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Abstract

A novel method for eye and mouth detection and eye center and mouth corner lo-

calization, based on geometrical information is presented in this paper. First, a face

detector is applied to detect the facial region, and the edge map of this region is cal-

culated. The distance vector field of the face is extracted by assigning to every facial

image pixel a vector pointing to the closest edge pixel. The x and y components of

these vectors are used to detect the eyes and mouth regions. Luminance information

is used for eye center localization, after removing unwanted effects, such as specular

highlights, whereas the hue channel of the lip area is used for the detection of the

mouth corners. The proposed method has been tested on the XM2VTS and BioID

databases, with very good results.

Key words: facial features detection, distance map, distance vector field (DVF).

∗ Corresponding author, tel: +30-2310-998566, fax: +30-2310-998453

Email addresses: stiast@image.ntua.gr (Stylianos Asteriadis),

nikolaid@aiia.csd.auth.gr (Nikos Nikolaidis), pitas@aiia.csd.auth.gr

(Ioannis Pitas).
1 Current address: School of Electrical and Computer Engineering, National Tech-

Preprint submitted to Elsevier 25 March 2008



1 Introduction

Numerous papers have been published recently on face and facial feature lo-

calization, notably on eye and mouth detection, since these tasks are essential

for a number of important applications like face recognition, human-computer

interaction, facial expression recognition, surveillance, etc. Facial feature de-

tection techniques can be categorized in two major classes: In the first category,

a face detection step has to be performed before facial feature detection, in

order to provide the facial region where feature detection will be performed.

The second class of approaches is looking for facial features over the entire

image. In the latter case, constraints regarding facial geometry and facial fea-

ture size are usually taken into account, thus making this kind of approaches

more prone to errors and, thus, limiting their application to images where

the depicted faces are within certain size limits. Here, we shall concentrate on

algorithms of the first class.

In [1], six facial features (left and right eye and eyebrow, nose and mouth) are

detected, following the detection of human faces on images. Face detection

is done using skin color segmentation in the YIQ color space, followed by a

refinement step based on a genetic algorithm. Subsequently, image enhance-

ment through histogram equalization and noise reduction are employed. An

intensity threshold is then found and used to detect the facial features, since

they appear darker than other face parts (cheeks, forehead, etc.). In this way,

a binary image is produced, where the desired facial features constitute the

foreground. Morphological dilation is used to remove small holes on the face.

The resulting binary map is used to tag the facial features. Each one of six
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facial elements is assigned a unique tag, depending on its location on the face

area. In [2], eyes, nose, mouth and chin regions are searched for. Two thresh-

olds are applied on the image edge map for the extraction of the head and

face boundaries. Projections along the x and y axis are subsequently applied

on the binary edge image of the face region for the detection of eye, nose and

mouth regions. An ellipse is also used for the final detection of the chin line,

which is, sometimes, difficult to localize. In cases where the above procedure

results in facial features that are very close to each other and cannot be dis-

tinguished, the eyes are detected using Gabor filters and the other features are

subsequently localized by using heuristic rules derived from face geometry. In

[4], a sequence of bottom hat morphological operations is used to find dark re-

gions (which usually correspond to eyes and lips) in a candidate elliptical face

region and geometrical constraints are employed for the detection of candidate

facial features. Further heuristic rules (corresponding to the expected face size,

maximum and minimum dimensions of eyes and lips and aspect ratios of eyes

and lips) are applied [5,6] and, if the features fulfill them, they are labelled

as potential eye or lips regions. Using these labelled features, feature triplets

(eyes/lips) are established and additional constraints are employed to decide

if they are indeed facial features or not. In more detail, eye and mouth triplets

that are far from the center of the face ellipse are removed. Also, triplets where

the orientation of the line that connects the two eyes differs significantly from

that of the ellipse minor axis, are removed.

In [7], facial features are detected following the detection of skin color- related

elliptic facial regions. Red and Green components, divided by the intensity

are used to form a luminance invariant vector for each pixel. These vectors

are exploited to evaluate the probability that a pixel belongs to a face or not,
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based on a look-up table created from training images of such components.

The face images found are normalized in size and the intensity map is used

to locate facial features. The first and second derivatives of a Gaussian in x

and y directions (Gx, Gy, Gxx, Gxy, Gyy) are convolved with the facial image

and the result forms a five-dimensional vector (local appearance descriptor)

for each pixel. A set of training images is used to obtain such Gaussian deriva-

tives which are clustered using the K-means algorithm. The obtained clusters

are exploited in order to distinguish between hair, salient facial features (eyes,

nose, mouth, chin) and other skin regions. Further geometrical analysis is used

to decide whether a connected facial image region belongs to a particular facial

feature. In [8], a multi-stage approach is used to locate 17 features on a face.

These features are interesting points around the eyes, the mouth, the nose,

the eyebrows and the chin. First, the face is detected using the boosted cas-

caded classifier algorithm by Viola and Jones [3]. The same classifier is trained

using facial feature patches to detect facial features, thus a different detector

is constructed for each feature. A novel shape constraint, the Pairwise Rein-

forcement of Feature Responses (PRFR) is used to improve the localization

accuracy of the detected features. More specifically, a pairwise distribution

is defined as the distribution of the true location of feature i given the best

match for feature detector j in the reference coordinate system defined by

the face region. The ensemble of true feature locations and detector matches

on a set of training images is used to compute relative histograms Hij which

approximate these distributions. Using these histograms and a set of the most

probable locations for each feature provided by the corresponding detector

helps to improve detection. Further detection refinement is achieved by using

the Active Appearance Model (AAM) algorithm using four values for each

pixel: the normalized gradients in the x and y directions, its ”edgeness” and
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”cornerness”. In [9], a three stage technique is used for eye center localiza-

tion. The Hausdorff distance between edges of the image and an edge model

of the face is used to detect the face area. At a second stage, the Hausdorff

distance between the image edges and a more refined model of the area around

the eyes is used for more accurate localization of the upper area of the head.

Finally, a Multi-Layer Perceptron (MLP) is used for finding the exact pupil

locations. In [10], the authors use Generalized Projection Functions (GPF) to

locate the eye area and, subsequently, the eye centers, starting from a coarse

eye area estimate provided by the algorithm proposed in [11]. The GPFs are

linear combinations of functions which consider the mean and variance of fa-

cial intensities along image rows and columns. GPFs were used to locate the

bounding box of each eye. The eye center was then found by taking the center

of this bounding box. In [12], the face is initially detected using a skin-color

segmentation algorithm. Morphological sequences of dilation and erosion fol-

low and the face contour is localized by applying an ellipse fitting algorithm. In

that work, eyes and nostrils were searched for in certain areas of the detected

face, as the darkest regions of their neighborhoods. Geometrical constraints

were also applied in order to choose for the best pair of eyes or nostrils. In

the case of mouth detection, integral projection functions and edge operators

were used.

A novel technique for eyes and mouth detection and eye center and mouth

corner localization is proposed in this paper. The proposed technique is an im-

proved variant of the technique presented in [13] by the same authors, which

used a different approach for eye detection and did not include mouth de-

tection/localization. The coarse detection of facial characteristics is done by

using only geometrical information, thus, avoiding illumination problems and
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facial image intensity variations. The detected face is normalized to a certain

size along the x and y axes and a distance vector field is created by assign-

ing to each image pixel a vector pointing to the closest edge. The eyes and

mouth regions are detected by finding regions inside the face, whose distance

vector fields resemble the distance vector fields of eye and mouth templates ex-

tracted from sample eye and lip images. Facial intensity and color information

is then used within the detected eye and mouth regions in order to accurately

localize the eye centers and mouth corners. Our technique has been tested

on the XM2VTS and BioID databases with very good results. Comparisons

with other state of the art methods verify that our method achieves superior

performance.

The structure of the paper is as follows. In Section 2, the idea behind using the

distance vector fields is discussed. In Section 3, the method used to localize eye

and mouth areas, as well as eye centers and mouth corners on a face image is

described. The experimental evaluation procedure (database, distance metrics,

etc) and the obtained results are described in Section 4. A comparison of the

proposed method with other approaches in the literature is also included in

the same section. Conclusions follow in section 5.

2 Distance Vector Fields

For a binary 2-D image containing ”object” and ”background” pixels, the

distance vector field (DVF), also known as vector distance field or vector

distance map, is a vector field that is created by assigning to each background
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pixel (i, j) the vector v pointing to the closest object pixel (k, l). Specifically:

v(i, j) = [k − i, l − j]T , (i, j) ∈ B (1)

(k, l) = arg min
m,n∈O

D((i, j), (m,n)) (2)

where D is some metric and O, B are the sets of object and background pixels

respectively.

Distance vector fields were introduced in [14] as an efficient means for calcu-

lating the true Euclidean distance map (also known as distance field) of an

image, i.e. the map (image) whose pixels store the Euclidean distance of the

corresponding image pixel from the closest object pixel. This gave rise to a

family of distance transform algorithms, known as vector distance transform

(VDT) algorithms (see for example [15]). It should be noted, however, that,

in these algorithms, DVFs were used only as an intermediate step for the

calculation of the distance field of an image. Distance vector fields are, also,

sometimes used in graphics and animation [16].

In this paper, DVFs will be used to describe the geometry of facial features.

Each pixel in a facial area is assigned a vector pointing to the closest edge

pixel, extracting in this way, a distance vector field describing the geometry

of facial regions. A schematic representation of the distance vector field of a

face is shown in Figure 1.

Thus, instead of the facial image intensity values, we generate and use in the

proposed algorithm a DVF, whose dimensions are equal to those of the image

and where each pixel is characterized by the vector described above. This vec-

tor encodes, for each pixel, information regarding its geometric relation with
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neighboring edges and, thus, is relatively insensitive to intensity variations or

poor lighting conditions. Obviously, the DVF contains more information than

the distance map and one can utilize this additional information for successful

facial feature detection. The above distance vector field can be represented as

two scalar maps (images) representing the values of the horizontal and vertical

vector components for each pixel. The closest edge point for each pixel, which

is necessary in order to calculate the distance vector field can be derived from

the distance map of the edge image. The following procedure was used in our

case: For each pixel (i, j) its 8-neighborhood on the distance map is considered

and the pixel with the smallest distance map value is selected as the current

pixel. The procedure continues recursively by finding the smallest distance

map value in the 8-neighborhood of the current pixel until a pixel with value

zero on the distance map is reached. If this is at location (k, l), the vector in

(1) is assigned to the pixel.

Figures 2(a),2(b),2(c) depict faces detected in three images, Figures 2(d)-2(f),

2(g)-2(i), 2(j)-2(ℓ), show the Canny edge map, and absolute values of the

horizontal and vertical component maps of the distance vector field in the

detected face area, respectively. The distance map used for the calculations is

depicted in Figures 2(m)-2(o). The distance transform described in [17] has

been used for the calculation of the distance map throughout this paper.

3 Eye and mouth region detection

Prior to eye and mouth region detection, face detection is applied on the

face images. The face is detected using the Boosted Cascade method [3]. This

method uses the Adaboost algorithm to select and combine a set of appropriate
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facial image features that resemble Haar basis functions, so as to train efficient

classifiers. A combination of such successively more complex classifiers in a

cascade allows the early rejection of non-face regions, thus, allowing for more

computation to be spent on more promising areas.

3.1 Eye Region Detection

The proposed eye region detection method can be outlined as follows: First,

the Canny edge detector [18] is applied on the output of the face detector

and the distance vector field of the face area is calculated. For eye region

detection, distance vector fields of candidate regions are compared to mean

horizontal and vertical vector component maps (templates) for the two eyes.

Figure 3 shows an example of an eye region, the corresponding distance map

and horizontal and vertical vector component maps, as described above.

In more detail, the face area found by the face detector is scaled (up or down)

to 150 × 120 pixels. This size proved satisfactory for our experiments, as the

basic geometrical information needed for the eye region detection is retained.

The Canny edge detector with a high threshold of 50 and a low threshold of 20

[18] was applied on the detected facial region. These values allow to detect the

most prominent edges, such as those of the eyes and eyebrows. Subsequently,

the distance vector field of the face region is extracted.

In order to detect the eye areas, regions Rk of size N ×M within the detected

face are examined and the corresponding distance vector fields are compared

with the mean vector field (template) extracted from a set of right or left eye

images. Different vector field templates were created for the right/left eyes.
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Fifty eight manually selected right and left eye images, scaled to dimensions

N=26 and M=26 pixels, were used to extract the mean vector component

maps. The right eye mean distance vector field is shown in Figure 4. All

these images were chosen so that the upper image boundary was placed a bit

higher than the eyebrow whereas the left and right boundaries were placed

just beyond the eye corners.

The similarity between the distance vector field v of a candidate image region

and that of the templates is calculated using the following distance measure:

EL2
=

∑

i∈Rk

‖vi − mi‖2 (3)

where ‖ · ‖2 denotes the L2 norm, vi are the vectors of the DVF of the can-

didate region and mi the corresponding vectors of the mean distance vector

field (template) of the eye we are searching for (right or left one). The can-

didate region on the face that minimizes EL2
is marked as the region of the

left or right eye. To make the algorithm faster, we utilize the knowledge of the

approximate positions of eyes on a face. Thus, we search for the eyes only in a

zone on the upper part of the detected face. Moreover, the right and left eye

are searched at the right and left parts of this zone, respectively.

3.2 Mouth Region Detection

An approach similar to the one described above for eye region detection is fol-

lowed for mouth region detection. The outcome of the eye centers localization

(described in subsection 3.3) can be used to define the region where the mouth

is to be searched. More specifically, it was proven experimentally that the

mouth region can be searched for in a zone with the following characteristics:
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Its upper and lower boundaries are at a distance dup=1.2d, dlow=1.8d lower

than the midpoint between the eye centers, where d is the found inter-ocular

distance. The upper boundary of candidate mouth regions should always be

within these boundaries. The middle, in the horizontal direction, of the mouth

region is allowed to be a few pixels away from the vertical axis passing from

the midpoint between the eye centers.

For the extraction of the mean DVF of the mouth, 16 mouth images were used.

These images were scaled to the same dimensions Nm×Mm, with Nm=13 and

Mm=36. An example of a mouth image, used for the calculation of the mean

distance vector field, its edge image and the corresponding horizontal and

vertical coordinate maps can be seen in Figure 5. The two coordinate maps of

the mean vector field can be seen in Figure 6.

The mouth region was detected using a procedure similar to the one used for

eye detection. That is, the DVF of the candidate regions in the area described

above were compared to the mean DVF (template). However, since lip and skin

color are, in many cases, similar and since beard (when existent) might occlude

or distort the lip shape, lip localization is more difficult than eye localization.

For this reason, an additional factor is included in (3). This factor is the inverse

of the number of edge pixels of the horizontal edge map evaluated within the

candidate mouth area. Thus, the mouth region detected by the algorithm is

the candidate region that minimizes:

Emouth
L2

=
∑

i∈Rk

‖vi − mi‖2 +
w

IHE
Rk

, (4)

where w is a weight and IHE
Rk

is the number of edge pixels in the horizontal

edge map of candidate region Rk. The new term was added because, due to the
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elongated shape of the lips, the corresponding area is characterized by a large

concentration of horizontal edges. Thus, this factor, which favors areas with

horizontal edges, helps in discriminating between mouth/non-mouth regions.

The additional factor is weighted so that its mean value in the search zone is

equal to the mean value of the term
∑

i∈Rk
‖vi − mi‖2 in this zone. In more

detail, the weight w in (4) is calculated as follows:

w =

∑L
k=1

∑
i∈Rk

‖vi − mi‖
∑L

k=1
(IHE

Rk
)−1

(5)

where L is the number of candidate mouth areas in the search zone.

After eye and mouth detection, the eye centers and mouth corners are localized

within the found areas using the procedures described in the following sections.

3.3 Eye Center Localization

The eye area found using the procedure described in section 3 is scaled back

to the dimensions Neye×Meye it had in the initial image. Moreover, before eye

center localization, a pre-processing step is applied. Since reflections (specu-

lar highlights), that affect the results in a negative way, frequently appear on

the eye, a reflection removal step is implemented. Such highlights are usually

bright areas consisting of no more than a few pixels. The reflection removal

step proceeds as follows: The eye area (Figure 7(a)) is first converted into

a binary image (Figure 7(b)) through thresholding. This is done using the

threshold selection method proposed in [19] that aims at maximizing the intr-

aclass variance between the black and the white pixels on the resulting binary

image.
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Subsequently, all the white connected components of the resulting binary eye

image that occupy less than 1% of the image pixels are considered as highlight

areas (see Figure 7(c) depicting the binary image having these areas removed)

and the intensities of the pixels in the grayscale image that correspond to

these areas are substituted by the average luminance of their surrounding

pixels. The result is an eye area with most highlights removed (Figure 7(d))

The eye center localization is performed in three steps, each step refining the

results obtained in the previous one. By inspecting the eye images generated

by the algorithm described in the previous section, one can observe that the

eyes reside at the lower central part of the detected eye area, while the upper

part comprises of the eyebrow and the left and right parts consist of skin or

parts of the eyeglass frame. Thus, the eye center is searched within an area that

covers the lower 60% of the eye region and excludes the right and left parts

of this region (15% of the right and left part of the region are excluded). The

information in this area comes from the eye itself and not from the eyebrow

or the eyeglasses, as can be seen in Figure 8. The three steps of eye center

localization are the following:

Step 1: Since, at the actual eye center position, there is significant lumi-

nance variation along the horizontal and vertical axes, the images Dx(x, y)

and Dy(x, y) of the absolute discrete intensity derivatives along the horizontal

and vertical directions are evaluated (Figure 9):

Dx(x, y) = |I(x, y) − I(x − 1, y)| (6)

Dy(x, y) = |I(x, y) − I(x, y − 1)| (7)

The contents of the horizontal derivative image are subsequently projected on
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the vertical axis and the contents of the vertical derivative image are projected

on the horizontal axis:

Dpx(y) =
∑

x

Dx(x, y) (8)

Dpy(x) =
∑

y

Dy(x, y) (9)

The four positions xi, yi, i = 1 . . . 4 along the horizontal and vertical axes

that correspond to the four largest values of the Dpy(x) and Dpx(y) respec-

tively are selected. These positions correspond to the horizontal and verti-

cal lines crossing the strongest edges. Subsequently, the pixel (x, y) where

x = median(x1, x2, x3, x4) and y = median(y1, y2, y3, y4) defines an initial

estimate of the eye center (Figure 10(a)).

Step 2: Using the fact that the eye center is in the middle of the largest dark

area in the region, the previous result can be further refined. The darkest

column in a 0.4Neye×0.15Meye pixels area around the initial estimate (Figure

10(b)) is found and its position is used to define the x coordinate of the refined

eye center:

x = arg min
x

∑

y

I(x, y) (10)

In a similar way the darkest row in a 0.15Neye×0.4Meye area (Figure 10(c))

around the initial estimate is used to locate the vertical position of the eye

center (Figure 10(d)):

y = arg min
y

∑

x

I(x, y) (11)

The sizes of the search areas were empirically decided.
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Step 3: Since the iris is darker than the area around it, the darkest region

of size 0.25Neye×0.25Meye is searched for in a 0.4Neye×Meye area around the

pixel found at the previous step and the middle of this area gives the final

estimate of the eye center, as can be seen in Figure 10(e).

3.4 Mouth Corner Localization

For mouth corner localization, color information can be used. The existence of

beards and the difficulty to differentiate between skin and lip areas in grayscale

images led us to the use of the hue component of mouth regions in order to

find mouth corners, since the hue values of the lips are distinct from those of

the surrounding area. More specifically, the lip color is reddish and, thus, its

hue values are concentrated around 0o, in the range [340o,20o]. Figure 11 shows

results of mouth region detection and the corresponding hue component. It is

obvious that, even in the case of difficult to distinguish lip regions, or even

in the case where mouth region detection results are not good (i.e. when the

mouth is not centrally located in the detected area), the hue component can

be used very efficiently to distinguish the mouth. In order to detect the mouth

corners, the pixels of the hue component are classified into two classes using

the automatic thresholding approach of [19]. The class whose mean value is

closer to 0o is declared as the lip class. Due to the angular nature of hue, the

following definition of distance between two angular values a, b was utilized

[20]:

d(a, b) = π − |π − |a − b|| (12)
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In certain cases, small connected components with low hue values might be

erroneously assigned to the lip class by the thresholding. These components

should be removed before proceeding with mouth corner localization. More

specifically, all foreground components of size less than 15% of the mouth

region are removed. An example of such a case is shown in Figure 12.

After the steps described above, the actual mouth corner localization is per-

formed by scanning the binary image and looking for the rightmost and left-

most pixels belonging to the lip class. The result of mouth corner localization

is shown in Figure 12(d) .

4 Experimental evaluation

The proposed method has been tested on the CDS001 dataset of the XM2VTS

database [21], which has been used for testing in many facial feature detection

papers. This dataset contains 1180 head and shoulder color images of 295

persons (four frontal images per person), each image being of dimensions 720×

576 pixels and depicting a single person. The four recording sessions took

place one month apart from each other. In more than one third of the images,

people with eyeglasses are depicted. All images were acquired under controlled

illumination conditions and the background was uniform. Ground truth for eye

centers and mouth corners is provided. A few sample images from the database

can be seen in Figure 13.

Our method has also been tested on the BioID database [22], which contains

1521 grayscale, frontal facial images of dimensions 384×286, acquired under

various lighting conditions in a complex background. The database contains
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tilted and rotated faces, people that wear eye-glasses and, in a few cases, people

that have their eyes shut or pose various expressions. Thus, it is considered

as one of the most challenging databases for the facial feature detection task.

Examples of images from the BioID database are shown in Figure 14. Ground

truth for eye positions is provided in the database. It should be noted here that

the BioID database could not be used in our case for mouth corner localization,

since it includes only greyscale images whereas our mouth corner localization

technique requires color images.

Out of a total of 1180 images, only 3 faces failed to be detected when using

the face detector [3] on the XM2VTS database. However, in many cases, more

than one faces were erroneously detected. In this case, the proposed feature

detection technique was used to eliminate the falsely detected faces. More

specifically, for each candidate face detected, the sum of the distance metric

(3) for the left and right eye and the distance metric (4) for the detected mouth

was evaluated and the candidate with the smallest sum was retained, while

the other candidate regions were rejected. By doing so, all 31 falsely detected

faces were discarded. Similarly, out of a total of 1521 images, 18 faces failed

to be detected on the BioID database. The simple approach outlined above

was used to discard the erroneously detected faces (false alarms). A typical

example of such a case is shown in figure 15.

For eye region detection, success or failure was declared depending on whether

the ground truth for both eye centers was in the found eye regions. Mouth

region detection was considered successful if both ground truth mouth cor-

ners were inside the region found. For the eye center localization, the correct

detection rates were calculated through the following criterion, introduced in
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[9]:

me2 =
max(de1, de2)

se

< T (13)

In the previous formula, de1 and de2 are the distances between the eye centers

in the ground truth and the eye centers found by the algorithm, and se is

the distance between the two ground truth eye centers. A successful detection

is declared whenever me2 is lower than threshold T. The same formula was

also used for mouth corner localization, with dm1 and dm2 being the distances

between the ground truth mouth corners and the mouth corners found by the

algorithm, and sm the distance between the ground truth mouth corners:

mm2 =
max(dm1, dm2)

sm

< T (14)

In order to measure the overall facial feature localization accuracy, an error

metric which is analogous to the criterion used in [8] was adopted. This metric

is equal to the average of the distances of each found feature, from the corre-

sponding ground truth feature, normalized by the inter-ocular distance of the

ground truth data:

mme4 =
1

4se

(de1 + de2 + dm1 + dm2) < T (15)

For all three cases, the success rate is defined as the percentage of images

where a successful detection has been performed according to (13), (14), (15).

Some results of the proposed method can be seen in Figure 24. It should be

noted that all the successful detection figures (percentages) presented in the

subsections below take into account the success rate of the face detector. In

other words, cases where a face is not detected from the face detector are

considered as failures for the facial feature detectors. If the results have been
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evaluated on correctly detected faces only, the successful detection figures

would have been somewhat higher.

4.1 Eye detection and eye center localization

Correct eye region detection percentages for the XM2VTS and BioID databases

are listed in the column denoted ”Eye regions” of Tables 1 and 2, respectively.

It is obvious that the detection rates are very good both for people not wear-

ing eyeglasses and those who do. The columns labelled ”Eye Centers” in the

same Tables present correct eye center localization results for threshold values

T=0.25 and T=0.1 in (13). As mentioned in [9], a threshold value T=0.25

means that the maximum allowable deviation from the actual eye center po-

sitions is half the width of an eye, while T=0.1 means that the maximum

error allowed cannot be more than 10% of the inter-ocular distance. Results

verify that the proposed method can achieve very good eye center localization

even in the challenging BioID database where, as expected, results are worse

than in the XM2VTS database. The results are, in general, very good even

for people wearing glasses. This is due to the fact that the basic shape of the

eye region remains unchanged, even if the eyebrows are occluded because of

the glasses frame. In such cases, the geometry of the eyebrows is replaced by

the upper part of the frame of the glasses, which makes eye region detection

easy. The lower part of the eye glasses frame is usually too far from the eyes

to affect the distance vector field of the area and, thus, distort the results.

Furthermore, the success rates for various values of the threshold T, for the

entire databases, as well as for the two subsets of people not wearing eye-

glasses and those who do are depicted in Figures 16 and 17 for the XM2VTS
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and BioID, respectively. It can be observed that, even for very small thresh-

olds T (i.e. for very strict criteria), success rates remain very high, especially

for the XM2VTS database. For example, as can be seen in Figure 16(a), the

maximum distance of the detected eye centers from the real ones does not

exceed 5% (T=0.05) of the inter-ocular distance in 92.4% of the cases in the

XM2VTS database, which means that the algorithm can detect eye centers

very accurately. Figures 18 and 19 show the distribution of errors, i.e. the his-

togram of the error values me2
, as they were defined in (13), for the XM2VTS

and BioID databases, respectively. The range of these values has been quan-

tized to 1000 bins. The mean value of me2 for XM2VTS is 0.027, that is, the

mean maximum error max(de1, de2) for both eyes is only 2.7% of the actual

inter-ocular distance se. The corresponding figure for the BioID is 0.063.

4.2 Mouth detection and mouth corner localization

The mouth region was correctly detected in 96.1% of the cases in the XM2VTS

database. The mouth corner localization success rates in the same database for

T=0.25 and T=0.1 in (14) are 97.2% and 80.6% respectively. Figure 20 shows

the success rates of mouth corner localization for various T . It is obvious that

the method has very good performance in detecting the mouth and localizing

its corners. The fact that success rates in this case are lower than in the case

of eye center localization can be attributed to the fact that the mouth corner

error max(dm1, dm2) is normalized by the mouth corner distance sm, which is

smaller than the inter-ocular distance se. Consequently, the error mm2 in (14)

obtains larger values than the error me2 in (13).

Figure 21 shows the histogram of the error values mm2 in (14). The mean
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value of mm2 is 0.083, i.e. the mean maximum error max(dm1, dm2) for both

mouth corners is 8.3% of the actual distance between the mouth corners.

4.3 Aggregate results

The ability of the system to detect simultaneously all three regions of inter-

est (left/right eye and mouth) and localize all four characteristic points (eye

centers and mouth corners) was also experimentally tested in the XM2VTS

database. No aggregate results could be obtained for the BioID database since

our mouth corner localization method requires color images. For feature region

detection, success was declared when all three regions were correctly detected.

In the experiments, all three feature regions were successfully detected at

95.48% of the cases. Since, in most of the cases, erroneously detected regions

were very close to the characteristic points, the localization of the characteris-

tic points was even more satisfying, giving a success rate of 98.5% for T=0.25

in (15). Figure 22 shows the results for various thresholds.

Figure 23 shows the histogram of the error value mme4. The mean value of

mme4 is 0.054, i.e. the mean average error for all four characteristic points is

5.4% of the inter-ocular distance.

4.4 Comparison with other methods

The method has been compared with other existing methods that were tested

by the corresponding authors on the same databases for the eye center local-

ization task (Tables 1, 2). Unfortunately, no mouth corner detection method

tested on the XM2VTS database has been found. Moreover, eye detection and
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localization results for our method are provided only for the BioID database,

since our method requires color information for mouth detection. All figures

presented for other methods have been obtained from the corresponding pa-

pers. Some of these figures have been derived from plots included in these

papers. These approximate figures are preceded by the ”∼” symbol.

In the XM2VTS, for T=0.25 our method achieves an overall detection rate

of 98.85%, which is essentially equivalent with the results obtained by the

method in [8] (∼ 99%) while Jesorsky et al in [9] achieve 98.4%. The proposed

method is significantly superior than the other methods for stricter criteria,

i.e. for smaller values of the threshold T . For T=0.1, both [9] and [8] achieve

a success rate of 93%, while the proposed method localizes the eye centers

successfully in 98.14% of the cases.

In the BioID database, for T=0.25, our method achieves an overall detection

rate of 96%, i.e. equal to the detection rate in [8] while all three other methods

achieved inferior results. For T=0.1, our method achieves a detection rate of

89.42%, and is surpassed only by the method in [8] that achieves 96%. The rest

of the methods under comparison achieve detection rates significantly lower

than the proposed method. The fact that our method scores lower detection

rates for T=0.1 can be largely attributed to the fact that the BioID database

contains two subjects (each being depicted into approximately 50 images)

where the method continuously fails to achieve me2 values lower than 0.1, due

to the thick eye-glasses worn by these subjects.

As far as computational complexity is concerned, the time required from our

method to detect eye/mouth regions and localize eye centers and mouth cor-

ners was on average 260ms per facial image for both databases whereas the
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time for executing the face detection step on the XM2VTS database was

230ms, on a Pentium M processor running at 1.60GHz. It should be noted

that no optimization of any sort has been performed on the code. Moreover,

by further restricting the size of the areas where eyes and mouths are searched

for, one can reduce dramatically the amount of time needed for facial features

localization while keeping success rates high.

The method in [9] reports 23.5ms on a Pentium 3, 850Mhz for the coarse

localization of the face region and 7ms for the refinement that detects exact

positions of facial points. The authors do not clarify whether these execution

times refer to the XM2VTS or the BioID database. The method in [8] takes

1.4sec on a Pentium 3, 500Mhz for the whole procedure (face detection and

localization of 17 facial features) on BioID images, while facial feature detec-

tion alone needs more than 800ms on the same processor. No computational

complexity results are provided in [10] and [11].

5 Conclusions

A novel method for facial feature detection and localization was proposed in

this paper. The method utilizes the distance vector field that is formed by

assigning to each pixel a vector pointing to the closest edge, thus, encoding,

the geometry of such regions. Distance vector fields employ geometrical infor-

mation and thus can help to avoid illumination problems in the critical step

of eye and mouth region detection. Once facial feature areas are detected,

luminance and chromatic information is exploited for accurate localization of

characteristic points, namely the eye centers and mouth corners within these

areas. Eye center localization is based on the fact that this center resides in the
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middle of a small patch with strong edges, as well as on the fact that the iris

of the eye is the darkest area in the eye region. Furthermore, for mouth cor-

ner localization, the hue component, that can distinguish the lip region from

adjacent areas, is utilized. The method proved to give very accurate results,

failing only at extreme cases.
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Fig. 1. Schematic representation of the distance vector field of a face.

27



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (ℓ)

(m) (n) (o)

Fig. 2. (a-c) Detected face; (d-f) Canny edge map; (g-i) absolute values of horizontal

components of distance vector field; (j-l) absolute values of vertical components of

distance vector field; (m-o) distance map.28



(a) (b) (c) (d)

Fig. 3. Example of distance vector field extraction for an eye region a) eye image; b)

distance map; c) vertical components of the vector field; d) horizontal components

of the vector field.

(a) (b)

Fig. 4. a) Mean horizontal component map of right eye; b) mean vertical component

map of right eye.

(a) (b) (c) (d)

Fig. 5. Example of vector coordinate map extraction for the mouth region a) mouth

area; b) canny edge map of mouth area; c) vertical coordinate map of the DVF; d)

horizontal coordinate map of the DVF.

(a) (b)

Fig. 6. a) Vertical and b) horizontal coordinates for mouth mean distance vector

field.
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(a) (b) (c) (d)

Fig. 7. Light reflections removal procedure: a) eye region; b) binary eye region;

c) binary eye region with small connected areas removed; d) grayscale image with

reflections removed.

(a) (b) (c) (d)

Fig. 8. Examples of detected eye regions and eye centers search areas within them.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9. Examples of eye center search areas (a-c) and their vertical (d-f) and hori-

zontal (g-i) derivative images.
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(a) (b) (c) (d) (e)

Fig. 10. Steps followed for the detection of the eye center a) Initial estimate of eye

center; b),c) regions used to get refined estimates; d) estimate after first refinement;

e) final eye center localization.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11. Mouth regions detected (a-d) and the corresponding hue component values

(e-h).

(a) (b) (c) (d)

Fig. 12. a) Detected mouth region; b) binary image with small connected compo-

nents that correspond to skin and have been falsely assigned to the foreground; c)

binary image without the small connected components; d) mouth corners.
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(a) (b)

(c) (d)

Fig. 13. Examples from the XM2VTS database.

(a) (b)

(c) (d)

Fig. 14. Examples from the BioID database.
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(a) (b)

Fig. 15. Example of false alarm removal in the BioID database a) Initial face detec-

tion using the method in [3]. Two face regions are detected, including a false alarm;

b) removal of falsely detected face region using the proposed facial feature detection

method as a verification step.
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(a) (b)

(c)

Fig. 16. Eye center localization for various thresholds T a) for the entire XM2VTS

dataset; b) for images depicting people without eyeglasses; c) for images depicting

people with eyeglasses.
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(a) (b)

(c)

Fig. 17. Eye center localization for various thresholds T a) for the entire BioID

dataset; b) for images depicting people without eyeglasses; c) for images depicting

people with eyeglasses.

Fig. 18. Distribution of errors for eye center localization on the XM2VTS database.
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Fig. 19. Distribution of errors for eye center localization on the BioID database.

Fig. 20. Mouth corner localization for various thresholds T for the XM2VTS

database.
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Fig. 21. Distribution of errors mm2 for mouth corner localization on the XM2VTS

database.

Fig. 22. Localization of all four characteristic points (eye centers and mouth corners)

for various thresholds T for the entire XM2VTS database.

Fig. 23. Distribution of errors mme4 in the localization of all 4 characteristic points

on the XM2VTS database.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 24. Successfully (a)-(f) and erroneously (g)-(h) detected facial features on

XM2VTS images.
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Table 1

Eye region detection and eye centers localization results on the XM2VTS database.

Eye Regions Eye Centers, Eye Centers,

T=0.25 T=0.1

Proposed method,

people without glasses 99.06% 99.33% 98.54%

Proposed method,

people with glasses 98.7% 97.92% 97.44%

Proposed method,

total 98.93% 98.85% 98.14%

Method in [9] - 98.4% ∼ 93%

Method in [8] - ∼ 99% 93%
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Table 2

Eye region detection and eye centers localization results on the BioID database.

Eye Regions Eye Centers, Eye Centers,

T=0.25 T=0.1

Proposed method,

people without glasses 99.50% 98.74% 94.30%

Proposed method,

people with glasses 98.3% 90.95% 75.93%

Proposed method,

total 99.10% 96.00% 89.42%

Method in [9] - 91.8% 79.0%

Method in [8] - ∼ 96% 96.0%

Method in [10] - 94.81% -

Method in [11] - 94.5% ∼ 53%
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