting,
that yields the final partition. Tsai et al. employ GMMs and
propose a speaker clustering method, which is based on a
voice characteristic reference space in [10]. Another method
is described in [25], that is based on the maximum purity
estimation. It aims to maximize the total number of within-
cluster speech segments uttered by the same speaker and
employs a genetic algorithm to determine the cluster where
each segment should be assigned to. Jin et al. propose an
automated speaker clustering algorithm [26], that builds a tree
of clusters according to the distance measure introduced by
Gish et al. [27]. The tree can be pruned for any given number
of clusters, so that the optimal partition is produced. Lu
and Zhang present an unsupervised speaker segmentation and
tracking algorithm in real-time audio content analysis [28]. No
prior knowledge of the number of speakers and their identity is
assumed. The method first finds speaker change points, that are
then validated, and afterwards speaker models are built. [15],
[29] describe three variants of a speaker clustering algorithm,
that use GMMs to model the clusters.

Many HMM-based algorithms have also been proposed.
Ajmera et al. propose an HMM-based speaker clustering
algorithm [13], where each HMM state represents a cluster
and the probability density function (pdf) of each cluster
is modeled by a GMM. The HMM is trained using the
Expectation Maximization (EM) algorithm. A robust speaker
clustering algorithm, that automatically performs both speaker
segmentation and clustering without any prior knowledge of
the speaker identities or the numbers of speakers, is presented
by Ajmera and Wooters [30]. The algorithm uses HMMs, ag-
glomerative clustering, and the Bayesian Information Criterion
(BIC) [31], [32]. Meignier et al. also propose an integrated
speaker diarization system, that generates an HMM, which
detects and adds a new speaker [14]. For a more detailed
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survey, the interested reader may refer to [22].

III. DISTANCE USED FOR SPEAKER CLUSTERING

Speaker clusters are usually modeled as multivariate Gaus-
sian distributions. Typical distances between two multivariate
Gaussian distributions are the Kullback-Liebler (KL) [33],
the Bhattacharyya (Bha) [34], the generalized likelihood ratio
(GLR) [14], the cross entropy [1], the dCOV MEAN [27]
etc. It must be mentioned that although the KL, the Bha,
and the dCOV MEAN distances always admit positive values,
they do not satisfy the triangular inequality. All the afore-
mentioned distances have been tested within the clustering
algorithm detailed in Section IV in order to assess their
influence on the clustering evaluation measures defined in
Section V-B. However, it has been found by experiments that
the dCOV MEAN performs better than the KL and the Bha.
Thus, our discussion is confined to this distance only. Let
Ni(µi,Σi), i = 1, 2 be a multivariate Gaussian distribution
with mean vector µi and covariance matrix Σi modeling each
class. Let also Ni, i = 1, 2 be the number of feature vectors
assigned to each class. The dCOV MEAN distance between the
aforementioned Gaussian distributions is estimated as [27]:

dCOV MEAN = dCOV · dMEAN (1)

where

dCOV =
( |Σ1|a |Σ2|1−a

|W|
)NT

2
(2)

dMEAN =
(
1+

N1 N2

N2
T

(µ1−µ2)
T W−1(µ1−µ2)

)−NT
2

(3)

with NT = N1 + N2, a = N1
NT

, and W = aΣ1 + (1 − a)Σ2.

IV. PROPOSED DIARIZATION SYSTEM

The proposed speaker diarization system is composed of
four serially connected modules, namely: the speaker segmen-
tation module, the speaker modeling module, the clustering
module, and the cluster merging module. Voiced speech is
input to the system. Voiced/unvoiced (V/U) segmentation is
performed by PRAAT [35]. PRAAT’s algorithm performs
acoustic periodicity detection on the basis of an accurate
autocorrelation method, as described in [36].

A. Speaker segmentation module

A BIC-based speaker segmentation algorithm is applied.
BIC is a robust, well-founded statistical criterion, widely used
by the research community [31]–[33]. According to the BIC,
speaker segmentation is formulated as a two hypothesis testing
problem. Let X = {xi, i = 1, 2, . . . , NX } be the set of
feature vectors extracted from an acoustic chunk (i.e. acoustic
segment of minimum duration 0.5 s in our case) before
time tj . Here, xi denotes the vector of 24 Mel Frequency
Cepstral Coefficients (MFCCs), which are extracted every 10
ms for 20 ms long frames determined by Hamming windowing
within the acoustic chunk under discussion. MFFCs are used,
because they proved to work better in noisy environments than
other features, e.g. Linear Prediction Coefficients [30]. Let

Y = {yi, i = 1, 2, . . . , NY} be the set of feature vectors
extracted from a neighboring acoustic chunk of duration 0.5
s just after tj . The problem is to decide whether a speaker
change point occurs at tj or not. Let Z = X ⋃Y .

Under the null hypothesis, H0, there is no speaker change
at time tj . The feature vectors in Z are then modeled by a
single multivariate Gaussian density with parameters (e.g. the
mean vector µZ and the covariance matrix ΣZ ) stacked into
the vector θZ . The log likelihood under H0, L0, is calculated
as [32]:

L0 =
NX∑
i=1

log p(xi|θZ) +
NY∑
i=1

log p(yi|θZ). (4)

Under the alternative hypothesis, H1, a speaker change
occurs at time tj . Accordingly, the feature vectors in X and
Y are modeled by separate multivariate Gaussian densities,
whose parameters are denoted by θX and θY , respectively.
The corresponding log likelihood L1 is given by [32]:

L1 =
NX∑
i=1

log p(xi|θX ) +
NY∑
i=1

log p(yi|θY). (5)

The dissimilarity between L1 and L0 according to BIC is
calculated as [32]:

∆ = L1 − L0 − λ

2

(
K +

K(K + 1)
2

)
log NZ (6)

where NZ = NX + NY is the total number of feature vectors
in Z , λ is a penalty factor, and K is the dimension of the
extracted feature vector (e.g. K = 24). When the covariance
matrix of each Gaussian pdf is estimated by the sample
dispersion matrix, (6) takes the form:

∆ = NZ log |ΣZ | − NX log |ΣX | − NY log |ΣY |
−λ

2

(
K +

K(K + 1)
2

)
log NZ . (7)

However, a more generic BIC formulation has been derived in
[37], which allows for alternative estimates of the covariance
matrix to be employed, such as the minimum covariance
determinant estimate [38]. If ∆ > 0, tj is declared to be a
speaker change point. Otherwise, it is decided that there is
no speaker change point at time tj . The next test is applied
at tj = tj + 0.5 s. Obviously, the next chunk X will be
equal to the previous Y , when a speaker change point is
found. Otherwise, it will be equal to the previous Z (i.e.
when there is no speaker change point). The penalty factor
λ is frequently tuned by employing development data despite
the fact that its ideal value equals 1.0. In our experiments, the
penalty factor λ is set to 1.0. Obviously, the resolution of the
segmentation is 0.5 s. Over-segmentation is strongly preferred
against the risk of not detecting true speaker change points
in order to ensure the homogeneity of speech segments. The
speaker segmentation module outputs N speech segments Si,
i = 1, 2, . . . , N .
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B. Speaker modeling module

The N resulted speech segments are fed as input to the
speaker modeling module. Let us assume that the speech
segments are homogeneous. Accordingly, if the feature vec-
tors within each speech segment are treated as independent
identically distributed (i.i.d.) Gaussian random vectors, then
each speech segment can be modeled by the multivariate
Gaussian distribution N (µi,Σi), i = 1, 2, . . . , N . It must be
noted that the number of feature vectors modeled by each
multivariate Gaussian distribution depends on the duration of
the corresponding speech segment. Indeed, the parameters of
the multivariate Gaussian pdf are more accurately estimated
when more feature vectors are available, as is the case for
long homogeneous segments.

C. Clustering module

The third module of the algorithm, the clustering module,
deals with the task of revealing the natural clusters hidden
in the data. The arbitrary shape of the clusters makes the
choice of the suitable clustering algorithm a challenging issue.
Furthermore, when simultaneous speech from 2 or more
speakers occurs, implying that clusters overlap, revealing the
natural clusters of the data becomes extremely difficult.

Generally, a single clustering algorithm usually under-
performs on datasets that contain clusters of arbitrary
shapes/sizes or clusters that are nested within one another.
For example, k-means or k-medoids [39] may fail to detect
clusters of non-spherical shape. Thus, it is necessary to use
multiple algorithms in order to reveal the natural groupings of
the data [40]. Cluster ensembles are collections of clusterings,
which are of the same “kind”, e.g., collections of partitions
or collections of hierarchies [41]. Here, we are interested in
collections of partitions. They combine the different partitions
in order to improve the clustering performance, as is assessed
in Section V-B, and increase the robustness to outliers. Such
objectives are challenging, because a) speaker clustering is
strongly affected by the presence of noise in the speech
signal and b) the partitions produced by different clustering
algorithms, when they are applied to the same dataset, may
vary [42]. A cluster ensemble produces NP different partitions
and then combines them using a consensus function in order
to reveal the natural clusters of the data. The consensus
function can be derived from the co-association matrix [40]
and/or voting [44], [45]. Evidence accumulation is a voting
mechanism for the combination of NP partitions. The co-
occurrences of speech segment pairs in the same cluster
are considered as votes for their association. Thus, the NP

partitions of N speech segments are mapped into an N × N
co-association matrix with entries

CM(i, j) =
vij

NP
(8)

where vij is the number of times the segments Si and Sj are
assigned to the same cluster among the NP partitions [40].

In the proposed system, three hierarchical algorithms build
the cluster ensemble, namely the average group linkage,
the weighted average group linkage, and Ward’s hierarchical
clustering method [46]. The use of hierarchical algorithms

in speaker clustering is motivated by their popularity and
the progressive manner the clusters are created. In addition,
by examining the height of the dendrogram links one may
determine whether a grouping is natural or forced [46].

Our first consideration has to do with setting the number
of partitions and the number of clusters produced in each
partition. The typical choice is to combine a randomly chosen
number of partitions where each partition creates a randomly
chosen number of clusters. It is rational though, to upper
limit the number of partitions by the number of clustering
algorithms to be applied, i.e. 3. However, since each clustering
algorithm ends up with one partition and performs well for
different data shapes and sizes, the problem of setting the
number of clusters in each partition becomes crucial. Instead
of randomly setting the number of clusters, it would be less
risky to initially predicting this number.

The number of clusters can be quickly and efficiently
predicted using the eigengap criterion, borrowed from spectral
graph theory [47]. Spectral graph theory studies the properties
of a graph with respect to the eigenvalues and associated
eigenvectors of its adjacency matrix or its Laplacian matrix,
as is detailed next. It determines how combinatorial features
of a graph can be revealed by its spectrum, which is a graph
invariant. Clustering the speech segments can be considered as
a weighted graph partitioning problem. The N ×N adjacency
matrix A is built by treating the speech segments as graph ver-
tices. The element A(i, j) corresponds to the weight between
speech segments Si and Sj , which is defined as the distance
dCOV MEAN between the multivariate Gaussian pdfs modeling
the aforementioned speech segments. The adjacency matrix is
symmetric. The un-normalized Laplacian of the graph is given
by [47]

L = D − A, (9)

where D is the N × N diagonal matrix with D(i, i) =∑
j A(i, j). That is, D(i, i) is the sum of the weights of the

edges that are incident to vertex i. The normalized Laplacian
of the graph can be derived as [47]

Lnorm = D− 1
2 L D− 1

2 . (10)

Since Lnorm is symmetric, its eigenvalues are all real and
non-negative. The set of the eigenvalues β0 ≤ β1 ≤ ... ≤
βN−1 is called the spectrum of the graph [47]. In the ideal
case of Nc completely disconnected clusters, the eigenvalue
0 has multiplicity Nc, and then there is a gap to the (Nc +
1)th eigenvalue βNc+1 > 0. This is the so-called eigengap
criterion. Accordingly, the most stable clustering is generally
obtained for k that maximizes the difference (βk−βk−1). The
eigengap criterion can be applied to Lnorm in order to predict
the number of clusters for each partition. The criterion usually
works well if the data contain very well pronounced clusters,
but in ambiguous cases it also returns ambiguous results [48].
A similar heuristic was also applied in [49].

After having determined the number of clusters to be
formed, the three clustering methods yield three partitions and
the co-association matrix (8) is computed. A speech segment
Si is assigned to the same cluster with segment Sj , when

CM(i, j) ≥ ϑ i �= j (11)
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where ϑ is a threshold. It is expected that the larger the value
of ϑ becomes, the higher is the similarity between the speech
segments assigned to the same cluster. ϑ values ∈ [0.5, 0.9] are
tested in order to find the value that improves the performance
most. It has been found that ϑ = 0.7 suffices for good
clustering.

Finally, N sets Si, i = 1, 2, . . . , N are created, where Si

contains the indices of the speech segments that are clustered
together with segment Si. It is expected that the overlap
between the sets, which consist of segments belonging to the
same (natural) cluster, will be large.

D. Cluster merging module

The most critical step of the algorithm is cluster merging.
Since we strongly prefer over-segmentation, it is possible to
end up with more speech segments than those ideally should
be produced by choosing a small chunk duration. This fact,
combined with the use of threshold ϑ might cause speech
segments from the same speaker to be split into different
clusters. Such clusters should be merged. The cluster merging
algorithm is applied recursively to Si. The iterative procedure
stops, when no more mergers occur. At each iteration, the
intersection between Si and Sj is calculated and the following
heuristic rule is applied: Si and Sj are merged together into
a single cluster, if the cardinality of the intersection Si

⋂
Sj

is greater than or equal a threshold set equal to a portion of
the smallest cardinality of the individual sets Si and Sj . The
larger the value of the threshold is, the more similar clusters
are merged in the sense that the number of common speech
segments shared between the two sets is larger. For example,
the threshold is set to 4/5 in two-person dialogue movie scenes
and 6/10 in MDE RT-03 news broadcasts to avoid the risk of
merging clusters not really belonging together. Next, the union
Si

⋃
Sj is determined, that replaces the individual sets. At the

end of the recursion, N ′
c sets are produced.

A usual phenomenon during cluster merging is the creation
of singleton clusters, i.e. clusters that contain only one speech
segment. This fact practically means that the specific speech
segment can not be clustered together with any other segment,
implying that such a speech segment might be an outlier.
Outliers usually appear in speaker clustering applications, due
to the following reasons.

1) Speaker segmentation algorithms are not error-free, lead-
ing to non-homogeneous speech segments, that contain
data from more than one speaker.

2) Speaker segmentation algorithms can not deal with con-
current speech.

3) Due to noise attributed to either the environmen-
tal/recording conditions or speakers’ affective condition,
there exist speech segments that are not similar to each
other.

Generally, it is not desirable to have “small” clusters. It is
proposed that a speech segment that cannot be assigned to any
cluster to be treated as an outlier. In order to study the effect of
outliers in speaker diarization, two variants of the diarization
system are studied. The first variant excludes the outliers from
the clustering procedure, while the second variant does not. In

both variants, a cluster C� is modeled by a GMM with k�

components each, where k� is the number of speech segments
assigned to it.

The first variant ends up with Nc compact clusters and
No outlier segments, which are singleton clusters. Only the
Nc compact clusters resulted after merging are considered. It
is expected that the performance of the first variant will be
better, since the outliers, that generally deteriorate clustering
performance, are excluded. By removing the outliers, the
speaker time to be clustered will be reduced as well, which is
not generally desirable.

In the second variant, the No outlier segments (singleton
clusters) are forced to be merged with the other speech seg-
ments resulting again to Nc compact clusters at the end. The
outlier segments are assigned to the closest compact cluster. It
it reminded that a speech segment is modeled by a Gaussian
pdf. Thus, the problem of determining the distance between a
cluster C�, � = 1, 2, . . . , Nc and an outlier speech segment Sj ,
j = 1, 2, . . . , No is reduced to calculating the distance between
a GMM and a single Gaussian pdf. The distance between a
Gaussian component N (µj ,Σj) and the �th Gaussian mixture
of k� Gaussian components N (µm�,Σm�), m = 1, 2, . . . , k�

is given by

d({Σm�, m = 1, 2, . . . , k�},Σj) =
k�∑

m=1

γm� dCOV MEAN (Σm�,Σj) (12)

where γm� = Nm�

NC�

, Nm� is the number of speech frames in the

mth segment, and NC�
=

∑k�

m=1 Nm� is the total number of
speech frames assigned to the speech segments, which belong
to the �th cluster C�. Each speech segment Sj is assigned to
the GMM C�, � = 1, 2, . . . , Nc that minimizes (12).

V. EXPERIMENTS AND RESULTS

This section describes the data used in the experiments,
the evaluation measures employed, the baseline system tested
against the proposed speaker diarization system, and the results
obtained.

A. Data

Two different datasets have been used in the experiments.
The first dataset comprises 15 scenes of two-person dialogues
extracted from 5 movies, while the second dataset is a subset
consisting of 43 single microphone recordings extracted from
the MDE RT-03 Training Data Speech corpus [50].
1) Two-person dialogue movie scenes: 15 scenes extracted

from Analyze That, Cold Mountain, Jackie Brown, Lord of the
Rings I, and Secret Window were used in the experiments.
Their audio track is digitized in PCM at a sampling rate of
48 kHz. Each sample is quantized in 16 bit two-channel.
The total duration of the scenes is 16 min and 16 s. All
scenes contain two-person dialogues implying that ideally the
speaker diarization system should yield 2 natural clusters.
Based on the background noise, the dialogue scenes can be
either clean dialogue scenes (CD), i.e. scenes with low-level
audio background or background dialogue scenes (BD) where
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a noisy background, such as music, clapping, or environmental
noise is present. Table I summarizes the scene details, e.g. the
movie title they are extracted from, their duration in seconds,
the actors’ genders (F for female, M for male), and the
dialogue type. In addition, ground truth information related to
exact timing information for each actor appearance is available
for all movie scenes [51]1. To provide an estimate of the noise
power we selected 4 pairs of BD and CD scenes extracted from
the same movie and estimated the ratio of the average signal
power in the BD scenes over the average signal power in the
CD scenes. This ratio was found to be 7.34 (or 8.657 dB).

TABLE I
DETAILS ON THE MOVIE SCENES.

Scene Movie title Duration
(s)

Actors’
genders

Dialogue
type

AT1 Analyze That 63 M-F CD
AT2 Analyze That 57 M-M CD
CM1 Cold Mountain 35 M-F CD
CM2 Cold Mountain 71 F-F BD
CM3 Cold Mountain 76 M-M CD
CM4 Cold Mountain 91 M-F BD
CM5 Cold Mountain 69 M-F CD
JB1 Jackie Brown 65 M-M CD
JB2 Jackie Brown 94 M-M CD
JB3 Jackie Brown 95 M-F CD
LOTR1 Lord of the Rings I 41 M-M BD
LOTR2 Lord of the Rings I 30 M-M BD
LOTR3 Lord of the Rings I 56 M-M CD
SW1 Secret Window 45 M-M BD
SW2 Secret Window 88 M-M CD

2) MDE RT-03 Training Data Speech Corpus subset: It
comprises 43 sound files of BN speech data that are encoded
in 16-bit PCM with a sampling rate of 16kHz. In Table II, the
sound files that were used, their duration in seconds, and the
actual number of speakers are summarized. The total duration
of the sound files is 4 hr and 10 min.

B. Evaluation measures

To evaluate the performance of a speaker clustering algo-
rithm, several measures are used: the average classification
error; the cluster purity and its average value; the speaker
purity and its average value; and the diarization error rate.

Let

nij be the total number of audio segments in cluster
i uttered by actor j;
Na be the total number of actors;
Nc be the total number of clusters;
N be the total number of audio segments;
n.j be the total number of audio segments uttered by
actor j;
ni. be the total number of audio segments in cluster
i.

Relationships between the aforementioned variables are as
follows:

ni. =
Na∑
j=1

nij , n.j =
Nc∑
i=1

nij , N =
Nc∑
i=1

Na∑
j=1

nij . (13)

1Data can be shared with interested researchers upon request.

TABLE II
DETAILS ON THE SUBSET OF THE MDE RT-03 TRAINING DATA SPEECH

(Na DENOTES THE NUMBER OF SPEAKERS.

File
No

Sound file Duration
(s)

Na

1 ea980107-split003 360.801 4
2 ea980108-split002 400.745 6
3 ea980109-split003 376.828 7
4 ea980110-split001 369.88 1
5 ea980110-split002 295.759 5
6 ea980112-split003 349.783 2
7 ea980113-split002 343.783 8
8 ea980114-split002 347.734 10
9 ea980120-split002 379.755 12
10 ea980122-split004 295.804 4
11 ea980123-split001 422.477 9
12 ea980123-split002 363.76 9
13 ea980123-split003 388.086 13
14 ea980124-split004 264.551 4
15 ea980126-split004 301.242 7
16 ea980127-split001 411.793 9
17 ea980128-split002 407.199 7
18 ea980130-split003 432.749 12
19 ed980106-split003 416.045 3
20 ed980106-split004 347.918 3
21 ed980106-split005 218.773 9
22 ed980108-split001 335.964 3
23 ed980108-split005 336.448 8
24 ed980111-split003 353.55 5
25 ed980112-split001 393.373 6
26 ed980121-split003 334.303 3
27 ed980122-split001 339.621 4
28 ee970625-split004 311.388 3
29 ee970625-split007 481.43 7
30 ee970626-split005 190.793 3
31 ee970626-split007 269.768 7
32 ee970627-split005 326.187 3
33 ee970627-split006 369.379 10
34 ee970627-split009 359.83 5
35 ee970630-split004 319.577 4
36 ee970630-split007 411.063 11
37 ee970701-split003 577.378 4
38 ee970701-split005 342.602 3
39 ee970702-split004 216.034 3
40 ee970703-split006 360.992 14
41 ee970722-split003 243.975 6
42 ee970723-split005 343.583 4
43 ee970807-split002 333.597 5

1) Average classification error: The classification error is
defined as the percentage of time not attributed correctly to a
reference speaker [30]. The error for cluster i, CEi, is defined
as the percentage of the total time spoken by actor whose
speech segments appear in majority in cluster i, that has not
been clustered to this cluster. The average classification error,
ace, is defined as [30]:

ace =
1

Nc

Nc∑
i=1

CEi. (14)

ace admits values between 0 and 1. The smaller the ace value
is, the better performance is achieved.
2) Average cluster purity: The purity of cluster i, is defined

as [1]

πi. =
Na∑
j=1

n2
ij/n2

i.. (15)
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The average cluster purity is given by [10]

acp =
1
N

Nc∑
i=1

πi. ni.. (16)

acp provides a measure of how well a cluster is limited to only
one speaker. It admits values between 0 and 1. The higher the
acp value is, the more homogeneous the clusters are.
3) Average speaker purity: The purity of speaker (actor) j,

is defined as [13]

π.j =
Nc∑
i=1

n2
ij/n2

.j . (17)

The average speaker purity is given by [13]

asp =
1
N

Na∑
j=1

π.j n.j . (18)

asp provides a measure of how well a speaker is limited to
only one cluster. It admits values between 0 and 1. The higher
the asp value is, the better the speaker is limited to one cluster.
The calculation of asp is required, since acp alone can be
misleading.
4) Diarization error rate: It is defined by the NIST Rich

Transcription Evaluation [52] as

derr =
TFA + TMS + Twrong

Ttotal
(19)

where TFA is the total duration of the non-speech segments
that were classified as speech, TMS is the total duration of the
speech segments that were classified as either non-speech or
silence, Twrong is the total duration of speech segments that
were correctly classified as speech, but that were clustered
into wrong speaker groups, and Ttotal is the total duration
of all the speech segments. This measure is reported for the
speaker diarization experiments conducted on the MDE RT-03
Training Data Speech Corpus subset.

C. Baseline system

The baseline system consists of the same four serially
connected modules: the speaker segmentation module, the
speaker modeling module, the clustering module, and the
cluster merging module. All modules are left intact, as they
were described in Section IV, except the clustering module.
The differentiation lies in the way the cluster ensemble is built
by the clustering module. In the baseline system, the number
of clusters is not estimated by the eigengap criterion. The
average group linkage, the weighted average group linkage,
and Ward’s hierarchical clustering methods are employed
again to create 30 different partitions of varying numbers
of clusters. Such a number of partitions is experimentally
found to be adequate for the ensemble voting mechanisms to
yield good clustering results. For each partition, the clustering
algorithm to be applied is randomly selected among the three
hierarchical algorithms. Furthermore, the number of clusters
to be created is randomly chosen in the range [2, 20]. The
consensus function (8) and the criterion (11) are employed in
order to derive the index sets Si, i = 1, 2, . . . , N and their

merger, as described in Section IV-D, yields systematically
(i.e. not randomly) the baseline clusters. Parameter ϑ is set
equal to 0.7.

D. Results

1) Two-person dialogue movie scenes: In order to evaluate
the speaker diarization performance, experiments are carried
out, when the outliers are either excluded from or included in
the clustering procedure.

Tables III and IV show the number of clusters created, and
the values of ace, acp, and asp measured in each movie scene
for the proposed system and the baseline one, when outliers are
either excluded from or included in the clustering procedure,
respectively. Table V summarizes the cumulative figures of
merit (i.e. the mean value and standard deviation of the number
of clusters, the ace, the acp, and the asp) for the proposed
system and the baseline one. The first number in parentheses
corresponds to the mean value, while the second one is the
standard deviation. The best figures of merit are indicated in
bold.

TABLE III
FIGURES OF MERIT FOR THE PROPOSED SPEAKER DIARIZATION SYSTEM,

WHEN OUTLIERS ARE EITHER EXCLUDED FROM OR INCLUDED IN

CLUSTERING.

Number of clusters and evaluation measures
Scene Outliers excluded Outliers included

Nc ace(%) acp asp Nc ace(%) acp asp
AT1 2 7.57 0.92 0.93 2 13.33 0.89 0.90
AT2 4 21.74 0.68 0.53 4 21.28 0.69 0.53
CM1 3 9.21 0.85 0.55 3 9.22 0.85 0.55
CM2 2 32.43 0.58 0.87 2 33.11 0.57 0.85
CM3 2 30.56 0.61 0.51 2 31.14 0.60 0.52
CM4 2 26.23 0.72 0.72 2 25.87 0.73 0.70
CM5 2 6.36 0.83 0.83 2 5.64 0.84 0.84
JB1 3 16.62 0.65 0.47 3 16.39 0.66 0.47
JB2 3 25.24 0.66 0.51 3 24.54 0.66 0.51
JB3 2 8.01 0.84 0.84 2 12.81 0.74 0.74
LOTR1 2 44.44 0.52 0.60 2 37.02 0.52 0.60
LOTR2 2 13.76 0.87 0.81 2 13.76 0.87 0.82
LOTR3 2 11.12 0.83 0.84 2 8.52 0.84 0.85
SW1 2 3.16 0.93 0.93 2 4.16 0.91 0.91
SW2 3 38.92 0.55 0.50 3 38.93 0.56 0.50

The inspection of Table III gives rise to several interesting
observations. 1) The proposed system predicts the correct
number of clusters (e.g. 2) in most cases. It is seen that in
10 out of the 15 movie scenes the number of clusters is
accurately predicted (i.e. success 66.6%). It is encouraging that
the proposed system succeeds to predict the correct number
of clusters for all background dialogue scenes. 2) In the case
of clean dialogue scenes, the values measured are significantly
better than those for background dialogues, as it was expected.
However, there are cases that deserve further attention. In
AT2 and SW2 scenes, the system not only fails to predict
the correct number of clusters, but the ace is large, too. It
must be mentioned that in these scenes, one or both actors
are yelling, respectively. The system did not detect that the
actor yelling was the same with that previously speaking and
had clustered the corresponding speech segments into different
clusters. Concerning JB2, this scene contains simultaneous
speech from two actors. Thus, the proposed system formed 3
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TABLE IV
FIGURES OF MERIT FOR THE BASELINE SPEAKER DIARIZATION SYSTEM,

WHEN OUTLIERS ARE EITHER EXCLUDED FROM OR INCLUDED IN

CLUSTERING.

Number of clusters and evaluation measures
Scene Outliers excluded Outliers included

Nc ace(%) acp asp Nc ace(%) acp asp
AT1 4 9.99 0.79 0.53 3 11.83 0.75 0.51
AT2 2 46.59 0.54 0.90 5 52.42 0.67 0.38
CM1 1 4.17 0.55 1.00 1 23.20 0.52 1.00
CM2 7 20.97 0.69 0.46 6 16.13 0.78 0.32
CM3 1 32.81 0.58 1.00 1 31.14 0.60 1.00
CM4 1 29.03 0.69 1.00 5 25.87 0.74 0.37
CM5 1 16.35 0.85 1.00 1 31.02 0.56 1.00
JB1 4 17.86 0.66 0.60 4 16.39 0.68 0.61
JB2 2 26.69 0.62 0.92 3 28.27 0.61 0.76
JB3 2 24.11 0.67 0.80 3 33.40 0.64 0.44
LOTR1 4 37.28 0.64 0.58 4 37.02 0.58 0.54
LOTR2 2 14.64 0.87 0.83 2 13.76 0.74 0.52
LOTR3 2 14.64 0.87 0.83 1 48.98 0.50 1.00
SW1 4 16.46 0.75 0.43 5 22.89 0.64 0.37
SW2 5 38.87 0.64 0.60 2 41.43 0.53 0.91

clusters with high ace. Scene CM3, although it is characterized
as clean dialogue, includes actors under stress who sometimes
are whispering. This fact implies that the emotional state of
the speakers plays an important role in speaker clustering. 3)
BD scenes generally demonstrate a high ace as well as low
acp and asp values. This is not the case for LOTR2 and SW1
scenes, where noise appears when no actor talks. Accordingly,
the proposed system is able to discriminate speech segments
and assign them to the appropriate cluster. In the remaining
background dialogues noise co-occurs while some speaker
talks and the system is thus confused. 4) When outliers are
included in the clustering, the system performance generally
deteriorates than when they are excluded. Exceptions are
the scenes CM4, CM5, LOTR1, and LOTR3 for which the
measured figures of merit are better when outliers are included
than when they are excluded. The latter observation could
be attributed to the fact that some singleton speech segments
have mistakenly been considered as outliers, and, thus, their
inclusion in the closest cluster improves performance. It must
be mentioned that the time reduction caused, when outliers
are excluded, equals 0.9% of the total time, implying that our
algorithm efficiently discriminates and handles the outliers.

To assess the impact of the eigengap criterion exploited
within cluster ensemble, Table IV summarizes the evaluation
measures for the baseline system on the same movie scenes.
It is seen that the baseline system ends up with a different
number of clusters when outliers are excluded from than when
they are included in the clustering for the same scene. The
baseline system predicts the correct number of clusters only in
5 out of the 15 scenes in the absence of outliers, and only in 2
out of the 15 scenes, when outliers are included. Additionally,
there exist scenes for which the algorithm fails to predict at
least 2 clusters and creates only 1 cluster. Concerning the
presence of outliers or not, the influence of outliers is more
evident in the baseline system than the proposed one that
utilizes the eigengap criterion. When the outliers are included,
the evaluation measures values are significantly worse than
those when the outliers are excluded. In all cases except

AT1 and CM2, the baseline system performs worse when
the outliers are included than when they are omitted. The
exceptions refer to two scenes where 3 and 6 clusters are
created, respectively, a fact that reduces the error. When
outliers are excluded, there are 3 scenes, namely CM1, CM2,
and LOTR1, where the baseline system yields better figures of
merit than the proposed system. For scenes CM2 and LOTR1,
this is attributed to the large number of the clusters created.
In the case of CM1, the small error is explained by the fact
that only 12 out of 35 s are clustered by the baseline system.
For the sake of completeness, it is reminded that 31.57 s
are clustered by the proposed system when the outliers are
excluded, which is more desirable.

TABLE V
CUMULATIVE FIGURES OF MERIT (I.E., MEAN AND STANDARD

DEVIATION) FOR THE PROPOSED SPEAKER DIARIZATION SYSTEM AND

THE BASELINE ONE, WHEN THE OUTLIERS ARE EITHER EXCLUDED FROM

OR INCLUDED IN CLUSTERING.

Figure Proposed system Baseline system
of merit Outliers

excluded
Outliers
included

Outliers
excluded

Outliers
included

Nc 2 2 3 3
ace(%) (19.69,

12.82)
(19.71,
11.50)

(25.30,
12.59)

(28.57,
12.33)

acp (0.74,
0.14)

(0.73,
0.13)

(0.67,
0.11)

(0.64,
0.08)

asp (0.70,
0.17)

(0.69,
0.10)

(0.77,
0.22)

(0.66,
0.27)

Table V accumulates the results of all figures of merit for
both the proposed and the baseline systems. The proposed
system predicts the correct number of clusters in either the
presence or the absence of outliers. The best ace and acp
values measured are 19.69% and 0.74, respectively, when
outliers are excluded from clustering. However, the best asp of
0.77 is returned by the baseline system, when the outliers are
excluded. The latter value is a consequence of the existence
of only 1 cluster in 4 scenes leading to a unit asp value. It
is obvious that the objective figures of merit for the proposed
system vary slightly with the inclusion or exclusion of outliers.
This is not the case with the baseline system. This fact in
addition to the very low time reduction, when outliers are
included, supports the argument that the proposed system
handles efficiently the outliers. That is, it does not isolate
speech segments as outliers, if they are not actually such.

Let us finally address the discriminative power of the pro-
posed system. This term refers to the ability of the system to
assign the clusters created to different speakers. For example,
if all clusters were assigned to only a single speaker in each
two-person dialogue scene, the system would obviously fail.
On the opposite, when different speakers are assigned to
the clusters created in the two-person dialogue scenes, the
system succeeds to discriminate between the speakers. The
discriminative power of the proposed system reaches 60%,
because there are 6 movie scenes (i.e. CM2, CM3, JB1,
LOTR1, LOTR2, and SW1) for which the system fails to
discriminate among the speakers.
2) MDE RT-03 Training Data Speech Corpus subset: Since

the proposed system is able to handle the outliers efficiently,
we will not exclude the outliers from the clustering here. In
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addition, the reference speech/non-speech segmentation has
been exploited in order to focus on a single source of the
diarization error rate, namely the speaker error Twrong , that
is associated to the portion of the total length of the speech
segments that are clustered into wrong speaker groups.

Table VI shows the actual number of clusters, Na, the
number of clusters created, Nc, as well as the values of der,
acp, and asp measured in each sound file for the proposed
system and the baseline one. The performance of the proposed
system with respect to the diarization error is improved by
8.1% on average, since the average diarization error of the
proposed system is measured to be 20.2%, while that of the
baseline system is 28.3%. The average acp and the average
asp of proposed system is 0.81 and 0.59, respectively. The
corresponding measures of the baseline system are 0.72 and
0.52, respectively.

TABLE VI
EVALUATION MEASURES FOR THE MDE RT-03 TRAINING DATA SPEECH

CORPUS SUBSET.

File Na Proposed system Baseline system
No Nc der acp asp Nc der acp asp
1 4 5 0.10 0.95 0.44 7 0.22 0.79 0.44
2 6 9 0.24 0.83 0.60 6 0.34 0.65 0.66
3 7 10 0.22 0.80 0.87 5 0.48 0.49 0.59
4 1 9 0.33 0.75 0.69 3 0.53 0.46 0.60
5 5 11 0.13 0.89 0.40 5 0.31 0.69 0.58
6 2 7 0.00 1.00 0.44 6 0.02 0.98 0.38
7 8 10 0.31 0.77 0.72 6 0.38 0.62 0.54
8 10 8 0.33 0.73 0.87 4 0.52 0.55 0.38
9 12 15 0.23 0.73 0.51 4 0.39 0.50 0.66
10 4 9 0.24 0.73 0.70 5 0.45 0.51 0.46
11 9 11 0.22 0.73 0.54 8 0.27 0.68 0.53
12 9 9 0.36 0.61 0.58 6 0.40 0.50 0.56
13 13 14 0.36 0.68 0.89 7 0.39 0.60 0.60
14 4 4 0.11 0.89 0.86 7 0.15 0.84 0.75
15 7 10 0.22 0.76 0.38 8 0.24 0.72 0.40
16 9 8 0.28 0.75 0.69 6 0.30 0.63 0.54
17 7 11 0.13 0.81 0.53 9 0.18 0.84 0.64
18 12 8 0.24 0.75 0.68 8 0.25 0.76 0.55
19 3 3 0.14 0.94 0.42 6 0.20 0.89 0.42
20 3 4 0.09 0.90 0.76 8 0.07 0.92 0.24
21 9 9 0.30 0.75 0.44 6 0.33 0.73 0.46
22 3 4 0.08 0.87 0.47 2 0.14 0.70 0.89
23 8 8 0.25 0.70 0.71 7 0.30 0.65 0.48
24 5 6 0.15 0.85 0.38 8 0.17 0.73 0.44
25 6 10 0.27 0.84 0.73 7 0.37 0.75 0.61
26 3 5 0.19 0.95 0.61 8 0.19 0.84 0.30
27 4 6 0.10 0.97 0.43 5 0.15 0.94 0.87
28 3 5 0.06 0.94 0.40 8 0.12 0.86 0.27
29 7 11 0.35 0.66 0.40 8 0.39 0.61 0.48
30 3 9 0.06 0.94 0.21 7 0.06 0.94 0.26
31 7 15 0.24 0.77 0.55 6 0.37 0.68 0.63
32 3 3 0.16 0.81 0.79 8 0.17 0.87 0.30
33 10 10 0.29 0.72 0.71 5 0.40 0.68 0.81
34 5 8 0.20 0.91 0.81 4 0.28 0.88 0.64
35 4 10 0.04 0.98 0.50 7 0.16 0.85 0.59
36 11 12 0.31 0.72 0.60 8 0.30 0.70 0.75
37 4 7 0.26 0.72 0.39 7 0.40 0.70 0.35
38 3 8 0.14 0.87 0.50 5 0.27 0.71 0.36
39 3 3 0.11 0.83 0.62 7 0.11 0.87 0.24
40 14 6 0.39 0.46 0.68 5 0.42 0.48 0.74
41 6 9 0.24 0.73 0.50 4 0.33 0.59 0.76
42 4 8 0.15 0.86 0.49 6 0.28 0.82 0.46
43 5 7 0.16 0.82 0.54 5 0.26 0.74 0.54

By examining Tables VI and II, it can be verified that the
proposed system creates as many clusters as the number of
speakers in 8 out of 43 cases, while the baseline system does
the same only in 3 cases. In addition, the proposed system
produces more clusters than the number of speakers in 30 out
of the 43 cases, and less clusters than the number of speakers
in 5 cases. The baseline system creates more clusters than the
speakers in 21 out of the 43 cases, and delivers less clusters
than the speakers in 19 cases. Clustering quality is expected to

deteriorate when less clusters than the actual ones are created.
On the contrary, clustering quality is expected to improve,
when the resulting clusters are equal or a little bit more than
the actual ones.

It is worth noting that the eigengap criterion succeeds in
predicting the correct number of clusters in more than 8 cases,
but the number of the resulting clusters deviates from the
predicted number of clusters by the eigengap due to the cluster
merging module. Figure 1 depicts the eigenvalue distribution
of I − Lnorm for two sound files of 4 and 5 speakers.

VI. DISCUSSION AND CONCLUSION

A novel acoustic speaker diarization system for movie
scenes that combines cluster ensembles and the eigengap crite-
rion has been proposed. The system has been evaluated first on
15 movie scenes extracted from 5 movies. Clustering quality
has been assessed with respect to the overall classification
error, the average cluster purity, and the average speaker purity.
The influence of outliers in clustering quality has been studied.
The best average classification error approximately equal to
19.7% is not influenced by either the inclusion or the exclu-
sion of the outliers. Accordingly, the experimental findings
suggest that the proposed system is able to handle outliers
efficiently. In addition, the number of speakers who participate
in dialogues is correctly predicted with 66.6% success, while
the discriminative power of the system is found to be 60%.
The system has been further tested on broadcast news of total
duration exceeding the 4 hours from the MDE RT-03 Training
Data Speech Corpus. A diarization error rate of 20.2% is
reported on average in which the contribution of Twrong is
found to be 14.18%. The proposed system performance has
been compared to that of a baseline system, which does not
exploit the eigengap criterion in cluster ensembles and found
to be superior in both cases.

However, there is still room to improve the proposed
approach. First, a pre-clustering step that performs gender
classification could improve clustering. Second, environmental
and channel variations, which affect speaker diarization, de-
serve further consideration, because, it has been observed that
whispers and background noise may deteriorate performance.
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