
RPLSA: A Novel Updating Scheme for Probabilistic

Latent Semantic Analysis

N. Bassiou C. Kotropoulos

Department of Informatics, Aristotle University of Thessaloniki
Box 451 Thessaloniki 541 24, GREECE

phone: + 30 2310 998225, fax: + 30 2310 998225

Abstract

A novel updating method for Probabilistic Latent Semantic Analysis (PLSA),

called Recursive PLSA (RPLSA), is proposed. The updating of conditional

probabilities is derived from first principles for both the asymmetric and

the symmetric PLSA formulations. The performance of RPLSA for both

formulations is compared to that of the PLSA folding-in, the PLSA rerun

from the breakpoint, and well-known LSA updating methods, such as the

singular value decomposition (SVD) folding-in and the SVD-updating. The

experimental results demonstrate that the RPLSA outperforms the other up-

dating methods under study with respect to the maximization of the average

log-likelihood and the minimization of the average absolute error between

the probabilities estimated by the updating methods and those derived by

applying the non-adaptive PLSA from scratch. A comparison in terms of

CPU run time is conducted as well. Finally, in document clustering using

the Adjusted Rand index, it is demonstrated that the clusters generated by

Email address: {nbassiou, costas}@aiia.csd.auth.gr (N. Bassiou C.
Kotropoulos)

Preprint submitted to Computer Speech and Language December 29, 2010



the RPLSA are: a) similar to those generated by the PLSA applied from

scratch; b) closer to the ground truth than those created by the other PLSA

or LSA updating methods.

Key words: PLSA - PLSA updating - document clustering - information

retrieval - Adjusted Rand - Expectation Maximization

1. Introduction

The ease to access, process, and retrieve multimedia data is mainly at-

tributed to various machine learning algorithms employing computationally

efficient statistical methods to extract information from the data. Such meth-

ods include the latent variable models that aim at revealing a hidden struc-

ture within the high dimensional data in order not only to retain, but also

to abstract the information content.

Among the main latent variable models, Probabilistic Latent Semantic

Analysis (PLSA) [12, 13, 14], which stems from Latent Semantic Analy-

sis (LSA) [8], manipulates huge amounts of data under a solid probabilistic

framework, thus finding applications in modeling, classification, and retrieval

of text, audio, images, and videos. However, the dynamic nature of data to-

gether with memory limitations impose the need for devising updating meth-

ods for LSA or PLSA, which are also frequently met as on-line, incremental,

or folding-in methods in the literature.

Several methods have been presented for updating the LSA model, that

is estimated by a truncated singular value decomposition (SVD), such as

recomputing the SVD, SVD folding-in, SVD-updating [21, 2, 1], and SVD

folding-up which alternates repeatedly between the SVD folding-in and the
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SVD-updating in order to avoid the loss of orthogonality [23].

Similarly, methods for updating the PLSA model, which performs a prob-

abilistic mixture decomposition by means of the Expectation-Maximization

(EM) algorithm, have been proposed. In more detail, an incremental variant

of the EM algorithm is adopted in the PLSA folding-in [5, 10, 4], while a

modified EM scheme based on the Generalized Expectation Maximization is

proposed in [25]. In Incremental PLSA [7], PLSA folding-in is used to fold-

in new terms and documents in a four step procedure where a batch of new

incoming documents are added and a batch of old documents are discarded.

Instead of using a maximum likelihood estimator for folding-in, a maximum a

posteriori estimator is employed in Bayesian folding-in, which uses a Dirich-

let density kernel as prior [11]. An adaptive Bayesian PLSA framework that

incorporates two new adaptation paradigms for PLSA, namely the MAP

Estimation for Corrective Training and the Quasi-Bayes Estimation for In-

cremental Learning, is proposed in [6]. The aforementioned paradigms model

the priors of the PLSA parameters by using Dirichlet densities as well.

In this paper, a novel method referred to as Recursive PLSA (RPLSA) is

proposed for updating the PLSA model probabilities. The PLSA is studied

within the widely spread document modeling framework, where the observed

term and document frequencies are modeled by latent topics. The proposed

RPLSA derives the updating equations for the PLSA model probabilities

from first principles, when new documents are appended to an initial doc-

ument collection by adding incrementally the words of any new document

in the term-document matrix. Two different initialization schemes of the

model probabilities for the newly added documents are also tested. The per-
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formance of the proposed RPLSA is compared to that of PLSA folding-in [12]

and the PLSA rerun from the breakpoint in terms of accuracy and speed. It

is demonstrated that the proposed updating method outperforms the estab-

lished updating methods under study with respect to the minimum average

absolute error between the probabilities derived by the updating methods

and those estimated by the original non-adaptive PLSA algorithm applied

to the augmented document collection starting from scratch. Moreover, the

proposed RPLSA method achieves a higher average log-likelihood value upon

EM convergence than the PLSA folding-in. In addition, by measuring the

average CPU run time for RPLSA, the PLSA folding-in, the PLSA rerun

from the breakpoint, and the PLSA executed from scratch, it is shown that

the PLSA rerun from the breakpoint is the most time consuming updating

method, whereas the PLSA folding-in is less time consuming than the RPLSA

in most cases. However, the excessive computational time of the RPLSA is

compensated with its higher accuracy compared to the accuracy of PLSA

folding-in. In a document clustering framework, it is demonstrated by using

the Adjusted Rand index, that the RPLSA produces more pure and correct

clusters than the PLSA folding-in and the PLSA rerun from the breakpoint

do. The superiority of the RPLSA over the LSA and its associated updat-

ing methods (i.e., SVD folding-in and SVD updating) is also verified in the

document clustering framework.

The outline of the paper is as follows. The PLSA is briefly discussed in

Sect. 2. In Sect. 3, the traditional LSA/PLSA updating schemes which are

employed for comparison purposes are summarized. The proposed updating

algorithms are derived from first principles in Sect. 4. Experimental results
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are demonstrated in Sect. 5, and conclusions are drawn in Sect. 6.

2. Probabilistic Latent Semantic Analysis (PLSA)

The PLSA stems from LSA. It defines a proper generative latent data

model, the so called aspect model [15] and performs probabilistic mixture

decomposition. The aspect model is a latent variable model for co-occurrence

data, which associates an unobserved class variable zk, k = 1, 2, . . . , K with

each observation. For text processing, the observation is the occurrence of

a word/term wj, j = 1, 2, . . . , M in a document di, i = 1, 2, . . . , N , while

the unobserved class variable zk usually represents the topic a document has

generated from. The basic assumption underlying the aspect model is that all

the observation pairs (di, wj) are independent and identically distributed and

furthermore they are conditionally independent given the respective latent

class zk. The data generation process can be described by the following

scheme [14]: 1) select a document di with probability P (di), 2) pick a latent

topic zk for the document with probability P (zk|di), and 3) generate a term

wj with probability P (wj|zk). For the joint distribution of the word wj in the

document di generated by the latent topic zk, the following identity holds:

P (di, wj, zk) = P (di)P (zk|di)P (wj|zk). (1)

2.1. Asymmetric Formulation

The joint distribution of the observed data is obtained by summing (1)

over all possible realizations of zk, i.e.,

P (di, wj) =
K∑

k=1

P (di, wj, zk) = P (di)
K∑

k=1

P (zk|di)P (wj|zk)

︸ ︷︷ ︸
P (wj |di)

. (2)
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As it can be seen from Eq. (2), the document-specific term distributions

P (wj|di) are obtained by the convex combination of the K aspects/factors

P (wj|zk). This implies that the documents are not assigned to clusters, but

they are characterized by a specific mixture of factors with weights P (zk|di).

In order to determine P (di), P (zk|di) and P (wj|zk), the PLSA algorithm

maximizes the log-likelihood function, i.e.,

L =
N∑

i=1

M∑
j=1

n(di, wj) log P (di, wj) (3)

with respect to all the aforementioned probabilities by applying the EM

algorithm [9]. In Eq. (3), n(di, wj) denotes the term frequency, (i.e., how

many times wj occurs in di) . The estimation of P (di) can be carried out

independently resulting in P (di) = n(di)∑N
i=1 n(di)

, where n(di) =
∑M

j=1 n(di, wj).

P (zk|di) and P (wj|zk) are estimated by alternating between the two steps of

the EM algorithm [14]:

Expectation step (E-step):

P̂ (zk|di, wj) =
P (wj|zk)P (zk|di)∑K

k′=1 P (wj|zk′)P (zk′|di)
. (4)

Maximization step (M-step):

P (wj|zk) =

∑N
i=1 n(di, wj)P̂ (zk|di, wj)∑N

i=1

∑M
j′=1 n(di, wj′)P̂ (zk|di, wj′)

(5)

P (zk|di) =

∑M
j=1 n(di, wj)P̂ (zk|di, wj)

n(di)
. (6)

By alternating Eq. (4) with Eqs. (5)-(6), a procedure that converges toward

a local maximum of the log-likelihood results.
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2.2. Symmetric Formulation

It is worth noting that by applying the Bayes’ chain rule in order to invert

the conditional probability P (zk|di), an equivalent symmetric version of the

aspect model can be obtained [14]. As a result, Eq. (2) takes the form:

P (di, wj) =
K∑

k=1

P (zk)P (di|zk)P (wj|zk). (7)

By applying the Bayes formula taking into account Eq. (7), we arrive at the

following E-step [12]:

P̂ (zk|di, wj) =
P (zk)P (di|zk)P (wj|zk)∑K

k′=1 P (zk′)P (di|zk′)P (wj|zk′)
(8)

while the maximization of the expected data log-likelihood given the posterior

probabilities in Eq. (8) yields the M-step equations:

P (wj|zk) =

∑N
i=1 n(di, wj)P̂ (zk|di, wj)∑N

i=1

∑M
j′=1 n(di, wj′)P̂ (zk|di, wj′)

(9)

P (di|zk) =

∑M
j=1 n(di, wj)P̂ (zk|di, wj)∑N

i′=1

∑M
j=1 n(di′ , wj)P̂ (zk|di′ , wj)

(10)

P (zk) =

∑N
i=1

∑M
j=1 n(di, wj)P̂ (zk|di, wj)

R
(11)

where R =
∑N

i=1

∑M
j=1 n(di, wj).

A better insight into the two equivalent aspect models can be obtained

by means of the graphical models [3]. The latent topic variable zk acts

as a bottleneck variable, since its cardinality is smaller than the number

of documents N and the number of terms M in the collection, i.e., K ¿
min{N, M}.

The symmetric PLSA formulation can be rewritten in matrix notation as

P = UKSKVT
K , where UK is an M ×K matrix with jk element P (wj|zk),
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VK is an N × K matrix with ik element P (di|zk), SK is a K × K diago-

nal matrix having as elements on its main diagonal P (zk), k = 1, 2, . . . , k,

and P is an M × N matrix with ji element P (wj, di). Such a decomposi-

tion looks like a truncated SVD employed within the LSA. Despite the just

described resemblance, it should become clear that the LSA and the PLSA

solve different optimization problems. Indeed, the LSA minimizes the `2

norm (i.e. the Frobenius norm) between the original-term document matrix

and its best K-rank approximation, while the PLSA maximizes the likeli-

hood function of multinomial sampling or equivalently minimizes the cross

entropy or Kullback-Leibler divergence between the model and the empirical

distribution. The superior modeling power of PLSA over LSA is attributed

to this fundamental difference.

However, the just described resemblance of the PLSA to the LSA, has

motivated research in updating the PLSA by resorting to SVD updating

methods. The methods proposed in the literature for updating both the

LSA and the PLSA model, which were tested in this paper, are described in

Sect. 3 that follows.

3. LSA/PLSA Updating

Updating refers to the general process of adding new terms and/or doc-

uments to an existing LSA/PLSA model. Several methods were proposed

for LSA updating, recomputing the SVD, SVD folding-in, SVD-updating [21,

26, 1] and SVD folding-up [23]. The method of recomputing the SVD is not

actually an updating method, since it performs the SVD to the augmented

term-document matrix [2, 21]. SVD folding-in of new terms/documents is
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the simplest approach, in which the new term/document vectors are pro-

jected to the existing latent space. SVD-updating is performed by exploiting

the reduced QR decomposition of the augmented term/document matrix [26]

or by means of suitable Cholesky factorizations [1]. In contrast to the SVD-

updating, SVD folding-in looses the orthonormality of the right or/and left

singular vectors, when new documents or/and terms are added [2].

For PLSA updating, the PLSA folding-in [5, 20] has been tested, which

is based on an incremental variant of the EM algorithm discussed in [20].

The online EM algorithm in [20] keeps P (w|z) fixed and iterates between

P (z|d, w) and P (z|d). This scheme was further simplified for topic detection

in [10]. Usually a small number of iterations are needed for the EM to

converge.

In this paper, PLSA folding-in, SVD folding-in, and SVD updating were

compared to the proposed Recursive PLSA described in the next section.

4. Recursive Probabilistic Latent Semantic Analysis (RPLSA)

A novel method of updating the PLSA model parameters (i.e., P (wj|zk)

and P (zk|di) for the asymmetric model and P (wj|zk), P (di|zk), and P (zk)

for the symmetric model) is derived from first principles next. The proposed

method is referred to as Recursive Probabilistic Latent Semantic Analysis

(RPLSA).

In the analysis, the simplest case of adding a new document with just one

word is treated in detail first and generalizations follow. Assume that a new

document dN+1 is added to an existing M ×N term-document matrix at the

end of the lth iteration of the EM algorithm. Suppose that the document
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is pivotal. That is, it contains just one word appearing α times, which is

the first word of the vocabulary without any loss of generality. Therefore, it

holds that

n(wj, dN+1) =





α if j = 1

0 if j = 2, 3, . . . ,M .
(12)

Let us refer to the M × 1 vector dN+1 = [α1, 0, . . . , 0]T as the new in-

coming pivotal document to be appended to the existing M × N term-

document matrix. Next, concepts or model parameters for the symmet-

ric formulation will appear inside parentheses. A new column (row) has

to be appended to the K × N (N × K) matrix holding the probabilities

P (zk|di) (P (di|zk)). To achieve this, two initialization schemes have been pro-

posed. In stdUniform initialization, the elements P (zk|dN+1)l (P (dN+1|zk)l)

of the appended column (row) are assumed to be uniformly distributed

numbers in [0, 1], while in wordtopics initialization they are assumed to

be equal to the conditional probability of the word w1 appearing in the

new document dN+1 given each topic. That is, P (zk|dN+1)l = P (w1|zk)l or

P (dN+1|zk)l = P (w1|zk)l, k = 1, 2, . . . , K for the asymmetric formulation

and the symmetric one, respectively. In either case, a normalization is nec-

essary so that
∑K

k=1 P (zk|dN+1)l = 1, k = 1, 2, . . . , K for the asymmetric

formulation and
∑N+1

i=1 P (di|zk)l = 1, k = 1, 2, . . . , K for the symmetric one.

For simplicity reasons, we also make the assumption that the addition of

the new document alters neither the number of topics K nor the vocabulary.

The objective is to derive the equations for the (l + 1)th iteration of the EM

algorithm.
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4.1. Asymmetric formulation

Initially, let us focus on the computations that take place by proceeding

from the l−th iteration to the iteration l + 1 of the EM algorithm, when no

document is added.

The E-step for iteration l + 1 is given by

P̂ (zk|di, wj)l+1 =
P (wj|zk)lP (zk|di)l∑K

k′=1 P (wj|zk′)lP (zk′|di)l

. (13)

After the substitution of Eq. (13), the M-step equations (5) and (6) take the

form:

P (wj|zk)l+1 =

∑N
i=1 n(di, wj)P̂ (zk|di, wj)l+1∑N

i=1

∑M
j′=1 n(di, wj′)P̂ (zk|di, wj′)l+1

=
P (wj|zk)l

∑N
i=1

n(di,wj)P (zk|di)l∑K
k′=1 P (wj |zk′ )lP (zk′ |di)l∑M

j′=1 P (wj′|zk)l

[∑N
i=1

n(di,wj′ )P (zk|di)l∑K
k′=1 P (wj′ |zk′ )lP (zk′ |di)l

] (14)

P (zk|di)l+1 =

∑M
j=1 n(di, wj)P̂ (zk|di, wj)l+1

n(di)

=
P (zk|di)l

∑M
j=1

n(di,wj)P (wj |zk)l∑K
k′=1 P (wj |zk′ )lP (zk′ |di)l

n(di)
. (15)

To simplify notation, Eqs. (14) and (15) are rewritten as follows:

P (wj|zk)l+1 =
P1(wj|zk)l+1∑M

j′=1 P1(wj′|zk)l+1

, where (16)

P1(wj|zk)l+1 = P (wj|zk)l

N∑
i=1

n(di, wj)P (zk|di)l∑K
k′=1 P (wj|zk′)lP (zk′|di)l

(17)

and

P (zk|di)l+1 =
P2(zk|di)l+1

n(di)
, where (18)

P2(zk|di)l+1 = P (zk|di)l

M∑
j=1

n(di, wj)P (wj|zk)l∑K
k′=1 P (wj|zk′)lP (zk′|di)l

. (19)
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The pivotal document dN+1 = [α, 0, . . . , 0]T is added in the collection at the

end of the lth iteration. Therefore, Eqs. (16)-(19) have to be re-estimated.

Eq. (17) takes the form

P+
1 (wj|zk)l+1 = P1(wj|zk)l+1 +

n(dN+1, wj)P (wj|zk)lP (zk|dN+1)l∑K
k′=1 P (wj|zk′)lP (zk′|dN+1)l

=





P1(wj|zk)l+1, if j 6= 1

P1(w1|zk)l+1 + αP (w1|zk)lP (zk|dN+1)l∑K
k′=1 P (w1|zk′ )lP (zk′ |dN+1)l

, if j = 1
(20)

where the notation P+( ) denotes the probability estimate after the insertion

of the new document dN+1. Eq. (16) with the help of Eq. (20) is re-written

as

P+(wj|zk)l+1 =
P+

1 (wj|zk)l+1∑M
j′=1 P+

1 (wj′|zk)l+1

=
P+

1 (wj|zk)l+1

P+
1 (w1|zk)l+1 +

∑M
j′=2 P+

1 (wj′|zk)l+1

=





P1(wj |zk)l+1

A+
l+1

, if j 6= 1

P+
1 (w1|zk)l+1

A+
l+1

, if j = 1
(21)

where

A+
l+1 =

M∑

j′=1

P1(wj′|zk)l+1 + P+
1 (w1|zk)l+1 − P1(w1|zk)l+1. (22)

Similarly, Eq. (19) is written as

P+
2 (zk|di)l+1 = P (zk|di)l

M∑
j=1

n(di, wj)P (wj|zk)l∑K
k′=1 P (wj|zk′)lP (zk′|di)l

=





P2(zk|di)l+1, if i = 1, 2, . . . , N

αP (w1|zk)lP (zk|dN+1)l∑K
k′=1 P (w1|zk′ )lP (zk′ |dN+1)l

, if i = N + 1
(23)

By rewriting the second branch of Eq. (23) with the help of Eq. (20), we

obtain

P+
2 (zk|di)l+1 = P (zk|di)l

M∑
j=1

n(di, wj)P (wj|zk)l∑K
k′=1 P (wj|zk′)lP (zk′|di)l
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=





P2(zk|di)l+1, if i = 1, 2, . . . , N

P+
1 (w1|zk)l+1 − P1(w1|zk)l+1, if i = N + 1

(24)

Finally, Eq. (18) with the help of Eq. (24) takes the form:

P+(zk|di)l+1 =
P+

2 (zk|di)l+1

n(di)
(25)

=





P2(zk|di)l+1

n(di)
= P (zk|di)l+1, if i = 1, 2, . . . , N

P+
2 (zk|di)l+1

n(dN+1)
=

P+
1 (w1|zk)l+1−P1(w1|zk)l+1

α
, if i = N + 1.

4.2. Symmetric formulation

Following similar lines to Sect. 4.1, let us begin with the E-step and M-

step of the EM algorithm, when we proceed from iteration l to l + 1 prior to

the addition of a new document in the collection. The E-step for iteration

l + 1 is given by

P̂ (zk|di, wj)l+1 =
P (zk)lP (di|zk)lP (wj|zk)l∑K

k′=1 P (zk′)lP (di|zk′)lP (wj|zk′)l

(26)

while the M-step equations (9)-(11) after the substitution of Eq. (26) take

the following simplified form:

P (wj|zk)l+1 =
P1(wj|zk)l+1∑M

j′=1 P1(wj′ |zk)l+1

(27)

P (di|zk)l+1 =
P2(di|zk)l+1∑N

i′=1 P2(di′|zk)l+1

(28)

P (zk)l+1 =
1

Rl

N∑
i=1

M∑
j=1

n(di, wj)P (zk)lP (di|zk)lP (wj|zk)l∑K
k′=1 P (zk′)lP (di|zk′)lP (wj|zk′)l

, (29)

where

P1(wj|zk)l+1 = P (wj|zk)l

[
N∑

i=1

n(di, wj)P (di|zk)l∑K
k′=1 P (zk′)lP (wj|zk′)lP (di|zk′)l

]
P (zk)l
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(30)

P2(di|zk)l+1 = P (di|zk)l

[
M∑

j=1

n(di, wj)P (wj|zk)l∑K
k′=1 P (zk′)lP (wj|zk′)lP (di|zk′)l

]
P (zk)l.

(31)

When the new pivotal document dN+1 = [α, 0, . . . , 0]T is added at the end of

the lth iteration, Eqs. (27)-(31), are reformulated as follows:

P+
1 (wj|zk)l+1 =





P1(wj|zk)l+1, if j 6= 1

P1(w1|zk)l+1 + αP (zk)lP (w1|zk)lP (dN+1|zk)l∑K
k′=1 P (zk)l′P (w1|zk′ )lP (dN+1|zk′ )l

, if j = 1
(32)

P+(wj|zk)l+1 =





P1(wj |zk)l+1

A+
l+1

, if j 6= 1

P+
1 (w1|zk)l+1

A+
l+1

, if j = 1,
(33)

where A+
l+1 is given by Eq. (22). Let

P+
2 (di|zk)l+1 =





P2(di|zk)l+1, if i = 1, 2, . . . , N

P+
1 (w1|zk)l+1 − P1(w1|zk), if i = N + 1

(34)

and

B+
l+1 =

N∑

i′=1

P2(di′|zk)l+1 + P+
2 (dN+1|zk)l+1

=
N∑

i′=1

P2(di′|zk)l+1 + P+
1 (w1|zk)l+1 − P1(w1|zk)l+1. (35)

Then, we have:

P+(di|zk)l+1 =





P2(di|zk)l+1

B+
l+1

, if i = 1, 2, . . . , N

P+
1 (w1|zk)l+1−P1(w1|zk)

B+
l+1

, if i = N + 1.
(36)

Finally, we proceed to updating P (zk)l+1 as follows:

P+(zk)l+1 =
1

Rl+1

[
RlP (zk)l+1 +

n(dN+1, w1)P (zk)lP (dN+1|zk)lP (w1|zk)l∑K
k′=1 P (zk′)lP (dN+1|zk′)lP (w1|zk′)l

]
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=
1

Rl+1

[
RlP (zk)l+1 + P+

1 (w1|zk)l+1 − P1(w1|zk)
]

(37)

where

Rl+1 =
N+1∑
i=1

M∑
j=1

n(di, wj) =
N∑

i=1

M∑
j=1

n(di, wj) + n(dN+1, wj) = Rl + a. (38)

Obviously, the just derived updating equations for the asymmetric and

the symmetric PLSA model parameters can be extended for a document

with more than one terms, if we assume that every time we deal with a

pivotal document having just one word and we incrementally append as many

pivotal documents as the terms of the new incoming document are. Moreover,

additional recursions can be executed in order to process more than one

documents. Needless to say that for the asymmetric formulation one may

alternate between the E-step in Eq. (13) and the M-step in Eqs. (16) - (19)

whenever no additions are made, and switch to the M-step in Eqs. (20) - (22)

and in Eq. (25) whenever additions occur. Similar remarks can be made for

the symmetric formulation as well.

5. Experimental results

5.1. Objectives

The comparison of the PLSA updating methods under study (that is the

proposed RPLSA, PLSA folding-in, and PLSA rerun from the breakpoint)

in correctly estimating the PLSA probabilities for every incoming document

when the PLSA is executed from scratch is the first objective of the exper-

imental evaluation. To achieve this, the average absolute error between the

model probabilities estimated by the PLSA updating methods and those es-

timated by the PLSA executed from scratch was measured. Additionally,
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the average log-likelihood at the limit points of the EM algorithm was also

examined to test whether the convergence of the PLSA updating methods

under study was close to the convergence of the original PLSA algorithm,

when executed from scratch.

The accuracy alone, reflected in the average absolute error and the av-

erage log-likelihood, however, is insufficient to assess the performance of the

updating methods, since the time complexity consists a second performance

factor of great importance. Therefore, the average CPU run time per added

document was also reported.

Third, the PLSA updating methods are assessed in document clustering.

That is, RPLSA, PLSA folding-in, and PLSA rerun from the breakpoint were

tested with respect to the Adjusted Rand cluster validity index, that mea-

sures the similarity between the resulted document clusters and the ground

truth document clustering [17]. In this framework, a comparison was also

conducted between the RPLSA and the LSA updating methods, namely the

SVD folding-in, and the SVD updating, outlined in Sect. 3.

It is finally worth noting that the aforementioned evaluations were con-

ducted for both initialization methods (i.e., stdUniform and wordtopics) and

for the asymmetric and symmetric PLSA model formulation.

5.2. Datasets - Parameters

The experiments were conducted on the 20-Newsgroups corpus [18]. Four

datasets related to the main corpus topics (comp, talk, sci, rec) were created

consisting of either 5 or 4 subtopics. All the documents were preprocessed

using the Bow toolkit [19] in order to have their tags removed and their

words stemmed. For the stemming, the Porter stemmer was used [22]. The

16



term-document matrix for each dataset was built by measuring the word

frequencies of the 500 words with the highest information gain, which belong

to 500 documents randomly selected from each topic. In Table 1, the main

features of each dataset are summarized.

Table 1: Extracted datasets.

Dataset Topics Dataset Size

(K) (words × documents)

comp 500 5 500× 2448

rec 500 4 500× 1973

sci 500 4 500× 1957

talk 500 4 500× 1962

The algorithms implemented depend on the following parameters, which

have to be set:

1. The number of latent topics K that was set according to Table 1 for

each dataset.

2. The criterion value ε used to determine the convergence of the EM al-

gorithm. The convergence criterion that was used expresses the relative

log-likelihood change between two successive (l − 1, l) EM-steps, i.e.,∣∣∣∣
[L]l − [L]l−1

[L]l−1

∣∣∣∣ ≥ ε (39)

Experiments were run for different values of ε. A typical value is 10−8.

3. The probability distribution for the column and row appended re-

spectively to matrices P (zk|di) (asymmetric formulation) and P (di|zk)

(symmetric formulation) each time a new document is appended to the

initial collection. Two different initializations were tested:
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• stdUniform: all the entries of row (column) were set to the value

1/K,

• wordtopics : all the entries of row (column) were set equal to the

conditional probability of each word appearing in the newly added

document given each of the K topics estimated in the previous

step, as described at the beginning of Sect. 4.

5.3. Methods and procedures

A four-fold cross validation was performed over each dataset in order

to define different subsets for initial batch PLSA training and incremental

PLSA training subsets of the dataset. That is, from each dataset, approx-

imately 75% of documents were selected to build the subset used for the

initial training of the PLSA model. The remaining documents were retained

to be incrementally added to the initial subset dataset, one by one.

The experimental procedure for every subset of the dataset consisted of

the following steps: Initially, the PLSA model parameters were initialized

with numbers uniformly distributed in (0, 1) and the PLSA algorithm was

executed for all the documents in the training subset. Next, every document

from the second subset was appended to the training document subset, one at

a time and the PLSA algorithm was executed from scratch for the augmented

set, while RPLSA, PLSA folding-in, and PLSA rerun from the breakpoint

update the model parameters, which had been estimated up to the point,

before the addition of the new document.

The aforementioned experimental procedure was also set up for the LSA

updating methods, SVD folding-in and SVD updating, where the best K

rank approximation of the term-document matrix for K equal to the number
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of topics in each dataset is sought, as is explained in Sect. 5.2. The values of

K used for each dataset are given in Table 1.

5.4. Results

5.4.1. Accuracy of the model parameter updating

The RPLSA, the PLSA folding-in, and the PLSA rerun from the break-

point for both the asymmetric and the symmetric formulations were com-

pared to the PLSA algorithm computed from scratch for each document

from the augmented document dataset. This was done, by averaging the ab-

solute difference between the probabilities P (wj|zk) and P (zk|di) derived by

the PLSA and the same probabilities estimated by the RPLSA, the PLSA

folding-in (PLSA fold.), and the PLSA rerun from the breakpoint (PLSA

brk.) over the K latent variables in each dataset, after the addition of a new

document from the second dataset. The probability P (zk|di) for the sym-

metric formulation was estimated by using the Bayes chain rule. The results

obtained were further averaged across all appended documents. The above

procedure was repeated for the two initialization methods. The mean and

the standard deviation across the four folds of the average absolute error for

the asymmetric and the symmetric formulations are summarized in Tables 2

and 3, respectively.

As can be easily be seen from Tables 2 and 3, the proposed RPLSA up-

dating method yields on average model parameters closer to those estimated

by the PLSA applied from scratch to the augmented term-document ma-

trix than the PLSA folding-in or the PLSA rerun from the breakpoint does.

More precisely, the RPLSA is shown to yield on average the lowest error for

the conditional probability of the latent topics given the documents P (zk|di)
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Table 2: Mean and standard deviation across the 4 folds of the average absolute error

between the probability P (zk|di) estimated by the asymmetric updating methods under

study and that estimated by the PLSA executed from scratch.

Dataset

stdUniform

RPLSA PLSA brk. PLSA fold.

mean std mean std mean std

comp 500 0.1583 0.0522 0.1632 0.0542 0.2114 0.0617

rec 500 0.1572 0.0701 0.1947 0.0830 0.2448 0.1167

sci 500 0.1157 0.0307 0.1280 0.0336 0.2392 0.1040

talk 500 0.0618 0.0193 0.0828 0.0178 0.1048 0.0331

Dataset

wordtopics

RPLSA PLSA brk. PLSA fold.

mean std mean std mean std

comp 500 0.1381 0.0476 0.1879 0.0562 0.1705 0.0587

rec 500 0.1232 0.0436 0.1600 0.0574 0.1864 0.0676

sci 500 0.1112 0.0564 0.1196 0.0642 0.1568 0.0654

talk 500 0.0787 0.0500 0.0802 0.0485 0.0904 0.0431
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Table 3: Mean and standard deviation across the 4 folds of the average absolute error

between the probability P (zk|di) estimated by the symmetric updating methods under

study and that estimated by the PLSA executed from scratch.

Dataset

stdUniform

RPLSA PLSA brk. PLSA fold.

mean std mean std mean std

comp 500 0.2040 0.0387 0.2066 0.0335 0.2326 0.0458

rec 500 0.1850 0.0281 0.2064 0.0360 0.2081 0.0311

sci 500 0.1723 0.0626 0.1958 0.0657 0.1932 0.0555

talk 500 0.0999 0.0580 0.1006 0.0582 0.1019 0.0561

Dataset

wordtopics

RPLSA PLSA brk. PLSA fold.

mean std mean std mean std

comp 500 0.1884 0.0665 0.2053 0.0785 0.2289 0.0766

rec 500 0.1336 0.0337 0.1842 0.0625 0.1928 0.0773

sci 500 0.1395 0.0376 0.1591 0.0530 0.1866 0.0639

talk 500 0.0858 0.0281 0.1134 0.0786 0.1174 0.0531
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for both the asymmetric and the symmetric formulations than all the other

methods under study. In particular,

• For the asymmetric formulation, there is a relative decrease ranging

between 2% and 58% in the average absolute error of P (zk|di) estimated

by the RPLSA and the P (zk|di) estimated by the PLSA executed from

scratch compared to the same error, when either the PLSA rerun from

the breakpoint or the PLSA folding-in replaces the RPLSA.

• For the symmetric formulation, there is a relative decrease ranging

between 1.3% and 39% in the average absolute error of P (zk|di) esti-

mated by the RPLSA and P (zk|di) estimated by the PLSA executed

from scratch compared to the same error when either the PLSA rerun

from the breakpoint or the PLSA folding-in replaces the RPLSA.

In all cases, the standard deviation of the average absolute error across

the folds is much smaller than the mean value (at least twice smaller for

most of the datasets, initializations, and updating methods) in Tables 2 and

3, supporting the statistical significance of the improvements. Further tests

by performing a paired Wilcoxon test [24] between the updating methods

under study at the significance level p = 0.05 have validated the just men-

tioned claim. In all cases, RPLSA is superior than the updating methods

under study, since all the values of the paired Wilcoxon test are found to

be less than p = 0.05. More precisely, all Wilcoxon test statistic values

are found equal to 0, except those values estimated between the RPLSA

and the PLSA rerun from the breakpoint. In particular, in the asymmet-

ric formulation when using the stdUniform initialization to the comp 500
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and talk 500 datasets the corresponding Wilcoxon test statistic values are

0.0107 and 0.0455, respectively. When the wordtopics initialization is em-

ployed to the talk 500 dataset the Wilcoxon test statistic value is found to

be 0.0167. Similarly, for the symmetric formulation, the Wilcoxon test be-

tween the RPLSA and the PLSA rerun from the breakpoint yields a test

statistic value equal to 0.0002 when the stdUniform initialization was used

in the comp 500 dataset. By repeating the aforementioned test in talk 500

dataset, the test statistic was measured to be 0.0116. When wordtopics ini-

tialization was employed in sci 500 dataset, the Wilcoxon test between the

RPLSA and the PLSA rerun from the breakpoint yields a test statistic value

equal to 0.0309. The just reported values of the paired Wilcoxon test provide

complementary evidence, when the mean value and the standard deviation

in Tables 2 and 3 do not differ significantly (e.g., the entry for talk 500 and

wordtopics initialization in Table 2).

The errors for the conditional probability of the words given the latent

topics, P (wj|zk), are not included, because they are extremely low for both

models and the differences between the updating methods are negligible.

This can be attributed to 1) the assumption that all the documents added

do not have any out-of-vocabulary words and 2) the fact that PLSA folding-in

leaves the conditional probability of words given the latent topics unchanged,

while the RPLSA and the PLSA rerun from the breakpoint make only slight

corrections to the aforementioned probability.

Moreover, the comparison between Tables 2 and 3 reveals that the RPLSA

is more accurate for the asymmetric formulation than the symmetric one,

since the error in P (zk|di) admits lower values for the asymmetric formulation
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than the symmetric formulation.

Studying also Tables 2 and 3 with respect to the initialization method

used in the estimation of the RPLSA model parameter for the document

added, it can be verified that the RPLSA yields better results for the word-

topics initialization in 7 out of the 8 cases and in 13 out of 16 cases for

the other two updating methods. Thus, it is claimed that the wordtopics

initialization in RPLSA is more suitable than the stdUniform initialization.

The aforementioned conclusions are also verified by the inspection of

Fig. 1 and 2, where the average absolute error between the probabilities

P (wj|zk) and P (zk|di) estimated by the PLSA beginning from scratch and

those estimated by the RPLSA, the PLSA folding-in, and the PLSA rerun

from the breakpoint over the K latent variables are plotted for the asym-

metric and the symmetric formulations applied to the rec 500 dataset. The

superiority of the proposed RPLSA over the established updating methods

under study is evident for all the initialization methods. The superiority of

wordtopics initialization over stdUniform is also depicted.

Furthermore, in Fig. 3, the average-log likelihood at the limit point of the

EM algorithm (i.e., when convergence is achieved) in the PLSA, the RPLSA,

the PLSA folding-in, and the PLSA rerun from the breakpoint for each new

incoming document incrementally added to the first subset of the rec 500

dataset, under stdUniform and wordtopics initialization, is depicted. As it

can be easily seen the proposed updating method for both the asymmetric

and the symmetric formulations achieves an average log-likelihood close to

that of the PLSA and higher than that of the PLSA folding-in under any

initialization. The PLSA rerun from the breakpoint also achieves an average
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Figure 1: Average absolute error over the K latent topics between the asymmetric PLSA

model probabilities, P (wj |zk) (first column) and P (zk|di) (second column), applied from

scratch and the same probabilities of the PLSA updating methods under study for (a)

stdUniform and (b) wordtopics initializations.
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(b) wordtopics

Figure 2: Average absolute error over the K latent topics between the symmetric PLSA

model probabilities, P (wj |zk) (first column) and P (zk|di) (second column), applied from

scratch and the same probabilities of the PLSA updating methods under study for (a)

stdUniform and (b) wordtopics initializations.
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Figure 3: Average log-likelihood at the limit point of the EM algorithm in the PLSA

and the updating methods under study for each test document, when stdUniform and

wordtopics initializations are applied: (a) asymmetric and (b) symmetric formulation.
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Figure 4: Log-likelihood of the updating methods under study for a new incoming docu-

ment: (a) asymmetric and (b) symmetric formulation.

log-likelihood quite close to that of PLSA. It is worth noting, that the average

log-likelihood at the limit point is higher for the asymmetric formulation

than the symmetric formulation, thus explaining the better performance of

the former formulation.

Finally, Fig. 4 focuses on the convergence of the RPLSA, the PLSA

folding-in and the PLSA rerun from the breakpoint for just one new in-

coming document added to the first subset of the rec 500 dataset when the

wordtopics initialization is employed for both the asymmetric and the sym-

metric formulations. As it can be seen, the RPLSA, the PLSA folding-in and

the PLSA rerun from breakpoint maximize log-likelihood in both formula-

tions. The convergence of the PLSA executed from scratch is not shown in

Fig. 4, since the great number of iterations required for it to converge would

deteriorate the level of detail in the plots.
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5.4.2. CPU run time

In Table 4, the average over all the datasets CPU run time (in seconds)

per newly added document is listed, when the RPLSA, the PLSA rerun from

the breakpoint, the PLSA folding-in, and the PLSA executed from scratch

are employed for the two initialization methods and the asymmetric and sym-

metric formulations. All the experiments were performed on a AMD Athlon

64bit 3200+ processor running at 2.01 GHz with 2GB RAM. Matlab R2007b

for the Windows XP Professional x64 edition was used. By examining Ta-

ble 4, it can be seen that among the three updating methods under study,

PLSA rerun from the breakpoint is the most time consuming one, since it

calculates all the model parameters in every EM step in contrast to PLSA

folding-in that calculates only the probabilities of the latent topics given the

documents. RPLSA is less time consuming than the PLSA folding-in in 1 out

of the 4 cases. On average, the PLSA folding-in is by 9% faster in time than

the RPLSA in 3 out of the 4 cases. However, the better accuracy offered by

the RPLSA over the PLSA folding-in, as shown in Tables 2 and 3, compen-

sates for the excessive computation time. In addition, it is verified that the

updating methods, when the asymmetric formulation is used, are less time

consuming than when the symmetric formulation is employed in the majority

of the cases. Finally, the large amount of time needed by the PLSA executed

from scratch compared to the time for the three PLSA updating methods

demonstrates the need for adopting updating methods instead of running

the PLSA from scratch, when new documents are added in the document

collection.
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Table 4: Average CPU time (in sec) per document for the updating methods under study

and the PLSA executed from scratch when either stdUniform or wordtopics initialization

method is employed in the asymmetric and symmetric formulation.

Formulation

stdUniform wordtopics

RPLSA
PLSA

brk.

PLSA

fold.

PLSA

scratch
RPLSA

PLSA

brk.

PLSA

fold.

PLSA

scratch

asymmetric 2.70 12.38 2.93 107.95 2.68 11.83 2.00 105.80

symmetric 3.11 11.62 3.08 116.60 3.26 11.77 3.21 116.50

5.4.3. Evaluation Through Document Clustering

The performance of the PLSA updating methods under study was also

tested on document clustering applications. After estimating the model pa-

rameters, the assignment of a document to a class was determined by means

of the cosine similarity between the feature vector containing the conditional

probabilities of the latent topics given the document and the prototype vector

for each class obtained when the conditional probabilities of the latent topics

given the document are averaged for all the documents previously assigned

to the class.

Let D be the set of N documents D = [d1, . . . , dN ]. Given two clus-

terings of D, namely C = [C1, . . . , Ci, . . . , CK ] with K clusters and P =

[P1, . . . , Pj, . . . , PK ] with K clusters (∩K
i=1Ci = ∩K

j=1Pj = ®, ∪K
i=1Ci = ∪K

j=1Pj =

D) in our case 1, the information on cluster overlap between C and P can

be summarized in the form of a K ×K contingency table M = [nij]
j=1...K
i=1...K as

illustrated in Table 5, where nij denotes the number of documents that are

1In general, the numbers of clusters in C and P can differ.
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common to clusters Ci and Pj.

Table 5: Contingency table, nij = |Ci ∩ Pj |
C/P P1 P2 . . . Pj . . . PK Sums

C1 n11 n12 . . . n1j . . . n1K a1

C2 n21 n22 . . . n2j . . . n2K a2

...
...

...
. . .

...
. . .

...

Ci ni1 ni2 . . . nij . . . niK ai

...
...

...
. . .

...
. . .

...

CK nK1 nK2 . . . nKj . . . nKK aK

Sums b1 b2 . . . bj . . . bK

∑
ij nij = N

The Adjusted Rand Index (ARI) can be calculated as follows [16]:

ARI =

∑K
i=1

∑K
j=1

(
nij

2

)−
[∑K

i=1

(
ai

2

) ∑K
j=1

(
bj

2

)]
/
(

N
2

)

1
2

[∑K
i=1

(
ai

2

)
+

∑K
j=1

(
bj

2

)]−
[∑K

i=1

(
ai

2

) ∑K
j=1

(
bj

2

)]
/
(

N
2

) (40)

where aj and bj are the marginal sums in the contigency table. The index

admits a value between 0 and 1. The higher value is admitted by the ARI

index, the stronger the similarity between the two clusterings.

The Adjusted Rand values for the clustering partitions derived by the

PLSA executed from scratch, the RPLSA, the PLSA folding-in, and the

PLSA rerun from the breakpoint are shown in Table 6.

The index values reveal the superiority of RPLSA over the established

updating methods in producing more correct clusters, since the Adjusted

Rand values for the RPLSA are higher than those for the PLSA folding-in

and the PLSA rerun from the breakpoint. In addition, the index values for
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Table 6: Adjusted Rand index values for clusterings derived by the updating methods

under study and the PLSA executed from scratch, when either stdUniform or wordtopics

initialization is applied to both the asymmetric and symmetric formulations.

Method

comp 500 rec 500

stdUniform wordtopics stdUniform wordtopics

asym. sym. asym sym asym sym asym sym

RPLSA 0.871 0.852 0.888 0.877 0.939 0.908 0.943 0.936

PLSA brk. 0.840 0.822 0.858 0.847 0.891 0.880 0.923 0.918

PLSA fold. 0.853 0.833 0.871 0.854 0.929 0.896 0.932 0.924

PLSA scratch 0.880 0.864 0.899 0.893 0.958 0.934 0.973 0.957

Method

sci 500 talk 500

stdUniform wordtopics stdUniform wordtopics

asym. sym. asym sym asym sym asym sym

RPLSA 0.901 0.893 0.939 0.927 0.846 0.834 0.869 0.859

PLSA brk. 0.878 0.875 0.906 0.897 0.806 0.793 0.849 0.843

PLSA fold. 0.888 0.885 0.920 0.912 0.814 0.798 0.856 0.852

PLSA scratch 0.938 0.929 0.964 0.948 0.870 0.858 0.884 0.879
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RPLSA are closer to those for the PLSA executed from scratch than the

values for the other updating methods under study are, thus revealing the

ability of the proposed updating method in producing similar clusters to the

ones generated by PLSA executed from scratch.

A last comparison of the PLSA and the RPLSA with the LSA and its up-

dating methods, namely the SVD folding-in, and the SVD updating, within

the document clustering framework was also made. The Adjusted Rand in-

dex values for the document clustering results produced by applying the LSA,

the SVD folding-in, and the SVD updating, are presented in Table 7. As was

expected, the SVD updating produces more correct clusters than the SVD

folding-in. By comparing Table 7 with Table 6, the superiority of the PLSA

and its updating methods over the LSA, the SVD folding-in, and the SVD

updating is verified.

Table 7: Adjusted Rand index values for clustering results derived from the LSA, the SVD

folding-in, and the SVD updating

Method comp 500 rec 500 sci 500 talk 500

LSA 0.784 0.876 0.851 0.795

SVD folding-in 0.726 0.832 0.829 0.768

SVD updating 0.746 0.856 0.847 0.772

5.5. Discussion

The just presented results confirm that the proposed RPLSA updating

method is more accurate than the other PLSA updating methods, such as

the PLSA folding-in and the PLSA rerun from breakpoint. In addition, as

expected the PLSA folding-in method is in most cases the fastest updating
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method. However, there exist cases where the most accurate RPLSA up-

dating method is the less time consuming one. Thus, in applications where

accuracy is of critical importance, RPLSA can be selected as an updating

method, when new documents are inserted in the initial document collections.

Taking into account the ever increasing processing power of computers, the

time requirements of the RPLSA will decline to almost negligible in appli-

cations, such as search engines. Clearly when accuracy is the key figure of

merit in selecting an updating method and clearly RPLSA outperforms all

the other updating schemes.

Moreover, as shown in the experiments all the updating methods under

study yield in the majority of cases better results when the wordtopics rather

than when the stdUniform initialization is employed. This can be attributed

to the fact that, the probability of each added document given a topic is not

set to a fixed value in wordtopics initialization, but is set to the probability

of the words appearing in the document given a topic. This turns to be

plausible, since the assignment of the document in one particular topic is

related to the assignment of the words, it contains, to the topic. More accu-

rate results are also obtained for the asymmetric formulation. This can be

attributed to the fact that the symmetric formulation entails the estimation

of one additional model parameter (i.e., P (zk)) under the same convergence

criterion used in asymmetric formulation. This additional parameter makes

the symmetric formulation more time consuming than the asymmetric one.

In terms of document clustering, the proposed RPLSA produces more

correct document clusters than the other updating methods under study,

since the Adjusted Rand Index admits greater values for the RPLSA gener-
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ated clusterings rather than for the clusterings generated by the other PLSA

updating methods under study. RPLSA outperforms also the LSA updating

methods, namely SVD folding-in and SVD updating. This fact demonstrates

that the PLSA updating methods have superior modelling power than the

LSA updating methods, as RPLSA has superior modelling power than LSA.

Finally, it is worth noting that in order to derive the RPLSA updating

equations, it was assumed when the new documents, added one by one in

the initial dataset, alter neither the number of topics nor the vocabulary.

However, the proposed updating framework can be further extended to han-

dle new documents that contain out of vocabulary words. This extension is

currently investigated.

6. Conclusions

A novel method for updating the parameters of the PLSA for both the

asymmetric and the symmetric formulations has been proposed, when new

documents are added incrementally to an initial document collection. The

proposed method has been compared to the PLSA folding-in and the PLSA

rerun from the breakpoint. A first attempt was also made to investigate

an efficient initialization of the probability distribution of the added docu-

ments. The experimental results have demonstrated that the probabilities

estimated by the proposed RPLSA differ less from those estimated by the

PLSA applied from scratch, when new documents are added incrementally

than the probabilities estimated by either the PLSA folding-in or the PLSA

rerun from the breakpoint. Moreover, the RPLSA achieves a higher average

log-likelihood value upon EM convergence compared to that of the PLSA
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folding-in and the PLSA rerun from the breakpoint. In terms of speed, the

RPLSA is more time consuming than the PLSA folding-in in the majority of

cases, but it is considerably faster than the PLSA rerun from the breakpoint.

However, the RPLSA achieves a higher accuracy, thus compensating for the

excessive computation time. Finally, the RPLSA updating method has been

proven more effective in document clustering than the PLSA folding-in and

the PLSA rerun from the breakpoint as well as the LSA, the SVD folding-in

and the SVD updating which were also implemented. The implementation

of other PLSA updating methods, such as the two variants of incremental

PLSA [7, 25], the Bayesian folding in [11], the MAP estimation for corrective

training and Quasi-Bayes estimation for incremental learning [6] and their

performance comparison could be a topic of further research.
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