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Abstract

A novel color image histogram equalization approach is proposed that exploits the correlation between color components and it is
enhanced by a multi-level smoothing technique borrowed from statistical language engineering. Multi-level smoothing aims at dealing
efficiently with the problem of unseen color values, either considered independently or in combination with others. It is applied here to
the HSI color space for the probability of intensity and the probability of saturation given the intensity, while the hue is left unchanged.
Moreover, the proposed approach is extended by an empirical technique, which is based on a hue preserving non-linear transformation,
in order to eliminate the gamut problem. This is the second method proposed in the paper. The equalized images by the two methods are
compared to those produced by other well-known methods. The better quality of the images equalized by the proposed methods is judged
in terms of their visual appeal and objective figures of merit, such as the entropy and the Kullback–Leibler divergence estimates between
the resulting color histogram and the multivariate uniform probability density function.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Image enhancement aims at improving images from the
human visual perspective. Image features such as edges,
boundaries, and contrast are sharpened in a way that their
dynamic range is increased without any change in the infor-
mation content inherent in the data [1]. For this purpose,
several techniques have been developed. Among others
are contrast manipulation, noise reduction, edge crispening
and sharpening, filtering, pseudocoloring, image interpola-
tion and magnification [1].

Contrast manipulation techniques can be classified as
either global or adaptive. Global techniques apply a trans-
formation to all image pixels, while adaptive techniques
use an input–output transformation that varies adaptively
with the local image characteristics. The more common
1077-3142/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.cviu.2006.11.012

* Corresponding author. Fax: +30 2310 998453.
E-mail addresses: nbassiou@aiia.csd.auth.gr (N. Bassiou), costas

@aiia.csd.auth.gr (C. Kotropoulos).
global techniques are linear contrast stretch, histogram
equalization, and multichannel filtering. The most common
adaptive techniques are adaptive histogram equalization
(AHE) and contrast-limited adaptive histogram equaliza-
tion (CLAHE) [2,3]. AHE applies varying gray-scale trans-
formations locally to every small image region, thus
requiring the determination of the region size. CLAHE
improves the just described technique by limiting the local
contrast-gain. Two drawbacks of the latter method have
been identified namely the unavoidable enhancement of
noise in smooth regions and the image-dependent selection
of the contrast-gain limit [4].

This paper is focused on global techniques with empha-
sis to color images. More precisely, the notion of unigram
and bigram probabilities together with probability smooth-
ing, borrowed from statistical language modeling, is
applied to color histogram equalization in order to jointly
equalize the two components of the HSI color space,
namely the saturation and the intensity. The histogram
equalization approach is partially built on that proposed
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in Pitas and Kiniklis [5], but it is extended with smoothing
the necessary probabilities in order to counteract the effect
of unseen color component combinations, which stems
from the dimensionality of the color space and the often
limited number of colors present in an image. Additionally,
a second method is developed in an effort to eliminate the
gamut problem by exploiting the transformations proposed
in Naik and Murthy [6]. The performance of the proposed
methods is compared to that of the methods proposed by
Pitas and Kiniklis [5,7] as well as the separate equalization
of each color component. The comparison is conducted
using not only subjective measures (i.e., how visually
appealing the equalized images are), but also objective fig-
ures of merit, such as the entropy and the Kullback–Leibler
divergence between the resulted color histogram and the
corresponding multivariate uniform probability density
function.

The outline of the paper is as follows. In Section 2, the
color image histogram equalization methods are briefly
presented. In Section 3, the baseline histogram equalization
approaches and the novel algorithms, proposed in this
paper, are described. Experimental results are demonstrat-
ed in Section 4, and finally, conclusions are drawn in Sec-
tion 5. A brief description of the RGB and HSI color
spaces is given in Appendix A.

2. Related works

Histogram equalization is the simplest and most com-
monly used technique to enhance gray-level images. It
assumes that the pixel gray levels are independent identically
distributed random variables (rvs) and the image is a real-
ization of an ergodic random field. As a consequence, an
image is considered to be more informative, when its histo-
gram resembles the uniform distribution. From this point
of view, grayscale histogram equalization exploits the the-
ory of functions of one rv that suggests using the cumula-
tive distribution function (CDF) of pixel intensity in order
to transform the pixel intensity to a uniformly distributed
rv. However, due to the discrete nature of digital images,
the histogram of the equalized image can be made approx-
imately uniform.

Histogram equalization becomes a tedious task when
dealing with color images due to the vectorial nature of
Table 1
Color histogram equalization techniques in the RGB color space

Reference Description

[7] 3-D histogram specification with the output histogram being u
[10] Histogram Explosion: histogram equalization of the one-dimen
[12] Histogram Decimation: uniformly scatter the color points over
[13] The cells of a mesh, initially deformed to fit the original histog
[15] The image histogram is approximated by an isotropic Gaussian

minimization (applicable to any dimensions)
[16] Histogram equalization by exploiting the histogram utilization,

given the other two color components, and their average occup
[14] Histogram equalization treated as a color transfer problem, by

uniform one
color. Each color pixel is represented by a vector with as
many components as the color components in a proper col-
or space (i.e., the three components Red, Green, and Blue
in the RGB space). The complexity of the problem lies also
in the correlation between the color components as well as
the color perception by humans. The methods described in
this paper either review the efforts to alleviate one or both
these problems or revisit them in order to improve their
performance.

Historically, the first and the most straightforward
extension of histogram equalization to color images is the
application of gray-scale histogram equalization separately
to the different color bands of the color image, ignoring
inter-component correlation. Some efforts were also
focused in spreading the histogram along the principal
component axes of the original image [8], or spreading
repeatedly the three two-dimensional histograms [9].

The systematic research efforts that followed gave rise to
two main algorithm classes. The first class comprises algo-
rithms that work on the RGB space either using the 3-D
histogram or an 1-D histogram of the color image. The sec-
ond class is formed by algorithms, which operate in non-
linear color spaces, such as the HSI (hue, saturation, and
intensity) or the C-Y spaces, that are applied to one or
two color components. The algorithms for each class are
outlined in Tables 1 and 2 and described next.

In the RGB space, the more representative approaches
are 3-D histogram equalization, histogram explosion, and
histogram decimation. 3-D histogram equalization proposed
by Trahanias and Venetsanopoulos [7], attempts the exten-
sion of cumulative histogram to higher dimensions by
means of a uniform 3-D histogram specification in the
RGB color cube. The 3-D CDF of the original image color
is compared to the ideal uniform CDF, as is further
explained in Section 3.2.

Histogram explosion, which was initially proposed by
Mlsna and Rodriguez [10], aims to exploit the full 3-D
RGB gamut. The algorithm selects an operating point pref-
erably on the diagonal of the RGB cube (i.e. the gray line)
in order to prevent hue changes and draws rays that ema-
nate from the operating point, pass through the color
points present in the image, and proceed up to the RGB
cube facets. An 1-D histogram is then constructed along
each ray by interpolating the 3-D histogram data between
niform
sional histograms constructed by interpolating the 3-D histogram data
the full 3-D gamut in an iterative procedure

ram, is linearly mapped to the cells of a uniform mesh
mixture and is fitted to a uniform distribution via least-squares error

which depends on the cumulative histograms of each color component
ancy
estimating a transformation that maps a N-dimensional distribution to a



Table 2
Color histogram equalization techniques in color spaces other than the RGB

Reference Color space Description

[11] CIE-LUV Histogram Explosion (same as [10])
[21] CIE Grayscale histogram equalization of the achromatic channel and image warping of the chromatic channel
[19] C-Y Equalization of the saturation component within partitions of the color space, defined by the range of the hue and

luminance components, and the luminance component over the whole image
[5] HSI Joint equalization of intensity and saturation by exploiting the geometric concepts between the HSI and RGB spaces
[17,18] HSI Histogram equalization of saturation component within each of 96 hue regions
[20] HSI Extension of [19] in HSI
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the operating point and the point in the color space bound-
ary. By equalizing the 1-D histogram, a new color value for
the original color point is determined. The color points are
thus almost uniformly spread in the color space. In another
variant of the method, the colors are represented in the
CIE-LUV space [2,11].

Histogram decimation uses an iterative algorithm to
uniformly scatter the color points over the full 3-D gamut
[12]. The algorithm is initialized with the entire 3-D color
space as the current space and proceeds iteratively by
applying two steps. In the first step, all color points with-
in the current space are shifted such that their average
coincides with the geometric center of the space. In the
second step, the current color space is divided into eight
equally sized subspaces. Each newly created color sub-
space is set as the current space for the next iteration.
The algorithm stops, when the subspace size reaches its
minimum value.

In the approach of Pichon et al. [13], a mesh is initially
deformed to fit the original histogram in the RGB color
space. The mesh is then used for the definition of a piecewise
linear deformation of the color space by linearly mapping
all its cells to the corresponding cells of a uniform mesh.
Thus, the histogram of the resulting equalized image is
always almost uniform, but the equalized image itself suffers
from hue-relating artifacts. This fact makes the method par-
ticularly interesting for pseudo-color scientific visualization.

In Pitie et al. [14], the color transfer problem is addressed
and a new method for estimating a transformation that
maps a N- dimensional distribution to another is presented.
The proposed method can be used for histogram equaliza-
tion, when the target probability distribution is uniform.
The algorithm operates iteratively in three steps. In the first
step, the RGB space coordinate system is changed by
rotating the source and the target samples using a proper
rotation matrix. In the second step, all the samples are
projected on the three axes in order to obtain the marginal
distributions both for the rotated source and target samples.
In the third step, an 1-D transformation that matches the
source marginals into the target ones is found for each axis
and the transformed samples are rotated back in the origi-
nal RGB space. The algorithm stops when convergence
on all marginals for every possible rotation is achieved.

A more recent method extends the grayscale histogram
equalization to color images formulating the problem as
a nonlinear optimization problem with bound constraints
[15]. The histogram of a given image in the RGB color
space is approximated by an isotropic Gaussian mixture
and its least squared error from the target uniform distribu-
tion is minimized.

In Forrest [16], a technique for measuring histogram uti-
lization and performing histogram equalization to any
number of dimensions has been developed. The histogram
utilization measure is based on the fact that chi-squared
measures from independent data can be summed to give
an overall measure. Thus, the measure depends on the
average histogram occupancy for the linear histograms of
a color component (e.g. R) at a certain point lying on the
plane of the other two color components (e.g. G and B)
and the corresponding linear cumulative histograms. His-
togram equalization is then achieved by exploiting the his-
togram utilization measure that generates information
about how the histogram should be changed. In this way,
the resulting histogram is effectively spread without large
changes of contrast or color balance.

All the aforementioned approaches work in the RGB
space. In general, they are computationally intensive and
their major drawback is the modification of color hue.
The latter fact leads to unpleasant color artifacts for the
human observer. To alleviate hue modification, the second
class of algorithms conduct equalization in the HSI space
by modifying only the intensity, or both the intensity and
saturation, leaving the hue unchanged.

A method that attempts to jointly equalize intensity and
saturation was proposed by Pitas and Kiniklis [5]. To avoid
unnatural colors after equalization, the method takes into
account geometric concepts between the HSI space and
the RGB space. To make this paper self-contained, the
method is briefly reviewed in Section 3.3.

Another histogram equalization method is based on the
intensity and saturation components [17,18]. In this
method, the RGB color space is first transformed into an
HSI triangle, that is divided into 96 hue regions. The histo-
gram equalization is applied to the saturation within each
hue region. The drawbacks of the algorithm lie in the deter-
mination of the maximum possible saturation value to be
used for each transformation and the fact that the intensity
component is neglected. The method was improved in
Weeks et al. [19] by including both the saturation and the
intensity component in the equalization process conducted
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in the color difference (C-Y) space. It was found that
the transformation yields unrealizable RGB colors in the
equalized image. The algorithm partitions the entire
C-Y color space, that is transformed into HSI, in n · k

subspaces, where n and k are the number of partitions in
hue and intensity components, respectively. Saturation is
then equalized once within the maximum realizable satura-
tion of each subspace. Next, the intensity component is
equalized by considering the whole image. The method
proposed by Weeks et al. [19] was further applied to the
HSI color space by Duan and Qiu [20].

In Luccchese et al. [21], the achromatic channel of a
color image was equalized using a traditional grayscale
histogram equalization method and the chromatic channel
was processed in a way similar to image warping. The
algorithm works in the xy-chromaticity diagram and
consists of two steps. In the first step, each color pixel is
transformed into its maximally saturated value with respect
to a certain color gamut. In the second step, the new color
is desaturated toward a new white point.
3. Color histogram equalization methods

3.1. Separate equalization of the three color components—

Method I

This is the most simple approach to color histogram
equalization. Since many color images have three color
bases, the color of each pixel is represented by a 3-dimen-
sional vector ~X and grayscale histogram equalization is
performed in each of the three color components
separately.

Grayscale histogram equalization attempts to uniformly
distribute the pixel gray levels of an image to all the
available gray levels L (e.g. L = 256, when 8 bits are used
to represent each gray level) [1]. Let us consider the image
pixel gray level to be an rv x. The histogram of a gray scale
image is the probability density function (PDF) of x

defined as

fxðxkÞ ¼ Pfx ¼ xkg ¼
NðxkÞPL�1

m¼0NðxmÞ
8 k ¼ 0; 1; . . . ; L� 1;

ð1Þ

where N(xk) is the number of pixels with gray level value xk

[1]. The CDF Fx(xk) of the rv x given by

yk ¼ F xðxkÞ ¼ Pfx 6 xkg ¼
Xk

m¼0

f ðxmÞ 8 k ¼ 0; 1; . . . ; L� 1

ð2Þ

defines the transformation function for obtaining the gray
levels yk of the equalized image that are uniformly distrib-
uted [22].

For color images, the color of each pixel is assumed to
be a random vector ~X ¼ ðxR; xG; xBÞT, where xR, xG, xB

are rvs modeling the Red, Green and Blue components,
respectively. Thus, by applying Eq. (2) the equalized
histogram of each color component is estimated.

3.2. 3-D Equalization in the RGB space—Method II

The method proposed by Trahanias and Venetsanopou-
los [7] is actually a 3-D histogram specification in the RGB
color space with the output histogram being uniform. The
method is outlined as follows.

(1) The original 3-D histogram of the color image is
computed.

(2) The joint CDF is computed both for the original
random vector ~X and a random vector ~Y0 ¼
ðy0R; y0G; y0BÞ

T that is distributed according to a
uniform distribution, using Eqs. (3) and (4),
respectively,

yRk GsBt
¼F xRxGxB

ðxRk ; xGs ; xBt Þ ¼ PfxR 6 xRk ; xG 6 xGs ; xB 6 xBtg

¼
Xk

i¼0

Xs

j¼0

Xt

m¼0

f ðxRi ; xGj ; xBmÞ 8 k; s; t ¼ 0; 1; . . . ; L� 1;

ð3Þ

y0Rk0Gs0Bt0
¼
Xk0

i¼0

Xs0

j¼0

Xt0

m¼0

1

L3

¼ðk
0 þ 1Þðs0 þ 1Þðt0 þ 1Þ

L3
8 k0; s0; t0 ¼ 0;1; . . . ;L� 1;

ð4Þ

where f ðxRi ; xGj ; xBmÞ is the joint PDF.
(3) For each color pixel (Rk, Gs, Bt), the smallest
ðRk0 ;Gs0 ;Bt0 Þ triplet is chosen so that y0Rk0Gs0Bt0

�
yRk GsBt

P 0. More precisely, the value of yRk GsBt
is

initially compared to the value y0RkGsBt
, and in case

yRk GsBt
is greater (less) than y0Rk GsBt

, the indices Rk,
Gs, Bt are repeatedly increased (decreased), one at a
time, until the just mentioned inequality is satisfied.
The final triplet values form the color of the equalized
image.

3.3. Equalization of the intensity component in the HSI space

— Method III

The method in Pitas and Kiniklis [5] studies the
geometrical representation of the HSI space and formu-
lates three PDFs for applying histogram equalization
on the intensity component, the saturation component,
and jointly the intensity and saturation components.
More visually appealing results are obtained, when the
intensity component is only used. Saturation used either
separately or jointly with intensity admits large values
[5].

Assuming that the color pixel is modeled by the random
vector ~X ¼ ðxH; xS; xIÞT the PDF for the intensity compo-
nent is given by [5]
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fxI
ðxIk Þ ¼

12� x2
Ik

for 0 6 xIk 6 0:5

12� ð1� xIk Þ
2 for 0:5 6 xIk 6 1:

(
ð5Þ
3.4. 2-D Equalization for intensity and saturation in the HSI
space — Method IV

The proposed method works in the HSI color space,
where each color pixel is modeled by a random vector
~X ¼ ðxH; xS; xIÞT. However, since hue is the most basic
attribute of color and changing it results in unacceptable
color artifacts [5,6,20], the method leaves hue unchanged
by considering only the 2-D random vector ~Z ¼ ðx I; xSÞT.
Thus, a 2-D histogram should be equalized using the joint
CDF F ð~ZÞ ¼ F ðxI; xSÞ ¼ PfxI 6 xI; xS 6 xSg.

Equalization is performed on intensity and saturation
simultaneously by exploiting the following fact [22]:
Given n arbitrary rvs xi, the rvs yi formed by

y1 ¼ F ðx1Þ; y2 ¼ F ðx2jx1Þ; . . . ; yn ¼ F ðxnjxn�1; . . . ; x1Þ
ð6Þ

are independent and each is uniform in the interval. (0, 1).
Following Eq. (6), the equalized pixel values are

described by a random vector ~Y ¼ ðyI; ySÞ
T, where yI,yS

are both uniform rvs in (0,1) obtained by the transforma-
tions yI = F(zI) and yS = F(zSjzI), respectively,

yIk
¼F ðxIk Þ¼ PfxI6 xIkg¼

Xk

m¼0

f ðxImÞ¼
Xk

m¼0

P ðxI¼ xImÞ ð7Þ

ySt
¼F ðxSt jxIk Þ ¼

Xt

m¼0

f ðxSm jxIk Þ ¼
Xt

m¼0

P ðxI ¼ xIk ; xS ¼ xSmÞ
P ðxI ¼ xIk Þ

:

ð8Þ

In Eqs. (7) and (8), k = 0,1, . . .,L � 1 and t =
0,1, . . .,M�1, where L and M are the number of discrete
levels for intensity and saturation, respectively. If 8 bits
are used to represent each color component, then
L = M = 256 [23].

Probability smoothing
The method of histogram equalization defined by

Eqs. (7) and (8) suffers from the sparse data problem which
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Fig. 1. Histogram of saturation: (a) for the original image, (b) for the equalized
probability smoothing.
is blamed for the presence of unwanted artifacts in the
equalized images. It can easily be seen that working in
the IS color space, there are L possible different values
for intensity in Eq. (7) and LÆM possible different pairs of
intensity and saturation in Eq. (8), respectively. The
observed color component combinations, however, do
not exceed the total number of image pixels N. As a result,
many color component combinations are actually unseen
events whose probabilities are forced to be zero. This
problem can be visually verified by the presence of ‘‘gaps’’
in the histogram of the equalized image. That is, there are
empty bins between the very full bins. Fig. 1b depicts such
a histogram which is of one color component for reasons of
simplicity.

In our approach, to alleviate this problem, we used
‘‘probability smoothing’’, a well-known technique which
is largely applied in statistical language modeling for
counteracting the effects of statistical variability, that turns
up in small data sets [24,25]. Smoothing is based on
discounting by which the relative frequencies of seen events
are discounted and the gained probability mass is then
redistributed over the unseen events. The basic discounting
methods for conditional probabilities are Katz’s discount-
ing model, absolute discounting, and linear discounting,
each with several variations for the estimation of the dis-
counting parameters. Moreover, probability smoothing
methods are based either on backing-off, which amounts
to a strict choice between a specific and a generalized
probability, or interpolation, where the two probability
distributions are added subject to a normalization con-
straint [25].

The selection of the appropriate smoothing method
depends on both the application and the data. In our case,
the back-off model of absolute discounting was selected
which leaves the high counts virtually unchanged. More
precisely, since we have two probability distributions to
estimate which are interdependent, a multi-level smoothing
was conducted in order to recursively smooth the higher
order back-off probability distribution by means of the
immediate lower order probability distribution. For
k = 0,1, . . .,L � 1 and t = 0,1, . . .,M � 1 the resulted prob-
abilities are given by:
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image without probability smoothing, and (c) for the equalized image with



Fig. 2. Block diagram of the proposed equalization method with gamut elimination.
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P ðxI ¼ xIk Þ ¼P ðxIk Þ ¼

NðxIk
Þ�bI

N if NðxIk Þ > 0

bI
L�n0

N
1P

i:NðxIi
Þ¼0

1
if NðxIk Þ ¼ 0;

8><
>:

ð9Þ
P ðxS ¼ xSt jxI ¼ x Ik Þ ¼ PðxSt jxIk Þ

¼

NðxIk
;xSt Þ�bS

NðxIk
Þ if NðxIk ; xStÞ > 0

bS
M�n0ðxIk

Þ
NðxIk

Þ
P ðxSt ÞP

i:NðxIk
;xSi
Þ¼0

PðxSi Þ
ifNðxIk ; xStÞ ¼ 0:

8>><
>>: ð10Þ
The probability P ðxStÞ in Eq. (10) is smoothed in a
similar way to Eq. (9). In Eqs. (9) and (10), the
following notation has been used for the counts and
count—counts:

• L = M = 256 is the number of discrete levels of intensity
and saturation,

• N is the number of image pixels,
• N(Æ) is the number of pixels with the denoted values for

the specified color component(s),
• n0 is the number of intensity values that are not seen in

the image,
• n0ðxIk Þ is the number of the saturation values that are

never seen given that the value of the intensity equals
xIk , k = 0,1, . . .,L�1,

• nðIÞr ¼
P

i:NðxIi Þ¼r1 is the number of intensity values that
are seen exactly r times,

• nðSÞr ¼
P

i;j:NðxIi ;xS¼jÞ¼r1 is the number of (intensity,
saturation) pairs that are seen exactly r times,

• bI ¼
nðIÞ

1

nðIÞ
1
þ2nð IÞ

2

,

• bS ¼
nðSÞ

1

nðSÞ
1
þ2nð SÞ

2

.

By applying Eqs. (9) and (10) to estimate the joint prob-
abilities that appear in Eqs. (7) and (8), the equalized image
histogram is produced. As can be seen in Fig. 1c, the
resulting equalized histogram resembles more the uniform
pdf and it has all color component values. However, in
some cases due to the transformation from the one color
space to an other, colors out of the color gamut may be
produced yielding equalized images with unwanted color
artifacts.

Summarizing, the outline of Method IV is described in
the following steps:
(1) The original RGB image is converted into the HSI
color space using the transformation described in
Sangwine and Horne [2].

(2) Histogram equalization is performed on the intensity
using Eq. (7) and jointly for the intensity and satura-
tion using Eq. (8). The probabilities that appear
in the aforementioned equations are smoothed by
Eqs. (9) and (10).

(3) The equalized image is converted back to the RGB
space using the transformation defined in Sangwine
and Horne [2].

3.5. 2-D Equalization in Intensity-saturation components of

the HSI space with gamut elimination—Method V

The second method proposed in the paper (referred to as
Method V) deals with the gamut problem identified previ-
ously in Method IV. The method is hue preserving. More
specifically, the nonlinear transformation proposed in Naik
and Murthy [6] is applied. Let us first briefly describe the
application of the nonlinear transformation for contrast
enhancement. It is based on the so called S-type transfor-
mation defined by

fm;nðxÞ ¼
d1 þ ðm� d1Þð x�d1

m�d1
Þn; d1 6 x 6 m

d2 � ðd2 � mÞðd2�x
d2�m Þ

n
; m 6 x 6 d2;

(
ð11Þ

where x represents the gray scale pixel value and m 2
[d1,d2], n 2 (0,1) are two constants. For the standard
S-type contrast enhancement, n = 2, d1 = 0, d2 = 3, and
m = 1.5. The algorithm defines aðl~xÞ ¼ f ðl~xÞ

l~x
, where l~x is

the pixel intensity value normalized to 1. That is,
l~x ¼ r þ g þ b, where r ¼ xR

max xR
, g ¼ xG

max xG
and b ¼ xB

max xB

are the normalized RGB values in the interval [0,1]. When
aðl~xÞ > 1, which means that the pixel value may be out of
gamut, the color vector is transformed to the CMY space
(using the equations xC = 1 � xR, xM = 1 � xG, and
xY = 1 � xB) and the new pixel value for each color
component is scaled by means of aðl~xÞ ¼ 3�f ðl~xÞ

3�l~x
. Then, a

transformation back to the RGB space is applied.
This approach is used in combination with the

histogram equalization Method IV for the equalized pixel
values outside the gamut of RGB, as depicted in Fig. 2.

4. Experimental results

The histogram equalization methods described in Sec-
tion 3 were implemented and applied to different color
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images in order to make a comparative quality assessment
study of their performance. The quality of the equalized
images was judged both in a subjective way from their visu-
al appeal and the presence of unwanted color artifacts as
well as by using objective statistical measures, such as the
entropy and the Kullback–Leibler divergence.

The entropy represents the average uncertainty of a
random variable and is maximized for the uniform
distribution [24,26]. Therefore it consists a good measure
since greater entropy values show a more uniform distribu-
tion. The entropy of a n discrete rvs is defined by

Hðx1; x2; . . . ; xnÞ ¼ �
X

x1

X
x2

� � �
X

xn

Pðx1; x2; . . . ; xnÞ

� log2P ðx1; x2; . . . ; xnÞ: ð12Þ

In a similar way, the Kullback–Leibler divergence mea-
sures the difference between two probability distributions
[24,26]. In our experiments, the Kullback–Leibler diver-
gence was used in order to measure how similar the histo-
grams of the original and the equalized images are to the
uniform distribution. The image probabilities which were
taken under consideration were those used for the entropy
estimates. That is, for the n-dimensional case

Dðf ðx1; x2; . . . ; xnÞjjgðxu; yu; . . . ; zuÞÞ
¼
X

x1

X
x2

� � �
X

xn

Pðx1; x2; . . . ; xnÞ

� log2

P ðx1; x2; . . . ; xnÞ
gðx1; x2; . . . ; xnÞ

� �
; ð13Þ

where g(x1,x2, . . .,xn) is a n-dimensional uniform distribu-
tion defined in the same space with f(x1,x2, . . ., xn).

Representative experimental results are presented for
five color images, namely an indoor scene (Index 1) and a
set of four digitalized Orthodox Holy Icons (Indices 2–5).
The images are depicted in Figs. 3–7 together with their his-
tograms for the intensity level for the methods that work
on the RGB space (Methods I and II) and the intensity
and saturation level for the methods that work on the
HSI space (Methods III and IV).

An empirical simple comparison of the equalized images
(Figs. 3–7) shows that the proposed Method IV produces
the most visually appealing results, while the slightest
change in the original image and its histogram is observed
when the equalization Method II is applied. The success of
the proposed method can be attributed to the fact that the
method spreads the intensity histogram of the equalized
image along the x-axis preserving its shape, unlike Method
I and III that distort the original histogram shape. More-
over, the effect of probability smoothing (Method IV) to
the elimination of gaps in the histogram for saturation
component is obvious. The further improvement of the
proposed method on the elimination of the gamut problem
using Method V is demonstrated in Fig. 8. Gamut elimina-
tion is evident both from images and their 3-D histograms
in the RGB space. More precisely, the largely erroneous
pixel values in the image which correspond to the outliers
of the 3-D histogram in the Red. Blue hyperplane of
Fig. 8b are eliminated in Fig. 8c.

The objective measures of entropy and Kullback–
Leibler divergence that are presented, respectively, in
Tables 3 and 4, validate the aforementioned empirical
results. More precisely, the proposed Method IV compared
to all the other methods achieves a higher increase in entro-
py between the original and the equalized images, which
means that the proposed method produces a more uniform
histogram. For Method IV the increase ranges from 6 to
12%, while for Method V from 4 to 8%. On the contrary,
for Methods I and II there is a slight decrease of entropy
between the original and the equalized images. In Method
III, the entropy either increases or decreases slightly. The
Kullback–Leibler divergence results for the equalized
images, which are summarized in Table 4, show that the
proposed Methods IV and V compared to the other three
methods achieve a higher decrease in Kullback–Leibler
divergence (22 to 36% and 16 to 30%, respectively), mean-
ing that the histograms of the equalized images by the pro-
posed methods are more similar to the uniform distribution
than the histograms of the equalized images obtained the
other methods compared. For Method III, the Kullback–
Leibler divergenge values either increase or decrease, but
this change is negligible.

5. Conclusions

In this paper, two novel color histogram equalization
methods are proposed, which work on the intensity and
saturation components of the HSI color space. The first
method (Method IV) uses probability smoothing to derive
the transformations of the original intensity and saturation
color components to uniformly distributed ones. The sec-
ond method (Method V) exploits the empirical technique
proposed in Naik and Murthy [6] in order to deal efficiently
with the gamut problem that may appear due to the trans-
formation from HSI color space to the RGB space.

The experimental results have demonstrated the superi-
ority of the proposed methods in producing more visually
appealing images. The equalized images, as is shown by
measuring their entropy and Kullback–Leibler divergence,
have more uniform histograms. Moreover, gamut elimina-
tion, which is a factor that can be blamed for unwanted
color artifacts in images, is also obtained by applying the
second method.

Appendix A. Color spaces

The term color space or color model refers to an abstract
mathematical model describing the way a color can be rep-
resented as tuple of numbers. The color spaces in use today
are oriented either toward hardware, such as color moni-
tors or printers, or toward applications that deal with color
manipulation, such as graphics. [23]. Especially, for image
processing the RGB and HSI color models are the most
frequently used [23].
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Fig. 3. (a) Original Image (Index 1); (b) Equalized Image by Method I; (c) Equalized Image by Method II. (d) Equalized Image by Method III; (e)
Equalized Image by Method IV.
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A.1. RGB Color space

In the RGB color space, each color appears in its
primary spectral components of Red, Green, and Blue,
and it is represented by a point on or inside the unit cube
which is depicted in Fig. A.1a [27–29]. It is worth mention-
ing that the values of R, G, and B are normalized to [0,1]
for convenience. Black is at the origin of the cube while all
gray colors lie on the main diagonal from black to white
[23]. The main disadvantage of the RGB space involving
natural images is the high correlation between its compo-
nents. The RGB space also suffers from non-uniformity,
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Fig. 4. (a) Original Image (Index 2); (b) Equalized Image by Method I; (c) Equalized Image with Method II; (d) Equalized Image by Method III; (e)
Equalized Image by Method IV.

116 N. Bassiou, C. Kotropoulos / Computer Vision and Image Understanding 107 (2007) 108–122
since it is impossible to evaluate the perceived differences
between colors on the basis of distances, and psychological
intuitivity, since the visualization of a color based on R, G,
B components is rather hard [2].
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Fig. 5. (a) Original Image (Index 3); (b) Equalized Image by Method I; (c) Equalized Image with Method II; (d) Equalized Image by Method III; (e)
Equalized Image by Method IV.
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In colorimetry in order to eliminate the influence of
illumination intensity incident on the scene represented by
an image, chromaticity coordinates were introduced. These
coordinates are actually the normalized values for each
color component and they are more stable to changes in
illumination level than the original RGB values [2].
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Fig. 6. (a) Original Image (Index 4); (b) Equalized Image by Method I; (c) Equalized Image with Method II; (d) Equalized Image by Method III; (e)
Equalized Image by Method IV.
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A.2. HSI Color space

The HSI color model is depicted in Fig. A.1b. It is more
intuitive to human vision and has many variants, such as
HSB (hue, saturation, brightness), HSL (hue, saturation,
lightness), and HSV (hue, saturation, value) [29]. It sepa-
rates the color information from its intensity information.
Intensity is achromatic and describes the brightness of
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Fig. 7. (a) Original Image (Index 5); (b) Equalized Image by Method I; (c) Equalized Image with Method II; (d) Equalized Image by Method III; (e)
Equalized Image by Method IV.
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the scene, while hue and saturation are the chromatic
components. More precisely, hue is an attribute associated
with the dominant wavelength, and thus represents the
dominant color perceived by an observer. Saturation
corresponds to relative color purity, that is the amount of
white light mixed with a hue [2,23]. That is, in the case of



Fig. 8. (a) Original Image (Index 1); (b) Equalized Image by Method IV; (c) Equalized Image by Method V.

Table 3
Entropy of the (a) 3-D color histogram distribution for the original and the equalized images obtained by Methods I and II [7], (b) bivariate color histogram
distribution of intensity and saturation for the original and the equalized images obtained by Method III ([5]) and the proposed Methods IV and V

Image index Original image Equalized image by method Image index Original image Equalized image by method

I II III IV V

(a) (b)
1 14.603 14.588 14.431 1 12.389 12.195 13.215 12.991
2 14.857 14.824 14.797 2 11.952 11.646 13.296 13.132
3 14.489 14.483 14.358 3 11.878 12.048 13.411 13.114
4 15.708 15.708 15.568 4 11.940 12.479 13.416 12.710
5 15.802 15.787 15.622 5 12.002 12.379 13.459 13.041

Table 4
Kullback–Leibler divergence for the (a) 3-D color histogram distribution for the original and the equalized images obtained by Methods I and II [7], (b)
bivariate histogram for the original and the equalized images obtained by Method III ([5]) and the proposed Methods IV and V

Image index Original image Equalized Image by Method Image index Original image Equalized image by Method

I II III IV V

(a) (b)
1 6.514 6.633 6.524 1 2.503 2.637 1.930 2.086
2 6.338 6.379 6.360 2 2.806 3.018 1.874 1.988
3 6.593 6.683 6.597 3 2.858 2.740 1.795 2.001
4 5.748 5.845 5.748 4 2.815 2.440 1.791 2.280
5 5.682 5.807 5.693 5 2.771 2.510 1.761 2.051
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a pure color saturation is 100% while colors with zero sat-
uration are gray levels.

Generally, hue is considered as an angle between a refer-
ence line and the color point in RGB space. The range of
the hue value is from 0 to 360. The saturation component
represents the radial distance from the center. The nearer
the point is to the center, the lighter the color is. Intensity
is the height in the axis direction, while the axis describes
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Fig. A.1. (a) The RGB color cube; (b) The HSI color space; (c) RGB-HSI relationship.

Fig. A.2. Color gamut diagram [23].
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the gray levels (i.e. zero for minimum intensity correspond-
ing to black, and full maximum intensity corresponding to
white). Each plane perpendicular to the intensity axis is a
plane with the same intensity [23,29].

The relationship between the two color spaces is depict-
ed in Fig. A.1c [29]. As it can be easily seen, the intensity is
measured along the diagonal of the RGB cube (i.e., the line
segment from (R,G,B) = (0, 0,0) to (1, 1,1), and hue and
saturation are polar coordinates in the plane perpendicular
to the I diagonal. The conversion formulae from RGB to
HSI and vice versa are rather complex and are found in
the literature in different forms [2,23].

The main advantages of the HSI space is its good com-
patibility with human intuition and the separability of
chromatic values from achromatic ones. However, it suffers
from the irreducible singularities of the RGB to HSI trans-
formation and the sensitivity to small deviations of RGB
values near singularities [23].
A.3. Color gamut

Each color model uses a different color representation.
The term color gamut is used to denote the universe of
colors that can be created or displayed by a given color
system or technology. The colors that are perceivable by
the human visual system fall within the boundaries of
the horse-shoe shape derived from the CIE-XYZ color
space diagram, while the RGB colors (that can be
displayed on an RGB monitor) fall within the red triangle
that connects the RGB primary dots (Fig. A.2). It is
obvious that, the full range of perceptible color by
humans is not available by the RGB color model and
the transformations from one space to another may create
colors outside the color gamut [2]. To alleviate this prob-
lem various gamut mapping techniques are applied that
aim at replacing the out-of-gamut values with substitute
attainable values [30].
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