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Robust Detection of Phone Boundaries Using Model
Selection Criteria With Few Observations
George Almpanidis, Margarita Kotti, and Constantine Kotropoulos, Senior Member, IEEE

Abstract—Automatic phone segmentation techniques based on
model selection criteria are studied. We investigate the phone
boundary detection efficiency of entropy- and Bayesian- based
model selection criteria in continuous speech based on the
DISTBIC hybrid segmentation algorithm. DISTBIC is a text-in-
dependent bottom-up approach that identifies sequential model
changes by combining metric distances with statistical hypothesis
testing. Using robust statistics and small sample corrections in the
baseline DISTBIC algorithm, phone boundary detection accuracy
is significantly improved, while false alarms are reduced. We also
demonstrate further improvement in phonemic segmentation by
taking into account how the model parameters are related in the
probability density functions of the underlying hypotheses as well
as in the model selection via the information complexity criterion
and by employing M-estimators of the model parameters. The
proposed DISTBIC variants are tested on the NTIMIT database
and the achieved � measure is 74.7% using a 20-ms tolerance in
phonemic segmentation.

Index Terms—Automatic phonetic segmentation, model selec-
tion, robust statistics.

I. INTRODUCTION

M ANY areas in speech processing require algorithms
that automatically associate the speech signal to other

annotation layers (orthographic, phonetic transcription, etc.)
by means of time stamps [1]. Phonemic segmentation is
commonly used in preprocessing and initial training steps
of automatic speech/speaker recognition, speech enhance-
ment, computer-aided speech transcription systems, and the
development of corpus-based speech synthesis systems. The
automatic detection of the start and end boundaries of phone
segments in continuous speech by statistical methods is a
challenging task due to the small sample size. While hand-la-
beling of continuous speech by listening to the sound and
visually inspecting the speech waveform or spectrogram in
order to determine the phone boundaries yields better accuracy
than automatic methods, the speed of segmentation by expert
phoneticians is over 130 times real-time [2]. Consequently,
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recent concatenative speech synthesizers, which rely on large
phone-segmented speech databases to realize high-quality syn-
thetic speech, require a huge amount of human effort. Clearly,
even a semiautomatic approach to phone boundary detection,
with the automatic annotation acting as reference for further
human correction, can accelerate the segmentation procedure
significantly. However, the savings in time depend on the ac-
curacy of the automatic segmentation. The better the accuracy,
the higher the time savings. Besides speech database automatic
annotation, additional applications of phonemic segmentation
can be found in language identification, cellular telephony
technology, and lip-synchronization techniques in audiovisual
communication [3]. In environments with low signal-to-noise
ratio (SNR), energy-based phonemic segmentation algorithms
often misclassify nonstationary noise as speech activity. They
can not identify unvoiced phones, such as fricatives, satis-
factorily as the latter can be masked by noise. Consequently,
they are inefficient for real-world recordings where speakers
tend to leave artifacts, such as breathing/sighing, mouth clicks,
teeth chatters, and echoes. In contrast, approaches that explore
speech and noise statistics and incorporate model selection
criteria (MSC) are more robust in low SNRs [4].

In this paper, we propose an automatic acoustic change
detection algorithm that identifies phone boundaries using
information-theoretic approaches for statistical inference
while avoiding the need for linguistic constraints and training
data. Linguistically unconstrained approaches are useful in
applications that require explicit speech segmentation, when
a phonetic transcription is either unavailable or inaccurate.
Phone segmentation using MSC has been studied in an earlier
work, where speech and noise features were independently
modeled using univariate generalized Gamma distributions
[5]. The novelty of this paper is in suggesting various MSC,
some not fully exploited in speech processing yet, deploying
multivariate statistics without assuming variable uncorrelat-
edness, and considering the limited information available in
phonemic segmentation as well as the presence of outliers
whose influence is reduced by employing robust estimators of
the model parameters.

Parsimony, working hypotheses, and strength of evidence are
three principles that regulate the ability to make inferences [6].
Information-theoretic approaches adhere in part to all these con-
cepts, which make them more attractive than classical pairwise
significance testing. Akaike information criterion (AIC) [7] and
Bayesian information criterion (BIC) [8] have been the most
commonly adopted MSC as they have a straightforward imple-
mentation and yield reasonable results. AIC has a strong theo-
retical underpinning, based on Kullback–Leibler (KL) informa-
tion and maximum-likelihood estimation (MLE) theory, while
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BIC stems from Bayesian arguments and is strongly related to
Bayes factors (BF). AIC and BIC have been widely used in sev-
eral applied fields and have motivated a plethora of extensions
and derivatives that attempt to overcome many of their short-
comings. The application of MSC to speech and audio segmen-
tation has been studied by numerous researchers (cf. [9]–[12]).

In this paper, we build on the DISTBIC segmentation algo-
rithm [10] to determine the phone boundaries in continuous
speech. DISTBIC is a hybrid method that combines distance
measures with BIC and has been applied successfully in many
speech segmentation tasks. In order to deal with small sample
sizes in phonemic segmentation, the basic algorithm needs to be
modified. The various modifications of the baseline DISTBIC
algorithm (cf. [13]–[15]) have been derived mostly from speech
segmentation at the word/sentence scale or speaker segmenta-
tion. In this paper, we apply robust statistics corrections to BIC
through M-estimation of the model parameters, feature vector
transformation, and small sample corrections to the complexity
penalty term of BIC. We also disregard the assumption of uncor-
related elements within a feature vector by employing full co-
variance matrices. Moreover, we study the possibility of using
alternative MSC for estimating more efficiently the penalty due
to model complexity. In particular, BIC and AIC do not consider
the functional form of a probability model, or the way in which
model parameters control estimated feature interdependence. In
order to better represent feature interdependence, we propose to
replace BIC with a version of the information complexity crite-
rion (ICOMP) that is based on Fisher information matrix (FIM),
abbreviated as ICOMP(IFIM), where IFIM stands for inverse
FIM [16].

The outline of the paper is as follows. Section II describes the
problem of speech and phonemic segmentation, surveys related
past work, and presents the baseline hybrid statistical technique
for speech segmentation, DISTBIC. In Section III, we assert
that speech modeling in very small window sizes impels us to
consider alternative MSC with corrections due to small sample
sizes as well as to alleviate the presence of outliers. Section IV
discusses robust techniques in phonemic segmentation, reviews
complexity penalized MSC, and presents necessary adjustments
to the baseline algorithm DISTBIC for text-independent phone
boundary detection. Section V features experimental results for
evaluating phone boundary detection performance in a noisy
environment. It is shown that the proposed DISTIBIC variants
yield significant reductions in boundary detection errors. Re-
sults are discussed in Section VI. Finally, Section VII concludes
the paper.

II. PHONEMIC SEGMENTATION

Phone segmentation methods can be classified into text-de-
pendent and linguistically unconstrained approaches [4], [17].
The approaches of the first class typically adopt a generative
top-down procedure estimating the likelihood of top-level lin-
guistic hypotheses. In linguistically unconstrained segmenta-
tion, no prior knowledge about the text content is used and the
acoustic information contained in the speech signal is only ex-
ploited in order to detect phone transitions.

A. Top-Down Approaches to Phonemic Segmentation

Most of the recent studies in phonemic segmentation are
based on forced Viterbi phoneme recognition using hidden
Markov models (HMMs). Pellom and Hansen investigate
various segmentation, speech enhancement, and parameter
compensation techniques in noisy environments using the
TIMIT dataset, which is degraded by additive colored noise
[3]. They propose a linguistically constrained HMM-based
method, which yields over 85% boundary detection rate in
noise-free environments (with 20-ms boundary misalignment
tolerance), while achieving significant improvement in noisy
environments, such as aircraft cockpits, automobile highways,
etc. In [18], a two-step HMM-based approach is proposed,
where a well-trained context dependent boundary model is
adapted using a maximum a posteriori approach for segment
boundary refinement. The segmentation accuracy exceeds 90%
within a 20-ms tolerance in Mandarin Chinese and English
in the Microsoft TTS speech corpora. An overview of ma-
chine learning techniques exploited for phone segmentation
using the TALP Research Center corpus is done by Adell and
Bonafonte [19]. The assessment of HMMs, artificial neural
networks (ANNs), dynamic time warping, Gaussian mixture
models (GMMs), and pronunciation modeling, indicates that
85%–90% detection accuracy can be achieved when training
data are available at a 20-ms tolerance. Toledano and Gomez
[20] use a modified HMM recognizer and propose statistical
correction to compensate for the systematic errors produced by
context-dependent HMMs. The algorithm is evaluated using
the percentage of boundaries with errors smaller than 20 ms as
a figure of merit and attest that over 90% accuracy is possible.
Hosom [21] has proposed a hybrid HMM/ANN phoneme
alignment method where distinctive phonetic features and
transition-dependent observation probabilities are employed.
The algorithm yields 92.57% accuracy within 20 ms on the
TIMIT corpus. While HMM-based approaches yield over 90%
phone boundary detection accuracy, they require training data
and an orthographic transcription as well as precise modeling
of the pronunciation variants in order to estimate observation
sequence probabilities [4].

B. Linguistically Unconstrained Phonemic Segmentation

Linguistically unconstrained phone segmentation uses a
bottom-up strategy that does not depend on phonetic tran-
scription neither requires training data. Unlike generative
approaches based on HMMs, methods using spectral distortion
measures are model-free and thus computationally inexpen-
sive and text-, speaker-, dialect-, and language-independent,
although they yield worse accuracy. Thus, they are suitable
for multilingual applications and online implementations that
realize near real-time processing and low bit rate speech coding.
Some phone boundaries are instantaneous (e.g., the burst of
a fully closed plosive), others are not. Though instantaneous
boundaries are not ubiquitous, their existence allows us to
consider spectral changes as potential transition points that
correspond to phone boundaries.
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1) Nonparametric Techniques: Many algorithms in this class
define a change function that directly measures the spectral vari-
ation of the acoustic signal and utilize this function as a transi-
tion penalty. Mitchell et al. [22] have proposed the Delta Cep-
stral Function (DCF), which estimates spectral change by sum-
ming the normalized time derivative of each cepstral coefficient,

, where
is the th cepstral coefficient at the frame and is the

number of cepstral coefficients. is then used to com-
pute a cost function that detects spectral changes associated
with phoneme transitions

(1)

Brugnara et al. [23] and Mitchell et al. [22] have used the
Spectral Variation Function (SVF), which estimates spectral
change as the angle between two normalized cepstral vectors
that are separated by a fixed number of frames in time. The
change function is

(2)

where

is the difference between the th cepstral vector and the
time average of the cepstral vectors that lie within a window
centred at , and indicates the vector norm. Since
and are derived from the observations, little signal
processing overhead is required. Other cost-effective nonpara-
metric methods are zero crossing measurement, the convex-hull
method, and the normal decomposition method [24].

2) Parametric Techniques: Distance-based parametric
methods for segmentation use the KL divergence, the gener-
alized likelihood ratio, and similarity measures based on the
eigenanalysis of the sample covariance matrix [10]. Assuming
feature vectors, which follow a known probability density func-
tion (pdf), e.g., the multivariate Gaussian distribution (GD),
statistical distances are measured between adjacent windows
and a distance plot is formed. Then, heuristics are applied
in order to identify significant local peaks that presumably
indicate spectral changes.

The identification of potential transition points between
speech segments can be addressed as a statistical hypothesis
testing problem. Instead of considering spectral changes, it
is assumed that potential segmentation points correspond to
sequential model changes [4]. This approach has been used for
speech and speaker segmentation (cf., [5], [9]–[13]), but it can
also be applied to phonemic segmentation, if properly modified.

More specifically, an acoustic change detection system based
on BIC has been proposed in [9]. The sequence of feature vec-
tors, typically Mel-frequency cepstral coefficients (MFCCs), in

Fig. 1. Models for two adjacent speech segments.

adjacent speech segments are modeled using different multi-
variate GDs, while their concatenation is assumed to obey a
third multivariate GD, as in Fig. 1. The problem is to decide
whether the data in the large segment fit a single GD better, or
whether a two-segment representation describes it better.

A sliding window having observations, moves
along the signal making statistical decisions at time instant .
Let its sub-windows and have and
observations, respectively, with as de-
picted in Fig. 1. Assume that the feature vectors follow a known
pdf (e.g., multivariate GD). The offset of the sliding window,
which is typically fixed, indicates the resolution of the system.
For the purpose of phonemic segmentation, we must evaluate
the following statistical hypotheses.

: the data sequence
comes from one source (i.e., noisy speech/silence, the
same phone) described by model .

and
: the data

sequence comes from two sources and , implying
that there is a transition between two different phones or a
transition from speech utterance to silence and vice versa.
We denote that the data come from model .

In Bayesian model selection, the comparison of two com-
peting models and , given involves choosing the model
with the higher posterior probability. The posterior odds ratio is

prior odds

(3)

where BF is the ratio of marginal likelihoods of the two com-
peting models whose parameters are and , re-
spectively. The exact calculation of marginal likelihoods in (3)
is difficult to compute in closed form and requires numerical
integration, such as Gaussian integration, Gibbs sampling, or
the Laplace approximation. Schwarz assumed that no intrinsic
linear structure existed in the parameter space [8]. Considering
that the observations follow an exponential distribution, BIC re-
sults as an easily calculated and asymptotically optimal method
for estimating the best model using only MLE of the parameter
vectors and . It presents a useful, and easily calculated,
long-sample approximation to BF, assuming flat priors. If is
the number of the estimated free parameters, is the sample size
and is the likelihood function at the MLE, BIC is defined
as .

Let be -dimensional feature vectors, be
the full covariance matrices of the full window and the two
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Fig. 2. Block diagram of DISTBIC phonemic segmentation algorithm.

sub-windows and , respectively, and be the
corresponding mean vectors. Since , the parameter
space of the multivariate Gaussian model is given by the
composite vector with
free parameters ( for and another for ),
while the mixture model has parameters. The variation
of the BIC value between the two models, , determines
whether the multivariate GD mixture best fits the data,
indicating that corresponds to a segment boundary. If MLE is
used, then

(4)

Negative values of indicate that there is a transition point
in , i.e., a phone boundary. In the next subsection, we focus
on a hybrid parametric technique that combines distance- and
model-based segmentation, which is taken as baseline for our
developments.

C. Hybrid Distance and Model-Based Segmentation Using
DISTBIC

DISTBIC is a two-pass segmentation algorithm that searches
for change point candidates at the maxima of distances com-

puted between adjacent windows over the entire signal [10].
DISTBIC is a hybrid method, in that it combines distance met-
rics with MSC. A block diagram depicting the processing stages
of the DISTBIC segmentation algorithm is shown in Fig. 2.
First, DISTBIC uses a distance computation between adjacent
windows with fixed width, which slide across the signal using a
shift value less than the fixed width, in order to determine pos-
sible candidates for a change point. Different criteria such as
the KL divergence, the generalized likelihood ratio, the Bhat-
tacharyya distance, the values, and various second-order
statistical measures, that evaluate the sphericity of the matrix

or its deviation from the identity matrix using the
arithmetic and geometric mean of the eigenvalues of , can be
applied to this pre-segmentation step [10], [15]. In this paper, the
symmetric version of KL divergence, denoted as is
used. Assuming multivariate GDs for the feature vectors, this
distance can be estimated from the sample statistics

(5)

Next, a plot of distances is created and significant local
peaks are selected as candidate change points to filter out
the insignificantly small distance values. Peaks are selected
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Fig. 3. Thresholds of DISTBIC algorithm.

as “significant” using a series of thresholds, as depicted in
Fig. 3. In particular, constrains the minimum time distance
between consecutive local maxima corresponding to candidate
segmentation points, while and threshold the relative and
absolute distance peaks, respectively. For example, a peak is
marked as significant, if it is larger than its left and right local
minima by threshold , i.e.,
and , respectively. Delacourt
proposes the value of , where corresponds to the
standard deviation of the distances along the plot. Threshold
smooths out the plot: two local maximum points are not marked
both as significant unless they occur at least ms apart. When
two local maxima are close, they can be replaced by a virtual
peak at the center of their time distance [13].

In the last step, a second window scheme with tunable width
is used, where values validate or discard the candidates
determined in the first step. A sliding window containing two
sub-windows , is modeled according to the hypothesis test
in Fig. 1. The boundaries of the adjacent sub-windows are deter-
mined by three consecutive (significant) candidate points

, and in the distance plot, where is the index
of the candidate points, that were chosen in the first step, i.e.,

and , as shown in Fig. 2. If, ac-
cording to BIC, the point , which occurs at the time in-
stant , is discarded, then, in the next step of the analysis, the
two sub-windows of the hypothesis test are set
and . This refinement scheme uses relatively
small window sizes in areas where boundaries are very likely to
occur, while increasing the window size more generously when
boundaries are not very likely to occur. Incorporating more ob-
servations to the decision rule benefits the speech/pause dis-
crimination and phone transition detection [25]. A free param-
eter winmax constrains the maximum window length. For ex-
ample, becomes , if

.
The last step of DISTBIC can be iterated and serves as a re-

finement step in order to avoid over-segmentation. While over-

segmentation in speaker segmentation is usually compensated
by speaker clustering in a following step, this is not the case in
phoneme segmentation. Therefore, the efficient concatenation
of homogenous speech segments in a short time scale, according
to refinement capability of BIC, is particularly important to the
identification of phone boundaries.

Similarly to the AIC generalization proposed in [26], a tuning
parameter for the penalty term of BIC can be used, but must
be estimated heuristically from data (cf., [10], [12], [27], [25]).
If the value of is too high, the algorithm avoids many false
alarms, but at the cost of ignoring genuine segmentation points.
If it is too low, the number of missed detections is reduced at
the cost of increasing the number of false alarms. Ajmera et al.
[28] have proposed a method that avoids by modeling the data
in the sliding window with a two-component GMM and esti-
mating its parameters using the expectation maximization algo-
rithm. DISTBIC is efficient in detecting acoustic changes that
are relatively close to one another, but at the price of many false
alarms. Nevertheless, by tuning the parameters of the algorithm
it is possible to fix the over-segmentation (false alarms) to a min-
imum value and then try to maximize the detection rate.

Regarding the application of BIC to the detection of phone
boundaries, certain assumptions must be considered. First, ei-
ther the incoming signal must originate from a single speaker
or no multiple speakers talk simultaneously. Second, since the
phone durations are relatively small, we must operate on very
small window sizes in order to be able to assume that the test
windows correspond to homogenous segments or at most single
transitions. The choice of the window length is a compromise
between having enough data to calculate the feature vector sta-
tistics and limiting the influence of surrounding parts of the
recording. The window shift determines the time resolution for
the boundaries. For an accurate segmentation, this value must
be as small as possible.

III. PHONEMIC SEGMENTATION AND ROBUSTNESS

Commonly a set of assumptions is embraced in order to re-
duce the complexity of speech modeling and analysis. For ex-
ample, it is often assumed that: the features have sufficient dis-
criminative power; the underlying data distribution is Gaussian;
the feature vector elements are uncorrelated; the feature vectors
are independent and identically distributed (i.i.d.); the sample
size is sufficiently large; and the statistical analysis is robust to
noise and outliers. Whenever such assumptions do not hold, er-
roneous inference results. Clearly, the assumptions imply con-
straints that appear to be interrelated. For example, using multi-
variate features, like MFCCs, implies extra complexity and po-
tential imprecision unless the sample size is large and/or inde-
pendent variables are assumed.

When the features are obtained by sampling the short-time
Fourier spectrum nearby frequencies within the same observa-
tion frame are most probably highly correlated. Thus, when
filter bank features are employed, using conditional pdfs with
diagonal covariance matrices is inappropriate. On the contrary,
cepstral coefficients eliminate some of the correlation between
coefficients extracted from a single observation frame, fitting
the data more closely to the variable uncorrelatedness assump-
tion. This allows the use of diagonal covariance matrices and
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marginal likelihoods in (3). Therefore, closed-form analytical
expressions of the integrated likelihoods in MSC may be pos-
sible. In practice, during phonemic segmentation, small sample
sizes are involved, which corresponds to small number of ob-
servation frames in the short-time analysis windows, thus multi-
collinearity might be present. Furthermore, MFCC features are
sensitive to distortion with additive white noise, which means
that many multivariate statistical techniques are inadequate to
deal with the inserted outliers [29]. The diagonal covariance
assumption is also violated when heterogeneous features are
merged, e.g., when combining MFCC features with their corre-
sponding first differences MFCCs. Instead of assuming vari-
ables modeled by univariate distributions, it would be more ac-
curate to consider joint multivariate pdfs that capture the sto-
chastic dependence between features. Consequently, MSC that
take into account the functional form, i.e., the way the model
parameters are interrelated in the pdf and in the estimation of
model complexity, would be more suitable than simple criteria
such as BIC and AIC [16].

Dealing with situations where few data (i.e., feature vectors)
are available is a challenging problem in statistical inference that
is often neglected for the sake of theoretical flexibility and com-
putational simplicity. A sufficiently large sample size avoids the
singularity of covariance matrices and allows asymptotic ap-
proximations to be applied to MSC, but in phonemic segmen-
tation, where the duration of a single phone can be as small
as a few milliseconds, it is important to consider small-sample
approximations. MLE is biased for small-samples and conse-
quently AIC and BIC, which resort to MLE, also suffer due
to insufficient data. Overfitting effects of complex models be-
come more dramatic as sample size decreases, thus alternative
corrected versions must be used. Small sample size also has
a critical effect in MSC employing a functional form, such as
ICOMP, because the analytical equation for the asymptotic co-
variance matrices of the model parameters has to be replaced by
unstable finite sample empirical estimators and the expectations
have to be replaced with sample averages. Data limitation and
model misspecification lead to singular asymptotic covariance
matrices, and thus to noninvertible Hessian matrices, restraining
the use of FIM-based MSC. In such cases, generalized inversion
procedures based on Cholesky decomposition or quadratic ap-
proximation can be used. A feasible alternative is to estimate
the covariance matrices by parametric bootstrap [30] or Monte
Carlo methods [31].

IV. ROBUST PHONEMIC SEGMENTATION

WITH MODEL SELECTION

Past work on the application of MSC to speech segmentation
has ignored many of the constraints discussed in Section III. In
order to maintain robustness against outliers, the baseline al-
gorithm DISTBIC (described in Section II-C) is extended, in
this Section, by suggesting alternative MSC to BIC and incor-
porating robust statistics for the estimation of model parameters.

A. Alternative Model Selection Criteria

AIC was derived as a large sample approximation of the ex-
pected KL divergence between the pdf of the fitted model and

that of the true model, with the expectation taken over all pos-
sible observations under the true pdf. In particular, AIC esti-
mates the asymptotic bias between the average (over a set of
candidate models) of the maximized log-likelihood and the ex-
pected one by twice the number of the free model parameters

, i.e., , where is the maximized
likelihood function under a model. When MLE parameter esti-
mators are used, the first term in AIC reflects the goodness of fit
(GoF) of the model and measures the bias for model inaccuracy.
The second term emerges from the parsimony principle and acts
as a penalty for the increased unreliability of the fit bias when
additional free parameters are included in the model.

Under the condition that the specified parametric family of
pdfs contains the true distribution, which also implies large
sample sizes, AIC provides an unbiased estimate of the KL
divergence between the specified model and the true model
when the parametric model is estimated by the method of ML.
When the sample size is large and the dimension of candidate
model is relatively small, AIC is an approximately unbiased
estimator. If these conditions are not met, AIC introduces a
large negative bias. According to [32], AIC tends to over-
estimate the parameters needed, even asymptotically, thus it
offers a crude estimator of the expected discrepancy between
the model generating the data and a fitted candidate model. A
second-order small-sample corrected AIC (AICC) assuming
that the data are generated by a fixed-effect linear model with
homogenous, normally distributed errors has been proposed in
[32], [33]. AICC is defined as

where is the sample size. When there are too many param-
eters in relation to the size of the sample (i.e., ),
AICC estimates the expected discrepancy with less bias than
AIC. As sample size increases, AICC converges to AIC. Simi-
larly to AIC, AICC is unbiased under the same conditions. On
the other hand, AICC’s justification depends upon the form of
the candidate model, while AIC is more universally applicable
[32].

Although the BIC target model does not depend on sample
size , the number of parameters that can be estimated reliably
from finite data does depend on . For small , the BIC-selected
model can be quite biased as an estimator of its target model.
Due to this limitation, the application of the BIC to domains
containing small number of samples requires caution. The con-
cern for small or moderate sample sizes is that BIC overvalues
parsimonious models imposing a rather heavy penalty to model
complexity and thus the BIC-selected model may be underfit
and inappropriate for inference. A BIC corrected for small sam-
ples is BICC [34], which uses a complexity penalty inspired by
AICC, i.e., . BICC
performs better than classic BIC both in terms of mean squared
error of the parameter estimates and the prediction error.

Apart from sample size, there is another independent factor
which contributes to model complexity; the functional form.
This refers to the way in which the model parameters are
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related in the model pdf. Bozdogan proposed a generalization
to information-based covariance complexity index by intro-
ducing the maximal information complexity of the asymptotic
of the model parameters, [35]. Bozdogan’s information
complexity criterion (ICOMP) is an entropic measure of sta-
tistical dependence between the parameter estimates and it is
invariant under multiplication and orthonormal transformations
[16], [35]. Instead of penalizing the number of free parameters
directly like AIC, ICOMP also measures and penalizes the in-
terdependence between the parameter estimates by estimating
the covariance complexity of the model

(6)

where is the number of free model parameters corresponding
to the rank of the MLE of the expected asymptotic covariance
matrix and is the determinant of a square matrix. The
maximal information complexity is an information the-
oretic measure of complexity of the covariance matrix that re-
flects the Cramer–Rao lower bound of the model and gives a
scalar combined measure of parameter redundancy and stability.
The trace and the determinant in (6) are the arithmetic and geo-
metric mean of the eigenvalues of . Therefore, pe-
nalizes ellipsoidal dispersion. Consequently, ICOMP offers a
judicious balance between GoF, model complexity, and accu-
racy of the parameter estimates. As the sample size increases,
the sensitivity of functional form gradually diminishes com-
pared to the number of free parameters . A refined version,
ICOMP(IFIM) [16], uses the IFIM instead of , where

is the FIM, i.e.,

(7)

ICOMP(IFIM) evaluates model complexity from the correlation
structure of the parameter estimates through the IFIM. The di-
agonal elements of IFIM correspond to the estimated variances
of the model parameters and indicate the parameter sensitivity,
while the off-diagonal elements are the covariances between
the parameters, which measure the degree of multicollinearity
among the columns of IFIM and reveal the extent of param-
eter interdependence. It is clear that orthogonal models or linear
models with no collinearity minimize (7). When measuring the
model complexity with ICOMP, it is required to approximate the
FIM. The estimated IFIM and its trace and determinant can be
derived in a closed form for multivariate regression [16]. Practi-
cally, the asymptotic covariance matrix still has to be estimated.
Therefore, the analytical calculation of ICOMP depends on the
parameterization of the model and can be difficult or impossible
for nonlinear models. ICOMP(IFIM) has been attested to pro-
vide better results than BIC and AIC in various settings [36].

B. Robust Statistics in Model Selection

The presence of outliers in the data is a common reason for
lack of fit. Possible sources of outliers in speech processing are
recording and measurement errors, extreme random effects and
non-Gaussian noise, correlated observations, and an unknown
data structure. Incorrect assumption about the data distribution
can also lead to mislabeling data as outliers. Many statistical
techniques are sensitive to the presence of outliers, because that
has a strong influence on the estimation of the mean and the
covariance. Robust techniques can reduce the effect of outliers
without deleting them. M-estimators define a large class of ro-
bust estimators that includes the MLE as a subclass. M-esti-
mation filters measurement noise efficiently, while its robust-
ness properties bound the influence of outliers without totally
rejecting them [37]. An efficient and robust location and scatter
multivariate estimator with a high breakdown point is the min-
imum covariance determinant estimator (MCD). For a set of

-variate observations , the MCD loca-
tion and scatter estimates are given by
and , respec-
tively, where , and is the -element set,
where the determinant of is minimized. Fast-MCD is a
three-step MCD implementation that improves computational
speed significantly [38].

Besides the robust estimates of the mean vectors and covari-
ance matrices, robust versions of AIC and BIC criteria have also
been investigated in the literature. Ronchetti [39] proposed an
asymptotic unbiased criterion that is a robust extension of AIC.
This criterion is an application of the generalization of MLE to
M-estimation by following Huber’s least favorable distribution.
Hampel suggested a similar IC using a different penalty term
based on heuristic arguments [37]. Shi and Tsai [40] derived a
robust version of AICC, that also accommodates non-normally
distributed errors. Machado [41] derived a robust version of BIC
based on objective functions defining M-estimators for a para-
metric model. This simply replaces MLE with a robust estimate,
while keeping the same penalty with BIC. Qian and Kunsch [42]
presented a penalty term with more comprehensive information
about the model, based on stochastic complexity.

C. Modification of DISTBIC Using Alternative Model
Selection Criteria

BIC is inappropriate for phoneme segmentation, because of
small-sample biases discussed in Section III. In this paper, we
propose modified algorithms that use AICC, BICC, or ICOMP
as alternatives to BIC in the candidate point verification step of
the DISTBIC algorithm. The resulting algorithms are referred
to as DISTAICC, DISTBICC, and DISTICOMP.

DISTAICC: AIC, in its original form, is not a reasonable
choice for our hypothesis test, because the ad hoc penalty term,
it imposes, does not depend explicitly on the data and the sample
size. Since both frames and their concatenation are always mod-
eled by GD, AIC will reduce to a simple GoF measure. In-
stead, a refined version, such as AICC, should be used since it
takes into account the frame size and moreover works better in
small-sample problems.
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DISTBICC: Like AICC, BICC is a small-sample corrected
version of a promising divergence estimator, therefore BICC is
a second candidate for improved model selection.

DISTICOMP: ICOMP(IFIM) considers the interdependen-
cies among the variables and both the linearity and nonlinearity
of the model parameters. This makes ICOMP(IFIM) appealing,
since it can distinguish among equivalent models and control the
risk of underfitting and overfitting phenomena judiciously. We
denote ICOMP(IFIM) by ICOMP from now on for simplicity.

Instead of estimating IFIM using the equivalent multivariate
regression setting [16], which requires the calculation of the
asymptotic covariance matrix, we approximate the estimated
IFIM using a Monte Carlo resampling-based method [31].
This technique produces a number of efficient, almost unbi-
ased, estimates of the Hessian matrix of the log likelihood
using a Monte Carlo approach analogous to a bootstrap re-
sampling scheme and then averages the negative of these
estimates to obtain an approximation to FIM. For a sequence
of -dimensional feature vectors , we form i.i.d.,
pseudovectors that are randomly
generated from the pdf , where is the pdf param-
eter vector estimated from the data. For every pseudovector

we calculate estimates of

the Hessian matrix, , and by taking their

average, we calculate the mean , which corresponds to
the estimated FIM. Assuming a small real number ,
we form a perturbation vector that
is randomly generated and is independent of .
The th estimation of the gradient vector of the log-likeli-
hood , can be calculated using the
one-sided simultaneous perturbation

(8)

where is a small number (typically ), the
random vector is independent
of and , and the random variables and

are zero mean, i.i.d., and
identically bounded from the symmetric Bernoulli distribution
[31]. The Hessian, which corresponds to the FIM, is the average
of the Hessians estimates

(9)

(10)

D. Modification of DISTBIC Using Robust Parameter
Estimates

In order to deal with outliers and improve the detection
accuracy of the baseline algorithm, we also examine robust
model parameter estimation. Kotti et al. [11] have proposed
an equivalent formulation of BIC, when the covariance ma-
trix estimators are not limited to sample dispersion matrices
(i.e., MLE). Assuming observations drawn from multivariate
GDs, first they apply centering of data (around ) and then
simultaneous diagonalization of covariance matrices. In the
equivalent BIC formulation, robust covariance matrix estimates
can be used. For the data we make the
transformations

, while for the transfor-
mations

. Then we apply the simultaneous diago-

nalization transformation, i.e.,
for and
for , respectively, where is the diagonal
matrix of the eigenvalues of is its modal matrix,
is the modal matrix of , and

is the modal matrix of . If
we note by the diagonal matrix of the eigenvalues of

and is the diagonal matrix of
the eigenvalues of , (4) becomes
after analytical computations

(11)

(12)

In addition, we refine the penalty term as in BICC and apply
Fast-MCD estimators for measuring GoF [38]. We denote the
adjusted criterion BICCR. Similarly, we use Fast-MCD estima-
tors to AICC and ICOMP(IFIM) and denote the new criteria as
AICCR and ICOMPR, respectively.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Dataset

The performance of the proposed methods is assessed on
the NTIMIT hand-checked reference phonetic transcription
corpus, where utterances are transmitted over telephone chan-
nels through either local or long-distance calls [43]. While
NTIMIT contains 61 phonetic symbols, these were clustered in
39 phonetic groups by folding allophones into single groups,
i.e., ah, ax, axh aa, ao uw, ux axr, er ih, ix el,
l hh, hv m, em en, n, nx ng, eng sh, zh , and a
last group q, *cl, sil, h#, epi, pau , which includes the glottal
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stop, the closures, and nonspeech symbols as in [44]. In our
experiments, we used a subset of the NTIMIT dataset with
recordings of two male and two female speakers from each of
the eight dialects (32 speakers in total) and eight utterances per
speaker. Common utterances sa1 and sa2 were not used. This
accounts for 256 unique utterances totalling 13 min of speech
time.

B. Experimental Setup

Detection performance was evaluated against the manual
phonetic transcription that is provided in the NTIMIT dataset.
BICC, AICC, and ICOMP were considered as alternatives to
BIC in the candidate point verification step of the DISTBIC
algorithm, as described in Section IV. The resulting algorithms
are referred to as DISTBICC, DISTAICC, and DISTICOMP.
In order to deal with outliers, Fast-MCD M-estimators were
also used within the aforementioned algorithms yielding
DISTBICCR, DISTAICCR, and DISTICOMPR, respectively.
The IFIM in ICOMP was calculated using and

[31]. Performance comparisons against DCF [22]
and SVF [22], [23] nonparametric segmentation algorithms
were also made.

The mismatch between manual segmentation of audio per-
formed by human transcribers and the automatic segmentation
provided by the algorithms was measured. Possible errors in the
annotation and accuracy were taken into account by introducing
a tolerance. That is, a phone boundary identified by the system
is considered correct if it is placed within a range of ms
from a true (hand-labeled) segmentation point, which implies a
20-ms tolerance. For the experiments, we used the same set of
parameter values and features: 40-ms analysis window, 10-ms
overlap/shift, 12 MFCCs excluding the energy computed every
4 ms, for DISTBIC, and 20-ms tolerance. We used the
threshold values and ms, while
the threshold was not utilized. The choice of is explained
by the fact that almost 90% of the phones in the dataset exceed
20 ms in duration. The value of the maximum sub-window in
the second step of DISTBIC was selected as 130 ms, since this
allows a significant number of observations to be included in
the statistical processing, while only 10% of the phones in the
dataset have longer duration than 130 ms. This means that if the
applied MSC has joined portions of the signal forming windows
that exceed 130 ms in the second step, then the union would have
been erroneous with high probability.

C. Figures of Merit

Two kinds of errors can be identified in hypothesis testing.
Type I error accounts for choosing hypothesis , when
is true; type II error accounts for choosing , when is
true. The probability of type I error defines the significance
of the test, whereas 1-(probability of type II error) reflects
the power of the test. In phone boundary detection, a point
incorrectly identified as a phone boundary yields a type I
error (false alarm, FA) while a boundary totally missed by
the algorithm is a type II error (missed detection, MD). The
detection error rate of the algorithm is described by the missed
detection rate and the false alarm rate

TABLE I
PERCENT AVERAGE ERROR RATES IN NTIMIT

TABLE II
TUKEY’S HONESTLY SIGNIFICANT DIFFERENCES CRITERION ON � RATES

as defined in [10], where APB
stands for the actual phone boundaries identified by human
annotators. A high value of FAR means that an over-segmen-
tation of the speech signal is obtained, while a high value of
MDR means that the algorithm does not identify the phone
boundaries properly. It is also implied that a higher detection
performance (lower MDR) comes at expense of a higher
FAR. The detection performance of the algorithm can also
be assessed by precision and recall

rates, while the overall objective effec-
tiveness of the algorithm can be evaluated by the -measure

, where CFB is the number
of correctly found boundaries and DET is the number of phone
boundaries detected by the algorithm.

D. Results and Analysis

The algorithm error rates for the NTIMIT dataset are demon-
strated in Table I, where we calculate the average PRC, RCL,
and rates over all recordings. We deduce that DISTICOMPR,
DISTICOMP, and DISTBICCR yield the best three results with
respect to , while DISTBIC and nonparametric method SVF
are the worst performers. Local segmentation using spectral
distortion measures yields satisfactory results in DCF, con-
sidering its simple derivation. Yet, the improvement in hybrid
parametric approaches, that refine model segmentation with
statistical hypothesis testing, by using alternative MSC, small
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TABLE III
AVERAGE � RATES FOR THE TOP MOST FREQUENT PHONEME CLASS TRANSITIONS

Fig. 4. ROC curves for different segmentation algorithms in NTIMIT, showing
that substitution of BIC in DISTBIC with different model selection criteria
yields better results.

sample corrections, and robust parameter estimation, is signif-
icant. The descriptive analysis results in Table II validate the
experimental findings. Using one-way ANOVA for the rates,
the p-value equals , indicating that the aforemen-
tioned algorithms exhibit significant differences with respect to

. Applying post-hoc analysis via Tukey’s honestly significant
differences criterion, all pairwise comparisons are conducted,
as can be seen in Table II. If the confidence interval contains
zero, the difference is not significant. It is clear that zero is not
included in most intervals, which implies that differences are
due to systematic causes rather than random effects in most
cases [45]. We deduce that by using alternative MSC to BIC,
we obtain statistically significant improvements in the baseline
method DISTIBIC. We observe that both small-sample and
robust statistics corrections to AIC and BIC refine performance
at a 95% confidence interval. We notice that the functional
form plays an important role in MSC, since DISTICOMPR
yields the best results. Receiver operating characteristic (ROC)
curves for different segmentation algorithms are illustrated in
Fig. 4. The ROC curves were created by varying the threshold

Fig. 5. ROC curves comparing DISTBIC, DISTBICC, and DISTBICCR algo-
rithms in NTIMIT. Small-sample corrections and robust statistics lead to sig-
nificant increase in segmentation performance.

values , and the parameter winmax as well as the analysis
window size. DISTICOMPR exhibits clearly lower FAR at all
Hit Rates . The performance gain
due to small-sample and robust statistics corrections is depicted
in Fig. 5, where DISTBIC is compared against DISTBICC and
DISTBICCR.

While some phones have relatively stationary spectral prop-
erties, others do not. Table III illustrates the average rates of
the most frequent phoneme class transitions, which account for
73.1% of the transitions in the dataset, for DISTBIC and DIS-
TICOMPR. The former is the baseline algorithm whereas the
latter is the best performing one. It is clear that DISTICOMPR
yields better results than DISTBIC in every class. Since DIS-
TBIC and DISTICOMPR share the same first step, i.e., they use
the KL2 distance metric, the gain for each algorithm is due to
the proposed alternative MSC.

As stated in Section II-A, top-down phonemic segmentation
approaches perform better than linguistically unconstrained
methods, since the former make use of additional context
information. Concerning comparisons with previous works



11

on text-independent phonemic segmentation, Esposito and
Aversano [4] introduced a novel approach for text-independent
speech segmentation, where the preprocessing is based on
critical-band perceptual analysis. The algorithm yields 74%
hit rate in NTIMIT dataset using MelBank features, which is
comparable to ours, and 76% hit rate using MFCCs in TIMIT
dataset, while considering a tolerance of 20 ms and limiting
over-segmentation to a minimum. Mporas et al. [17] have
exploited prior knowledge of glottal pulse locations for the
estimation of adjacent broad phonemic class boundaries. The
algorithm yields 74.9% hit rate in TIMIT database with a 25-ms
tolerance. Dusan and Rabiner [46] report 84.6% correct detec-
tion at 28.2% false alarm rate in TIMIT with a 20-ms tolerance
by relating the maximum spectral transition positions with
the perceptual critical points that contain the most important
information for consonant perception.

VI. GENERAL DISCUSSION

AIC and BIC appear to be naive methods for estimating
model error, since both are justified in very general frame-
works. Still, they have some attractive properties and practical
advantages over their more complex derivatives: the bias cor-
rection term does not require any analytical derivation and it
can be applied in an automatic way. ICOMP on the other hand,
gives a quantitative integrated measure of model complexity,
but relies on the estimation of FIM. It must be noted that robust-
ness through M-estimation has been applied in a rudimentary
way. We presume that model misspecification of the MFCC
features might undervalue the functional form discrimination
ability of ICOMP against GoF. Nevertheless, a more systematic
assessment is left for future work.

It is well known that DISTBIC introduces a large number of
false alarms. While we have attested these can be reduced by
using alternative MSC and robust statistics, FAR remains sig-
nificant (over 20%). Further reduction in FAR requires tuning
of the parameters (e.g., larger analysis windows, larger value of

) and, consequently, leads to worse MDR. In speaker recog-
nition, limiting missed detection is more important, even at the
cost of introducing many false alarms, since these can be easily
discarded next by using clustering algorithms. That is not al-
ways feasible in phonemic segmentation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we examined the applicability of hybrid
bottom-up statistical approaches for the text-independent de-
tection of phone boundaries in continuous speech. Because the
performance of the baseline DISTBIC algorithm is sensitive
to sample sizes and outliers, modifications of DISTBIC were
proposed, so that it performs better for phonemic segmentation.
By considering small-sample corrected and robust alternatives
to BIC, we have improved the accuracy of MSC-based phone
boundary detection. Moreover, robust estimators (M-estima-
tors) improve the performance of MSC in phone segmentation.
We also infer that complexity due to functional form should not
be ignored in small sample sizes, since the criterion ICOMP
performs best. While for many sounds the stationarity issue
is clear, these conditions are not effective for some phone

classes, such as plosives. In future, we intend to combine
acoustic-phonetic, temporal, prosodic, and cepstral features
and fuse the alternative MSC in order to enhance detection
performance. Yet, extra attention should be paid, because the
increase in dimensionality would lead to unstable covariance
matrix estimation, since the number of observation is small.
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